- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Choose the correct answer from the given four options:
It is given that $ \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} $, with $ \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{1}{3} $. Then, $ \frac{\text { ar (PRQ) }}{\operatorname{ar}(\mathrm{BCA})} $ is equal to
(A) 9
(B) 3
(C) $ \frac{1}{3} $
(D) $ \frac{1}{9} $
Given:
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \), with \( \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{1}{3} \)
To do:
We have to find \( \frac{\text { ar (PRQ) }}{\operatorname{ar}(\mathrm{BCA})} \).
Solution:
$\triangle A B C \sim \triangle P Q R$
$\frac{B C}{Q R}=\frac{1}{3}$
We know that,
The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
Therefore,
$\frac{\operatorname{ar}(\triangle P R Q)}{\operatorname{ar}(\triangle B C A)}=\frac{(Q R)^{2}}{(B C)^{2}}$
$=(\frac{Q R}{B C})^{2}$
$=(\frac{3}{1})^{2}$
$=\frac{9}{1}$
$=9$
- Related Articles
- Choose the correct answer from the given four options:If \( \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm} \) and \( \mathrm{BC}=15 \mathrm{~cm} \), then \( \mathrm{PR} \) is equal to(A) \( 10 \mathrm{~cm} \)(B) \( 12 \mathrm{~cm} \)(C) \( \frac{20}{3} \mathrm{~cm} \)(D) \( 8 \mathrm{~cm} \)
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{ABC} \) and \( \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}} \), then(A) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{CAB} \)(B) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC} \)(C) \( \triangle \mathrm{CBA} \sim \triangle \mathrm{PQR} \)(D) \( \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR} \)
- \( P \) and \( Q \) are respectively the mid-points of sides \( \mathrm{AB} \) and \( \mathrm{BC} \) of a triangle \( \mathrm{ABC} \) and \( \mathrm{K} \) is the mid-point of \( \mathrm{AP} \), show that(i) \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\mathrm{ARC}) \)(ii) ar \( (\mathrm{RQC})=\frac{3}{8} \) ar \( (\mathrm{ABC}) \)(iii) ar \( (\mathrm{PBQ})=\operatorname{ar}(\mathrm{ARC}) \)
- \( \mathrm{D}, \mathrm{E} \) and \( \mathrm{F} \) are respectively the mid-points of the sides \( \mathrm{BC}, \mathrm{CA} \) and \( \mathrm{AB} \) of a \( \triangle \mathrm{ABC} \). Show that(i) BDEF is a parallelogram.(ii) \( \operatorname{ar}(\mathrm{DEF})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(iii) \( \operatorname{ar}(\mathrm{BDEF})=\frac{1}{2} \operatorname{ar}(\mathrm{ABC}) \)
- In a triangle \( \mathrm{ABC}, \mathrm{E} \) is the mid-point of median AD. Show that \( \operatorname{ar}(\mathrm{BED})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \).
- In figure, \( \mathrm{ABC} \) and \( \mathrm{BDE} \) are two equilateral triangles such that \( \mathrm{D} \) is the mid-point of \( \mathrm{BC} \). If \( \mathrm{AE} \) intersects \( \mathrm{BC} \) at \( \mathrm{F} \), show that(i) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{4} \operatorname{ar}(\mathrm{ABC}) \)(ii) \( \operatorname{ar}(\mathrm{BDE})=\frac{1}{2} \operatorname{ar}(\mathrm{BAE}) \)(iii) \( \operatorname{ar}(\mathrm{ABC})=2 \) ar \( (\mathrm{BEC}) \)(iv) \( \operatorname{ar}(\mathrm{BFE})=\operatorname{ar}(\mathrm{AFD}) \)(v) \( \operatorname{ar}(\mathrm{BFE})=2 \operatorname{ar}(\mathrm{FED}) \)(vi) \( \operatorname{ar}(\mathrm{FED})=\frac{1}{8} \operatorname{ar}(\mathrm{AFC}) \)[Hint: Join \( \mathrm{EC} \) and \( \mathrm{AD} \). Show that \( \mathrm{BE} \| \mathrm{AC} \) and \( \mathrm{DE} \| \mathrm{AB} \)
- If \( \triangle \mathrm{ABC} \) is right angled at \( \mathrm{C} \), then the value of \( \cos (\mathrm{A}+\mathrm{B}) \) is(A) 0(B) 1(C) \( \frac{1}{2} \)(D) \( \frac{\sqrt{3}}{2} \)
- Given $\vartriangle ABC\ \sim\vartriangle PQR$, If $\frac{AB}{PQ}=\frac{1}{3}$, then find $\frac{ar( \vartriangle ABC)}{ar( \vartriangle PQR)}$.
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{DEF} \) and \( \mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q} \) and \( \angle \mathrm{R}=\angle \mathrm{E} \), then which of the following is not true?(A) \( \frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(B) \( \frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}} \)(C) \( \frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} \)(D) \( \frac{E F}{R P}=\frac{D E}{Q R} \)
- If \( \sin \mathrm{A}=\frac{1}{2} \), then the value of \( \cot \mathrm{A} \) is(A) \( \sqrt{3} \)(B) \( \frac{1}{\sqrt{3}} \)(C) \( \frac{\sqrt{3}}{2} \)(D) 1
- If the point \( P(2,1) \) lies on the line segment joining points \( A(4,2) \) and \( B(8,4) \), then(A) \( \mathrm{AP}=\frac{1}{3} \mathrm{AB} \)(B) \( \mathrm{AP}=\mathrm{PB} \)(C) \( \mathrm{PB}=\frac{1}{3} \mathrm{AB} \)(D) \( \mathrm{AP}=\frac{1}{2} \mathrm{AB} \)
- In a $\triangle ABC, P$ and $Q$ are respectively, the mid-points of $AB$ and $BC$ and $R$ is the mid-point of $AP$. Prove that \( \operatorname{ar}(\mathrm{PRQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ARC}) \).
- In figure below, \( \mathrm{P} \) is a point in the interior of a parallelogram \( \mathrm{ABCD} \). Show that(i) \( \operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=\frac{1}{2} \operatorname{ar}(\mathrm{ABCD}) \)(ii) \( \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD}) \)[Hint: Through \( \mathrm{P} \), draw a line parallel to \( \mathrm{AB} \).]"\n
- Bisectors of angles \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) of a triangle \( \mathrm{ABC} \) intersect its circumcircle at \( \mathrm{D}, \mathrm{E} \) and Frespectively. Prove that the angles of the triangle \( \mathrm{DEF} \) are \( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \) and \( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
- Choose the correct answer from the given four options:If in triangles \( \mathrm{ABC} \) and \( \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}} \), then they will be similar, when(A) \( \angle \mathrm{B}=\angle \mathrm{E} \)(B) \( \angle \mathrm{A}=\angle \mathrm{D} \)(C) \( \angle \mathrm{B}=\angle \mathrm{D} \)(D) \( \angle \mathrm{A}=\angle \mathrm{F} \)

Advertisements