
Caffe2

 i

Caffe2

 ii

About the Tutorial

In this tutorial, we will learn how to use a deep learning framework named Caffe2

(Convolutional Architecture for Fast Feature Embedding). Moreover, we will understand

the difference between traditional machine learning and deep learning, what are the new

features in Caffe2 as compared to Caffe and the installation instructions for Caffe2.

Audience

This tutorial is designed for those who have keen interest in learning about creating models

and new algorithms for solving problems with the help of a modular and scalable deep

learning framework, Caffe2. Furthermore, it is for the programmers who are eager to bring

their creations to scale with the help of graphics processing units (GPUs) in the cloud or

to common people on mobile with cross - platform libraries.

Prerequisites

Before you proceed with this tutorial, we assume that you have prior knowledge about

deep learning framework, machine learning library PyTorch and programming languages

such as C++, Python and MATLAB. If you are novice to any of the technologies mentioned

before, you can refer to the respective tutorials before beginning with this tutorial.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Caffe2

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Caffe2 — Introduction .. 1

Machine Learning v/s Deep Learning .. 1

2. Caffe2 — Caffe Overview .. 3

Training a CNN ... 3

What’s New in Caffe2? .. 3

3. Caffe2 — Installation .. 5

MacOS Installation .. 5

Windows/Linux Installation ... 6

Testing Installation .. 6

Tutorial Installation ... 7

4. Caffe 2 — Verifying Access to Pre-Trained Models .. 9

5. Caffe2 — Image Classification Using Pre-Trained Model ... 10

Importing Libraries .. 10

Image Processing ... 11

Processing Image ... 13

Predicting Objects in Processed Image ... 16

Stringifying Result .. 18

Predicting a Different Image.. 19

Full Source ... 19

6. Caffe2 — Creating Your Own Network .. 22

Network Architecture .. 22

Caffe2

 iv

Caffe2 Operators ... 22

Creating Network .. 23

Creating Tensors .. 23

Printing Network Architecture .. 24

Network Graphical Representation ... 27

Running Network ... 28

7. Caffe2 — Defining Complex Networks .. 30

Caffe2

 1

Last couple of years, Deep Learning has become a big trend in Machine Learning. It has

been successfully applied to solve previously unsolvable problems in Computer Vision,

Speech Recognition and Natural Language Processing (NLP). There are many more

domains in which Deep Learning is being applied and has shown its usefulness.

Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning

framework developed at Berkeley Vision and Learning Center (BVLC). The Caffe

project was created by Yangqing Jia during his Ph.D. at University of California - Berkeley.

Caffe provides an easy way to experiment with deep learning. It is written in C++ and

provides bindings for Python and Matlab.

It supports many different types of deep learning architectures such as CNN

(Convolutional Neural Network), LSTM (Long Short Term Memory) and FC (Fully

Connected). It supports GPU and is thus, ideally suited for production environments

involving deep neural networks. It also supports CPU-based kernel libraries such as

NVIDIA, CUDA Deep Neural Network library (cuDNN) and Intel Math Kernel Library

(Intel MKL).

In April 2017, U.S. based social networking service company Facebook announced Caffe2,

which now includes RNN (Recurrent Neural Networks) and in March 2018, Caffe2 was

merged into PyTorch. Caffe2 creators and community members have created models for

solving various problems. These models are available to the public as pre-trained models.

Caffe2 helps the creators in using these models and creating one’s own network for making

predictions on the dataset.

Before we go into the details of Caffe2, let us understand the difference between machine

learning and deep learning. This is necessary to understand how models are created

and used in Caffe2.

Machine Learning v/s Deep Learning

In any machine learning algorithm, be it a traditional one or a deep learning one, the

selection of features in the dataset plays an extremely important role in getting the desired

prediction accuracy. In traditional machine learning techniques, the feature selection is

done mostly by human inspection, judgement and deep domain knowledge. Sometimes,

you may seek help from a few tested algorithms for feature selection.

The traditional machine learning flow is depicted in the figure below:

1. Caffe2 — Introduction

Caffe2

 2

In deep learning, the feature selection is automatic and is a part of deep learning algorithm

itself. This is shown in the figure below:

In deep learning algorithms, feature engineering is done automatically. Generally,

feature engineering is time-consuming and requires a good expertise in domain. To

implement the automatic feature extraction, the deep learning algorithms typically ask for

huge amount of data, so if you have only thousands and tens of thousands of data points,

the deep learning technique may fail to give you satisfactory results.

