# Choose the correct answer from the given four options:If in two triangles $\mathrm{DEF}$ and $\mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q}$ and $\angle \mathrm{R}=\angle \mathrm{E}$, then which of the following is not true?(A) $\frac{\mathrm{EF}}{\mathrm{PR}}=\frac{\mathrm{DF}}{\mathrm{PQ}}$(B) $\frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}}$(C) $\frac{\mathrm{DE}}{\mathrm{QR}}=\frac{\mathrm{DF}}{\mathrm{PQ}}$(D) $\frac{E F}{R P}=\frac{D E}{Q R}$

Given:

In two triangles $\mathrm{DEF}$ and $\mathrm{PQR}, \angle \mathrm{D}=\angle \mathrm{Q}$ and $\angle \mathrm{R}=\angle \mathrm{E}$.

To do:

We have to find the statement that is not true.

Solution:

In $\triangle D E F$ and $\triangle PQR$,

$\angle D=\angle Q$

$\angle R=\angle E$

Therefore, by AAA similarity,

$\triangle D E F \sim \triangle Q R P$

This implies,

$\angle F=\angle P$         (Corresponding angles of similar triangles)

Therefore,

$\frac{D F}{Q P}=\frac{E D}{R Q}=\frac{F E}{P R}$

Hence, (B) $\frac{\mathrm{DE}}{\mathrm{PQ}}=\frac{\mathrm{EF}}{\mathrm{RP}}$ is not true.

Updated on: 10-Oct-2022

259 Views