- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Choose the correct answer from the given four options:
In below figure, two line segments $ \mathrm{AC} $ and $ \mathrm{BD} $ intersect each other at the point $ \mathrm{P} $ such that $ \mathrm{PA}=6 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{PC}=2.5 \mathrm{~cm}, \mathrm{PD}=5 \mathrm{~cm}, \angle \mathrm{APB}=50^{\circ} $ and $ \angle \mathrm{CDP}=30^{\circ} $. Then, $ \angle \mathrm{PBA} $ is equal to

(A) $ 50^{\circ} $
(B) $ 30^{\circ} $
(C) $ 60^{\circ} $
(D) $ 100^{\circ} $"
Given:
Two line segments \( \mathrm{AC} \) and \( \mathrm{BD} \) intersect each other at the point \( \mathrm{P} \) such that \( \mathrm{PA}=6 \mathrm{~cm}, \mathrm{~PB}=3 \mathrm{~cm}, \mathrm{PC}=2.5 \mathrm{~cm}, \mathrm{PD}=5 \mathrm{~cm}, \angle \mathrm{APB}=50^{\circ} \) and \( \angle \mathrm{CDP}=30^{\circ} \).
To do:
We have to find \( \angle \mathrm{PBA} \).
Solution:
In $\triangle A P B$ and $\triangle C P D$,
$\angle A P B=\angle C P D=50^{\circ}$ (Vertically opposite angles)
$\frac{\mathrm{AP}}{\mathrm{PD}}=\frac{6}{5}$..........(i)
$\frac{\mathrm{BP}}{\mathrm{CP}}=\frac{3}{2.5}$
$\frac{\mathrm{BP}}{\mathrm{CP}}=\frac{6}{5}$.......(ii)
From (i) and (ii), we get,
$\frac{AP}{PD}=\frac{BP}{CP}$
Therefore, by SAS similarity,
$\triangle \mathrm{APB} \sim \triangle \mathrm{DPC}$
This implies,
$\angle A=\angle D=30^{\circ}$ (Corresponding angles of similar triangles)
The sum of the angles of a triangle is $180^{\circ}$
In $\triangle A P B$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{APB}=180^{\circ}$
$30^{\circ}+\angle B+50^{\circ}=180^{\circ}$
$\angle B=180^{\circ}-(50^{\circ}+30^{\circ})$
$\angle B=180-80^{\circ}$
$\angle B=100^{\circ}$
Therefore, $\angle \mathrm{PBA}=100^{\circ}$.
- Related Articles
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
- Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
- Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
- In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
- Construct a triangle \( \mathrm{PQR} \) in which \( \mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} \) and \( \mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm} \).
- Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
- Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
- In figure below, A, B, C and D are four points on a circle. \( \mathrm{AC} \) and \( \mathrm{BD} \) intersect at a point \( \mathrm{E} \) such that \( \angle \mathrm{BEC}=130^{\circ} \) and \( \angle \mathrm{ECD}=20^{\circ} \). Find \( \angle \mathrm{BAC} \)."\n
- In Fig. 6.42, if lines \( \mathrm{PQ} \) and \( \mathrm{RS} \) intersect at point \( \mathrm{T} \), such that \( \angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ} \) and \( \angle \mathrm{TSQ}=75^{\circ} \), find \( \angle \mathrm{SQT} \)."\n
- Choose the correct answer from the given four options:In the figure below, \( \angle \mathrm{BAC}=90^{\circ} \) and \( \mathrm{AD} \perp \mathrm{BC} \). Then,(A) \( \mathrm{BD} \cdot \mathrm{CD}=\mathrm{BC}^{2} \)(B) \( \mathrm{AB}
- In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
- In figure below, if \( \angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm} \) and \( \mathrm{AD}=3 \mathrm{~cm} \), find \( \mathrm{BD} \)."
- \( \mathrm{ABCD} \) is a cyclic quadrilateral whose diagonals intersect at a point \( \mathrm{E} \). If \( \angle \mathrm{DBC}=70^{\circ} \), \( \angle \mathrm{BAC} \) is \( 30^{\circ} \), find \( \angle \mathrm{BCD} \). Further, if \( \mathrm{AB}=\mathrm{BC} \), find \( \angle \mathrm{ECD} \).
- 10. Construct \( \triangle \mathrm{PQR} \) with \( \mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ} \) and \( \mathrm{PR}=4.5 \mathrm{~cm} . \) Measure \( \angle \mathrm{Q} \) and \( \angle \mathrm{R} \). What type of a triangle is it?
- In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