With larger data, the deep learning algorithms produce better results compared to

traditional ML algorithms with an added advantage of less or no feature engineering.

Caffe2

 3

Now, as you have got some insights into deep learning, let us get an overview of what is

Caffe.

Training a CNN

Let us learn the process for training a CNN for classifying images. The process consists of

the following steps:

● Data Preparation: In this step, we center-crop the images and resize them so

that all images for training and testing would be of the same size. This is usually

done by running a small Python script on the image data.

● Model Definition: In this step, we define a CNN architecture. The configuration is

stored in .pb (protobuf) file. A typical CNN architecture is shown in figure below.

● Solver Definition: We define the solver configuration file. Solver does the model

optimization.

● Model Training: We use the built-in Caffe utility to train the model. The training

may take a considerable amount of time and CPU usage. After the training is

completed, Caffe stores the model in a file, which can later on be used on test data

and final deployment for predictions.

What’s New in Caffe2?

In Caffe2, you would find many ready-to-use pre-trained models and also leverage the

community contributions of new models and algorithms quite frequently. The models that

you create can scale up easily using the GPU power in the cloud and also can be brought

down to the use of masses on mobile with its cross-platform libraries.

The improvements made in Caffe2 over Caffe may be summarized as follows:

 Mobile deployment

2. Caffe2 — Caffe Overview

Caffe2

 4

 New hardware support

 Support for large-scale distributed training

 Quantized computation

 Stress tested on Facebook

Pretrained Model Demo

The Berkeley Vision and Learning Center (BVLC) site provides demos of their pre- trained

networks. One such network for image classification is available on the link stated herewith

https://caffe2.ai/docs/learn-more#null__caffe-neural-network-for-image-classification

and is depicted in the screenshot below.

In the screenshot, the image of a dog is classified and labelled with its prediction accuracy.

It also says that it took just 0.068 seconds to classify the image. You may try an image

of your own choice by specifying the image URL or uploading the image itself in the options

given at the bottom of the screen.

https://caffe2.ai/docs/learn-more#null__caffe-neural-network-for-image-classification

Caffe2

 5

Now, that you have got enough insights on the capabilities of Caffe2, it is time to

experiment Caffe2 on your own. To use the pre-trained models or to develop your models

in your own Python code, you must first install Caffe2 on your machine.

On the installation page of Caffe2 site which is available at the link

https://caffe2.ai/docs/getting-started.html?platform=mac&configuration=prebuilt, you

would see the following to select your platform and install type.

As you can see in the above screenshot, Caffe2 supports several popular platforms

including the mobile ones.

Now, we shall understand the steps for MacOS installation on which all the projects in

this tutorial are tested.

MacOS Installation

The installation can be of four types as given below:

● Pre-Built Binaries

● Build From Source

● Docker Images

● Cloud

Depending upon your preference, select any of the above as your installation type. The

instructions given here are as per the Caffe2 installation site for pre-built binaries. It

uses Anaconda for Jupyter environment. Execute the following command on your

console prompt:

pip install torch_nightly -f

https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html

In addition to the above, you will need a few third-party libraries, which are installed using

the following commands:

conda install -c anaconda setuptools

conda install -c conda-forge graphviz

3. Caffe2 — Installation

https://caffe2.ai/docs/getting-started.html?platform=mac&configuration=prebuilt

Caffe2

 6

conda install -c conda-forge hypothesis

conda install -c conda-forge ipython

conda install -c conda-forge jupyter

conda install -c conda-forge matplotlib

conda install -c anaconda notebook

conda install -c anaconda pydot

conda install -c conda-forge python-nvd3

conda install -c anaconda pyyaml

conda install -c anaconda requests

conda install -c anaconda scikit-image

conda install -c anaconda scipy

Some of the tutorials in the Caffe2 website also require the installation of zeromq, which

is installed using the following command:

conda install -c anaconda zeromq

Windows/Linux Installation

 Execute the following command on your console prompt:

conda install -c pytorch pytorch-nightly-cpu

As you must have noticed, you would need Anaconda to use the above installation. You

will need to install the additional packages as specified in the MacOS installation.

Testing Installation

To test your installation, a small Python script is given below, which you can cut and paste

in your Juypter project and execute.

from caffe2.python import workspace

import numpy as np

print ("Creating random data")

data = np.random.rand(3, 2)

print(data)

print ("Adding data to workspace ...")

workspace.FeedBlob("mydata", data)

print ("Retrieving data from workspace")

mydata = workspace.FetchBlob("mydata")

print(mydata)

When you execute the above code, you should see the following output:

Caffe2

 7

Creating random data

[[0.06152718 0.86448082]

 [0.36409966 0.52786113]

 [0.65780886 0.67101053]]

Adding data to workspace ...

Retrieving data from workspace

[[0.06152718 0.86448082]

 [0.36409966 0.52786113]

 [0.65780886 0.67101053]]

The screenshot of the installation test page is shown here for your quick reference:

Now, that you have installed Caffe2 on your machine, proceed to install the tutorial

applications.

Tutorial Installation

Download the tutorials source using the following command on your console:

Caffe2

 8

git clone --recursive https://github.com/caffe2/tutorials caffe2_tutorials

After the download is completed, you will find several Python projects in the

caffe2_tutorials folder in your installation directory. The screenshot of this folder is given

for your quick perusal.

/Users/yourusername/caffe2_tutorials

You can open some of these tutorials to see what the Caffe2 code looks like. The next

two projects described in this tutorial are largely based on the samples shown above.

It is now time to do some Python coding of our own. Let us understand, how to use a pre-

trained model from Caffe2. Later, you will learn to create your own trivial neural network

for training on your own dataset.

Caffe2

 9

Before you learn to use a pre-trained model in your Python application, let us first verify

that the models are installed on your machine and are accessible through the Python code.

When you install Caffe2, the pre-trained models are copied in the installation folder. On

the machine with Anaconda installation, these models are available in the following folder.

anaconda3/lib/python3.7/site-packages/caffe2/python/models

Check out the installation folder on your machine for the presence of these models. You

can try loading these models from the installation folder with the following short Python

script:

CAFFE_MODELS = os.path.expanduser("/anaconda3/lib/python3.7/site-

packages/caffe2/python/models")

INIT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'init_net.pb')

PREDICT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'predict_net.pb')

print(INIT_NET)

print(PREDICT_NET)

When the script runs successfully, you will see the following output:

/anaconda3/lib/python3.7/site-

packages/caffe2/python/models/squeezenet/init_net.pb

/anaconda3/lib/python3.7/site-

packages/caffe2/python/models/squeezenet/predict_net.pb

This confirms that the squeezenet module is installed on your machine and is accessible

to your code.

Now, you are ready to write your own Python code for image classification using Caffe2

squeezenet pre-trained module.

4. Caffe 2 — Verifying Access to Pre-Trained
Models

Caffe2

 10

In this lesson, you will learn to use a pre-trained model to detect objects in a given image.

You will use squeezenet pre-trained module that detects and classifies the objects in a

given image with a great accuracy.

Open a new Juypter notebook and follow the steps to develop this image classification

application.

Importing Libraries

First, we import the required packages using the below code:

from caffe2.proto import caffe2_pb2

from caffe2.python import core, workspace, models

import numpy as np

import skimage.io

import skimage.transform

from matplotlib import pyplot

import os

import urllib.request as urllib2

import operator

Next, we set up a few variables:

INPUT_IMAGE_SIZE = 227

mean = 128

The images used for training will obviously be of varied sizes. All these images must be

converted into a fixed size for accurate training. Likewise, the test images and the image

which you want to predict in the production environment must also be converted to the

size, the same as the one used during training. Thus, we create a variable above called

INPUT_IMAGE_SIZE having value 227. Hence, we will convert all our images to the size

227x227 before using it in our classifier.

We also declare a variable called mean having value 128, which is used later for improving

the classification results.

Next, we will develop two functions for processing the image.

5. Caffe2 — Image Classification Using Pre-
Trained Model

Caffe2

 11

Image Processing

The image processing consists of two steps. First one is to resize the image, and the second

one is to centrally crop the image. For these two steps, we will write two functions for

resizing and cropping.

Image Resizing

First, we will write a function for resizing the image. As said earlier, we will resize the

image to 227x227. So let us define the function resize as follows:

def resize(img, input_height, input_width):

We obtain the aspect ratio of the image by dividing the width by the height.

 original_aspect = img.shape[1]/float(img.shape[0])

If the aspect ratio is greater than 1, it indicates that the image is wide, that to say it is in

the landscape mode. We now adjust the image height and return the resized image using

the following code:

if(original_aspect>1):

 new_height = int(original_aspect * input_height)

 return skimage.transform.resize(img, (input_width,

new_height), mode='constant', anti_aliasing=True, anti_aliasing_sigma=None)

If the aspect ratio is less than 1, it indicates the portrait mode. We now adjust the width

using the following code:

 if(original_aspect<1):

 new_width = int(input_width/original_aspect)

 return skimage.transform.resize(img, (new_width,

input_height), mode='constant', anti_aliasing=True, anti_aliasing_sigma=None)

If the aspect ratio equals 1, we do not make any height/width adjustments.

if(original_aspect == 1):

 return skimage.transform.resize(img, (input_width,

input_height), mode='constant', anti_aliasing=True, anti_aliasing_sigma=None)

The full function code is given below for your quick reference:

 def resize(img, input_height, input_width):

 original_aspect = img.shape[1]/float(img.shape[0])

 if(original_aspect>1):

 new_height = int(original_aspect * input_height)

 return skimage.transform.resize(img, (input_width,

Caffe2

 12

new_height), mode='constant', anti_aliasing=True, anti_aliasing_sigma=None)

 if(original_aspect<1):

 new_width = int(input_width/original_aspect)

 return skimage.transform.resize(img, (new_width,

input_height), mode='constant', anti_aliasing=True, anti_aliasing_sigma=None)

 if(original_aspect == 1):

 return skimage.transform.resize(img, (input_width,

input_height), mode='constant', anti_aliasing=True, anti_aliasing_sigma=None)

We will now write a function for cropping the image around its center.

Image Cropping

We declare the crop_image function as follows:

def crop_image(img,cropx,cropy):

We extract the dimensions of the image using the following statement:

y,x,c = img.shape

We create a new starting point for the image using the following two lines of code:

startx = x//2-(cropx//2)

starty = y//2-(cropy//2)

Finally, we return the cropped image by creating an image object with the new dimensions:

return img[starty:starty+cropy,startx:startx+cropx]

The entire function code is given below for your quick reference:

def crop_image(img,cropx,cropy):

 y,x,c = img.shape

 startx = x//2-(cropx//2)

 starty = y//2-(cropy//2)

 return img[starty:starty+cropy,startx:startx+cropx]

Now, we will write code to test these functions.

Caffe2

 13

Processing Image

Firstly, copy an image file into images subfolder within your project directory. tree.jpg

file is copied in the project. The following Python code loads the image and displays it on

the console:

img =

skimage.img_as_float(skimage.io.imread("images/tree.jpg")).astype(np.float32)

print("Original Image Shape: " , img.shape)

pyplot.figure()

pyplot.imshow(img)

pyplot.title('Original image')

The output is as follows:

Note that size of the original image is 600 x 960. We need to resize this to our specification

of 227 x 227. Calling our earlier-defined resize function does this job.

img = resize(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)

print("Image Shape after resizing: " , img.shape)

pyplot.figure()

pyplot.imshow(img)

pyplot.title('Resized image')

The output is as given below:

Caffe2

 14

Note that now the image size is 227 x 363. We need to crop this to 227 x 227 for the

final feed to our algorithm. We call the previously-defined crop function for this purpose.

img = crop_image(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)

print("Image Shape after cropping: " , img.shape)

pyplot.figure()

pyplot.imshow(img)

pyplot.title('Center Cropped')

Below mentioned is the output of the code:

At this point, the image is of size 227 x 227 and is ready for further processing. We now

swap the image axes to extract the three colours into three different zones.

img = img.swapaxes(1, 2).swapaxes(0, 1)

print("CHW Image Shape: " , img.shape)

Caffe2

 15

Given below is the output:

CHW Image Shape: (3, 227, 227)

Note that the last axis has now become the first dimension in the array. We will now plot

the three channels using the following code:

pyplot.figure()

for i in range(3):

 pyplot.subplot(1, 3, i+1)

 pyplot.imshow(img[i])

 pyplot.axis('off')

 pyplot.title('RGB channel %d' % (i+1))

The output is stated below:

Finally, we do some additional processing on the image such as converting Red Green

Blue to Blue Green Red (RGB to BGR), removing mean for better results and adding

batch size axis using the following three lines of code:

convert RGB --> BGR

img = img[(2, 1, 0), :, :]

remove mean

img = img * 255 - mean

add batch size axis

img = img[np.newaxis, :, :, :].astype(np.float32)

At this point, your image is in NCHW format and is ready for feeding into our network.

