Choose the correct answer from the given four options:
The list of numbers $ -10,-6,-2,2, \ldots $ is
(A) an AP with $ d=-16 $
(B) an AP with $ d=4 $
(C) an AP with $ d=-4 $
(D) not an AP


Given: 

The list of numbers \( -10,-6,-2,2, \ldots \)

To do: 

We have to choose the correct answer.

Solution:

$a_1 = -10, a_2=-6, a_3=-2$

This implies,

$a_3-a_2=-2-(-6)=-2+6=4$

$a_2-a_1=-6-(-10)=-6+10=4$

Here,

$a_3-a_2=a_2-a_1$

$d=a_3-a_2=a_2-a_1=4$

Therefore, the given list of numbers is an AP with $d=4$.

Updated on: 10-Oct-2022

26 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements