- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Choose the correct answer from the given four options:
If in two triangles $ \mathrm{DEF} $ and $ \mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q} $ and $ \angle \mathrm{R}=\angle \mathrm{E} $, then which of the following is not true?
(A) $ \frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} $
(B) $ \frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}} $
(C) $ \frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}} $
(D) $ \frac{E F}{R P}=\frac{D E}{Q R} $
Given:
In two triangles \( \mathrm{DEF} \) and \( \mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q} \) and \( \angle \mathrm{R}=\angle \mathrm{E} \).
To do:
We have to find the statement that is not true.
Solution:
In $\triangle D E F$ and $\triangle PQR$,
$\angle D=\angle Q$
$\angle R=\angle E$
Therefore, by AAA similarity,
$\triangle D E F \sim \triangle Q R P$
This implies,
$\angle F=\angle P$ (Corresponding angles of similar triangles)
Therefore,
$\frac{D F}{Q P}=\frac{E D}{R Q}=\frac{F E}{P R}$
Hence, (B) \( \frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}} \) is not true.
- Related Articles
- Choose the correct answer from the given four options:If in triangles \( \mathrm{ABC} \) and \( \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}} \), then they will be similar, when(A) \( \angle \mathrm{B}=\angle \mathrm{E} \)(B) \( \angle \mathrm{A}=\angle \mathrm{D} \)(C) \( \angle \mathrm{B}=\angle \mathrm{D} \)(D) \( \angle \mathrm{A}=\angle \mathrm{F} \)
- Choose the correct answer from the given four options:If in two triangles \( \mathrm{ABC} \) and \( \mathrm{PQR}, \frac{\mathrm{AB}}{\mathrm{QR}}=\frac{\mathrm{BC}}{\mathrm{PR}}=\frac{\mathrm{CA}}{\mathrm{PQ}} \), then(A) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{CAB} \)(B) \( \triangle \mathrm{PQR} \sim \triangle \mathrm{ABC} \)(C) \( \triangle \mathrm{CBA} \sim \triangle \mathrm{PQR} \)(D) \( \triangle \mathrm{BCA} \sim \triangle \mathrm{PQR} \)
- In \( \triangle \mathrm{PQR}, \quad \angle \mathrm{P}=\angle \mathrm{Q}+\angle \mathrm{R}, \mathrm{PQ}=7 \) and \( \mathrm{QR}=25 \). Find the perimeter of \( \triangle \mathrm{PQR} \).
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
- Choose the correct answer from the given four options:If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{EDF} \) and \( \Delta \mathrm{ABC} \) is not similar to \( \Delta \mathrm{D} \mathrm{EF} \), then which of the following is not true?(A) \( \mathrm{BC} \cdot \mathrm{EF}=\mathrm{A} C \cdot \mathrm{FD} \)(B) \( \mathrm{AB}, \mathrm{EF}=\mathrm{AC} \cdot \mathrm{DE} \)(C) \( \mathrm{BC} \cdot \mathrm{DE}=\mathrm{AB} \cdot \mathrm{EF} \)(D) \( \mathrm{BC}, \mathrm{DE}=\mathrm{AB}, \mathrm{FD} \)
- In figure below, line segment \( \mathrm{DF} \) intersect the side \( \mathrm{AC} \) of a triangle \( \mathrm{ABC} \) at the point \( \mathrm{E} \) such that \( \mathrm{E} \) is the mid-point of \( \mathrm{CA} \) and \( \angle \mathrm{AEF}=\angle \mathrm{AFE} \). Prove that \( \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{\mathrm{BF}}{\mathrm{CE}} \)[Hint: Take point \( \mathrm{G} \) on \( \mathrm{AB} \) such that \( \mathrm{CG} \| \mathrm{DF} \).]"
- Construct a triangle \( \mathrm{PQR} \) in which \( \mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ} \) and \( \mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm} \).
- 10. Construct \( \triangle \mathrm{PQR} \) with \( \mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{P}=60^{\circ} \) and \( \mathrm{PR}=4.5 \mathrm{~cm} . \) Measure \( \angle \mathrm{Q} \) and \( \angle \mathrm{R} \). What type of a triangle is it?
- Choose the correct answer from the given four options:If \( \triangle \mathrm{ABC} \sim \Delta \mathrm{QRP}, \frac{\operatorname{ar}(\mathrm{ABC})}{\operatorname{ar}(\mathrm{PQR})}=\frac{9}{4}, \mathrm{AB}=18 \mathrm{~cm} \) and \( \mathrm{BC}=15 \mathrm{~cm} \), then \( \mathrm{PR} \) is equal to(A) \( 10 \mathrm{~cm} \)(B) \( 12 \mathrm{~cm} \)(C) \( \frac{20}{3} \mathrm{~cm} \)(D) \( 8 \mathrm{~cm} \)
- Choose the correct answer from the given four options:In triangles \( \mathrm{ABC} \) and \( \mathrm{DEF}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{F}=\angle \mathrm{C} \) and \( \mathrm{AB}=3 \mathrm{DE} \). Then, the two triangles are(A) congruent but not similar(B) similar but not congruent(C) neither congruent nor similar(D) congruent as well as similar
- Choose the correct answer from the given four options:If \( S \) is a point on side \( P Q \) of a \( \triangle P Q R \) such that \( P S=Q S=R S \), then(A) \( \mathrm{PR}, \mathrm{QR}=\mathrm{RS}^{2} \)(B) \( \mathrm{QS}^{2}+\mathrm{RS}^{2}=\mathrm{QR}^{2} \)(C) \( \mathrm{PR}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2} \)(D) \( \mathrm{PS}^{2}+\mathrm{RS}^{2}=\mathrm{PR}^{2} \)
- In figure below, \( l \| \mathrm{m} \) and line segments \( \mathrm{AB}, \mathrm{CD} \) and \( \mathrm{EF} \) are concurrent at point \( \mathrm{P} \).Prove that \( \frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}} \)."
- It is given that \( \triangle \mathrm{DEF} \sim \triangle \mathrm{RPQ} \). Is it true to say that \( \angle \mathrm{D}=\angle \mathrm{R} \) and \( \angle \mathrm{F}=\angle \mathrm{P} \) ? Why?
- Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
- In \( \Delta \mathrm{PQR}, \mathrm{PD} \perp \mathrm{QR} \) such that \( \mathrm{D} \) lies on \( \mathrm{QR} \). If \( \mathrm{PQ}=a, \mathrm{PR}=b, \mathrm{QD}=c \) and \( \mathrm{DR}=d \), prove that \( (a+b)(a-b)=(c+d)(c-d) \).

Advertisements