Next, we will load our pre-trained model files and feed the above image into it for

prediction.

Caffe2

 16

Predicting Objects in Processed Image

We first setup the paths for the init and predict networks defined in the pre-trained

models of Caffe.

Setting Model File Paths

Remember from our earlier discussion, all the pre-trained models are installed in the

models folder. We set up the path to this folder as follows:

CAFFE_MODELS = os.path.expanduser("/anaconda3/lib/python3.7/site-

packages/caffe2/python/models")

We set up the path to the init_net protobuf file of the squeezenet model as follows:

INIT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'init_net.pb')

Likewise, we set up the path to the predict_net protobuf as follows:

PREDICT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'predict_net.pb')

We print the two paths for diagnosis purpose:

print(INIT_NET)

print(PREDICT_NET)

The above code along with the output is given here for your quick reference:

CAFFE_MODELS = os.path.expanduser("/anaconda3/lib/python3.7/site-

packages/caffe2/python/models")

INIT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'init_net.pb')

PREDICT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'predict_net.pb')

print(INIT_NET)

print(PREDICT_NET)

The output is mentioned below:

/anaconda3/lib/python3.7/site-

packages/caffe2/python/models/squeezenet/init_net.pb

/anaconda3/lib/python3.7/site-

packages/caffe2/python/models/squeezenet/predict_net.pb

Next, we will create a predictor.

Creating Predictor

We read the model files using the following two statements:

Caffe2

 17

with open(INIT_NET, "rb") as f:

 init_net = f.read()

with open(PREDICT_NET, "rb") as f:

 predict_net = f.read()

The predictor is created by passing pointers to the two files as parameters to the Predictor

function.

p = workspace.Predictor(init_net, predict_net)

The p object is the predictor, which is used for predicting the objects in any given image.

Note that each input image must be in NCHW format as what we have done earlier to our

tree.jpg file.

Predicting Objects

To predict the objects in a given image is trivial - just executing a single line of command.

We call run method on the predictor object for an object detection in a given image.

results = p.run({'data': img})

The prediction results are now available in the results object, which we convert to an

array for our readability.

results = np.asarray(results)

Print the dimensions of the array for your understanding using the following statement:

print("results shape: ", results.shape)

The output is as shown below:

results shape: (1, 1, 1000, 1, 1)

We will now remove the unnecessary axis:

preds = np.squeeze(results)

The topmost predication can now be retrieved by taking the max value in the preds array.

curr_pred, curr_conf = max(enumerate(preds), key=operator.itemgetter(1))

print("Prediction: ", curr_pred)

print("Confidence: ", curr_conf)

The output is as follows:

Prediction: 984

Confidence: 0.89235985

Caffe2

 18

As you see the model has predicted an object with an index value 984 with 89%

confidence. The index of 984 does not make much sense to us in understanding what kind

of object is detected. We need to get the stringified name for the object using its index

value. The kind of objects that the model recognizes along with their corresponding index

values are available on a github repository.

Now, we will see how to retrieve the name for our object having index value of 984.

Stringifying Result

We create a URL object to the github repository as follows:

codes =

"https://gist.githubusercontent.com/aaronmarkham/cd3a6b6ac071eca6f7b4a6e40e6038

aa/raw/9edb4038a37da6b5a44c3b5bc52e448ff09bfe5b/alexnet_codes"

We read the contents of the URL:

response = urllib2.urlopen(codes)

The response will contain a list of all codes and its descriptions. Few lines of the response

are shown below for your understanding of what it contains:

 5: 'electric ray, crampfish, numbfish, torpedo',

 6: 'stingray',

 7: 'cock',

 8: 'hen',

 9: 'ostrich, Struthio camelus',

 10: 'brambling, Fringilla montifringilla',

We now iterate the entire array to locate our desired code of 984 using a for loop as

follows:

for line in response:

 mystring = line.decode('ascii')

 code, result = mystring.partition(":")[::2]

 code = code.strip()

 result = result.replace("'", "")

 if (code == str(curr_pred)):

 name = result.split(",")[0][1:]

 print("Model predicts", name, "with", curr_conf, "confidence")

When you run the code, you will see the following output:

Model predicts rapeseed with 0.89235985 confidence

Caffe2

 19

You may now try the model on another image.

