Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
$x^3 -3x + 1, x^5 - 4x^3 + x^2 + 3x + l$

AcademicMathematicsNCERTClass 10

Given:

$x^3\ –\ 3x\ +\ 1$ and $ x^5\ –\ 4x^3\ +\ x^2\ +\ 3x\ +\ 1$.

To do:

We have to check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial.

Solution:

On applying the division algorithm, 

Let dividend$f(x)\ =\ x^5\ –\ 4x^3\ +\ x^2\ +\ 3x\ +\ 1$

Divisor$g(x)\ =\ x^3\ –\ 3x\ +\ 1$

If $g(x)$ is a factor of $f(x)$ then the remainder on long division should be $0$. 

$x^3-3x+1$)$x^5-4x^3+x^2+3x+1$($x^2-1$

                       $x^5-3x^3+x^2$

               -------------------------------

                              $-x^3+3x+1$

                             $-x^3+3x-1$

                           -------------------

                                    $0$


Therefore, $g(x)$ is a factor of $f(x)$.

raja
Updated on 10-Oct-2022 13:19:38

Advertisements