Predicting a Different Image

To predict another image, simply copy the image file into the images folder of your project

directory. This is the directory in which our earlier tree.jpg file is stored. Change the name

of the image file in the code. Only one change is required as shown below:

img =

skimage.img_as_float(skimage.io.imread("images/pretzel.jpg")).astype(np.float32

)

The original picture and the prediction result are shown below:

The output is mentioned below:

Model predicts pretzel with 0.99999976 confidence

As you see the pre-trained model is able to detect objects in a given image with a great

amount of accuracy.

Full Source

The full source for the above code that uses a pre-trained model for object detection in a

given image is mentioned here for your quick reference:

def crop_image(img,cropx,cropy):

 y,x,c = img.shape

 startx = x//2-(cropx//2)

 starty = y//2-(cropy//2)

 return img[starty:starty+cropy,startx:startx+cropx]

Caffe2

 20

img =

skimage.img_as_float(skimage.io.imread("images/pretzel.jpg")).astype(np.float32

)

print("Original Image Shape: " , img.shape)

pyplot.figure()

pyplot.imshow(img)

pyplot.title('Original image')

img = resize(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)

print("Image Shape after resizing: " , img.shape)

pyplot.figure()

pyplot.imshow(img)

pyplot.title('Resized image')

img = crop_image(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)

print("Image Shape after cropping: " , img.shape)

pyplot.figure()

pyplot.imshow(img)

pyplot.title('Center Cropped')

img = img.swapaxes(1, 2).swapaxes(0, 1)

print("CHW Image Shape: " , img.shape)

pyplot.figure()

for i in range(3):

 pyplot.subplot(1, 3, i+1)

 pyplot.imshow(img[i])

 pyplot.axis('off')

 pyplot.title('RGB channel %d' % (i+1))

convert RGB --> BGR

img = img[(2, 1, 0), :, :]

remove mean

img = img * 255 - mean

add batch size axis

img = img[np.newaxis, :, :, :].astype(np.float32)

CAFFE_MODELS = os.path.expanduser("/anaconda3/lib/python3.7/site-

packages/caffe2/python/models")

INIT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'init_net.pb')

PREDICT_NET = os.path.join(CAFFE_MODELS, 'squeezenet', 'predict_net.pb')

print(INIT_NET)

print(PREDICT_NET)

Caffe2

 21

with open(INIT_NET, "rb") as f:

 init_net = f.read()

with open(PREDICT_NET, "rb") as f:

 predict_net = f.read()

p = workspace.Predictor(init_net, predict_net)

results = p.run({'data': img})

results = np.asarray(results)

print("results shape: ", results.shape)

preds = np.squeeze(results)

curr_pred, curr_conf = max(enumerate(preds), key=operator.itemgetter(1))

print("Prediction: ", curr_pred)

print("Confidence: ", curr_conf)

codes =

"https://gist.githubusercontent.com/aaronmarkham/cd3a6b6ac071eca6f7b4a6e40e6038

aa/raw/9edb4038a37da6b5a44c3b5bc52e448ff09bfe5b/alexnet_codes"

response = urllib2.urlopen(codes)

for line in response:

 mystring = line.decode('ascii')

 code, result = mystring.partition(":")[::2]

 code = code.strip()

 result = result.replace("'", "")

 if (code == str(curr_pred)):

 name = result.split(",")[0][1:]

 print("Model predicts", name, "with", curr_conf, "confidence")

By this time, you know how to use a pre-trained model for doing the predictions on your

dataset.

What’s next is to learn how to define your neural network (NN) architectures in Caffe2

and train them on your dataset. We will now learn how to create a trivial single layer NN.

Caffe2

 22

In this lesson, you will learn to define a single layer neural network (NN) in Caffe2 and

run it on a randomly generated dataset. We will write code to graphically depict the

network architecture, print input, output, weights, and bias values. To understand this

lesson, you must be familiar with neural network architectures, its terms and

mathematics used in them.

Network Architecture

Let us consider that we want to build a single layer NN as shown in the figure below:

Mathematically, this network is represented by the following Python code:

Y = X * W^T + b

Where X, W, b are tensors and Y is the output. We will fill all three tensors with some

random data, run the network and examine the Y output. To define the network and

tensors, Caffe2 provides several Operator functions.

Caffe2 Operators

In Caffe2, Operator is the basic unit of computation. The Caffe2 Operator is represented

as follows:

6. Caffe2 — Creating Your Own Network

Caffe2

 23

Caffe2 provides an exhaustive list of operators. For the network that we are designing

currently, we will use the operator called FC, which computes the result of passing an

input vector X into a fully connected network with a two-dimensional weight matrix W and

a single-dimensional bias vector b. In other words, it computes the following mathematical

equation:

Y = X * W^T + b

Where X has dimensions (M x k), W has dimensions (n x k) and b is (1 x n). The output

Y will be of dimension (M x n), where M is the batch size.

For the vectors X and W, we will use the GaussianFill operator to create some random

data. For generating bias values b, we will use ConstantFill operator.

We will now proceed to define our network.

Creating Network

First of all, import the required packages:

from caffe2.python import core, workspace

Next, define the network by calling core.Net as follows:

net = core.Net("SingleLayerFC")

The name of the network is specified as SingleLayerFC. At this point, the network object

called net is created. It does not contain any layers so far.

Creating Tensors

We will now create the three vectors required by our network. First, we will create X tensor

by calling GaussianFill operator as follows:

X = net.GaussianFill([], ["X"], mean=0.0, std=1.0, shape=[2, 3], run_once=0)

The X vector has dimensions 2 x 3 with the mean data value of 0,0 and standard deviation

of 1.0.

Likewise, we create W tensor as follows:

Caffe2

 24

W = net.GaussianFill([], ["W"], mean=0.0, std=1.0, shape=[5, 3], run_once=0)

The W vector is of size 5 x 3.

Finally, we create bias b matrix of size 5.

b = net.ConstantFill([], ["b"], shape=[5,], value=1.0, run_once=0)

Now, comes the most important part of the code and that is defining the network itself.

Defining Network

We define the network in the following Python statement:

Y = X.FC([W, b], ["Y"])

We call FC operator on the input data X. The weights are specified in W and bias in b. The

output is Y. Alternatively, you may create the network using the following Python

statement, which is more verbose.

Y = net.FC([X, W, b], ["Y"])

At this point, the network is simply created. Until we run the network at least once, it will

not contain any data. Before running the network, we will examine its architecture.

Printing Network Architecture

Caffe2 defines the network architecture in a JSON file, which can be examined by calling

the Proto method on the created net object.

print (net.Proto())

This produces the following output:

name: "SingleLayerFC"

op {

 output: "X"

 name: ""

 type: "GaussianFill"

 arg {

 name: "mean"

 f: 0.0

 }

 arg {

 name: "std"

 f: 1.0

 }

Caffe2

 25

 arg {

 name: "shape"

 ints: 2

 ints: 3

 }

 arg {

 name: "run_once"

 i: 0

 }

}

op {

 output: "W"

 name: ""

 type: "GaussianFill"

 arg {

 name: "mean"

 f: 0.0

 }

 arg {

 name: "std"

 f: 1.0

 }

 arg {

 name: "shape"

 ints: 5

 ints: 3

 }

 arg {

 name: "run_once"

 i: 0

 }

}

op {

 output: "b"

 name: ""

 type: "ConstantFill"

 arg {

Caffe2

 26

 name: "shape"

 ints: 5

 }

 arg {

 name: "value"

 f: 1.0

 }

 arg {

 name: "run_once"

 i: 0

 }

}

op {

 input: "X"

 input: "W"

 input: "b"

 output: "Y"

 name: ""

 type: "FC"

}

As you can see in the above listing, it first defines the operators X, W and b. Let us

examine the definition of W as an example. The type of W is specified as GausianFill.

The mean is defined as float 0.0, the standard deviation is defined as float 1.0, and the

shape is 5 x 3.

op {

 output: "W"

 name: ""

 type: "GaussianFill"

 arg {

 name: "mean"

 f: 0.0

 }

 arg {

 name: "std"

 f: 1.0

 }

Caffe2

 27

 arg {

 name: "shape"

 ints: 5

 ints: 3

 }

 ...

}

Examine the definitions of X and b for your own understanding. Finally, let us look at the

definition of our single layer network, which is reproduced here:

op {

 input: "X"

 input: "W"

 input: "b"

 output: "Y"

 name: ""

 type: "FC"

}

Here, the network type is FC (Fully Connected) with X, W, b as inputs and Y is the output.

This network definition is too verbose and for large networks, it will become tedious to

examine its contents. Fortunately, Caffe2 provides a graphical representation for the

created networks.

Network Graphical Representation

To get the graphical representation of the network, run the following code snippet, which

is essentially only two lines of Python code.

from caffe2.python import net_drawer

from IPython import display

graph = net_drawer.GetPydotGraph(net, rankdir="LR")

display.Image(graph.create_png(), width=800)

When you run the code, you will see the following output:

Caffe2

 28

For large networks, the graphical representation becomes extremely useful in visualizing

and debugging network definition errors.

Finally, it is now time to run the network.

Running Network

You run the network by calling the RunNetOnce method on the workspace object:

workspace.RunNetOnce(net)

After the network is run once, all our data that is generated at random would be created,

fed into the network and the output will be created. The tensors which are created after

running the network are called blobs in Caffe2. The workspace consists of the blobs you

create and store in memory. This is quite similar to Matlab.

After running the network, you can examine the blobs that the workspace contains using

the following print command:

print("Blobs in the workspace: {}".format(workspace.Blobs()))

You will see the following output:

Blobs in the workspace: ['W', 'X', 'Y', 'b']

Note that the workspace consists of three input blobs: X, W and b. It also contains the

output blob called Y. Let us now examine the contents of these blobs.

for name in workspace.Blobs():

 print("{}:\n{}".format(name, workspace.FetchBlob(name)))

You will see the following output:

W:

[[1.0426593 0.15479846 0.25635982]

 [-2.2461145 1.4581774 0.16827184]

 [-0.12009818 0.30771437 0.00791338]

Caffe2

 29

 [1.2274994 -0.903331 -0.68799865]

 [0.30834186 -0.53060573 0.88776857]]

X:

[[1.6588869e+00 1.5279824e+00 1.1889904e+00]

 [6.7048723e-01 -9.7490678e-04 2.5114202e-01]]

Y:

[[3.2709925 -0.297907 1.2803618 0.837985 1.7562964]

 [1.7633215 -0.4651525 0.9211631 1.6511179 1.4302125]]

b:

[1. 1. 1. 1. 1.]

Note that the data on your machine or as a matter of fact on every run of the network

would be different as all inputs are created at random. You have now successfully defined

a network and run it on your computer.

Caffe2

 30

In the previous lesson, you learned to create a trivial network and learned how to execute

it and examine its output. The process for creating complex networks is similar to the

process described above. Caffe2 provides a huge set of operators for creating complex

architectures. You are encouraged to examine the Caffe2 documentation for a list of

operators. After studying the purpose of various operators, you would be in a position to

create complex networks and train them. For training the network, Caffe2 provides several

predefined computation units - that is the operators. You will need to select the

appropriate operators for training your network for the kind of problem that you are trying

to solve.

Once a network is trained to your satisfaction, you can store it in a model file similar to

the pre-trained model files you used earlier. These trained models may be contributed to

Caffe2 repository for the benefits of other users. Or you may simply put the trained model

for your own private production use.

Summary

Caffe2, which is a deep learning framework allows you to experiment with several kinds

of neural networks for predicting your data. Caffe2 site provides many pre-trained models.

You learned to use one of the pre-trained models for classifying objects in a given image.

You also learned to define a neural network architecture of your choice. Such custom

networks can be trained using many predefined operators in Caffe. A trained model is

stored in a file which can be taken into a production environment.

The full source code for the two projects may be downloaded here.

7. Caffe2 — Defining Complex Networks

http://tutorialspont/

