
http://www.tutorialspoint.com/awt/awt_quick_guide.htm Copyright © tutorialspoint.com

AWT QUICK GUIDEAWT QUICK GUIDE

Graphical User Interface
Graphical User Interface GUI offers user interaction via some graphical components. For example
our underlying Operating System also offers GUI via window,frame,Panel, Button, Textfield,
TextArea, Listbox, Combobox, Label, Checkbox etc. These all are known as components. Using
these components we can create an interactive user interface for an application.

GUI provides result to end user in response to raised events.GUI is entirely based events. For
example clicking over a button, closing a window, opening a window, typing something in a
textarea etc. These activities are known as events.GUI makes it easier for the end user to use an
application. It also makes them interesting.

Basic Terminologies

Term Description

Component Component is an object having a graphical representation that can be displayed
on the screen and that can interact with the user. For examples buttons,
checkboxes, list and scrollbars of a graphical user interface.

Container Container object is a component that can contain other components.Components
added to a container are tracked in a list. The order of the list will define the
components' front-to-back stacking order within the container. If no index is
specified when adding a component to a container, it will be added to the end of
the list.

Panel Panel provides space in which an application can attach any other components,
including other panels.

Window Window is a rectangular area which is displayed on the screen. In different window
we can execute different program and display different data. Window provide us
with multitasking environment. A window must have either a frame, dialog, or
another window defined as its owner when it's constructed.

Frame A Frame is a top-level window with a title and a border. The size of the frame
includes any area designated for the border. Frame encapsulates window. It and
has a title bar, menu bar, borders, and resizing corners.

Canvas Canvas component represents a blank rectangular area of the screen onto which
the application can draw. Application can also trap input events from the use from
that blank area of Canvas component.

Examples of GUI based Applications
Following are some of the examples for GUI based applications.

Automated Teller Machine ATM

Airline Ticketing System

Information Kiosks at railway stations

Mobile Applications

http://www.tutorialspoint.com/awt/awt_quick_guide.htm

Navigation Systems

Advantages of GUI over CUI
GUI provides graphical icons to interact while the CUI CharacterUserInterface offers the simple
text-based interfaces.

GUI makes the application more entertaining and interesting on the other hand CUI does not.

GUI offers click and execute environment while in CUI every time we have to enter the
command for a task.

New user can easily interact with graphical user interface by the visual indicators but it is
difficult in Character user interface.

GUI offers a lot of controls of file system and the operating system while in CUI you have to
use commands which is difficult to remember.

Windows concept in GUI allow the user to view, manipulate and control the multiple
applications at once while in CUI user can control one task at a time.

GUI provides multitasking environment so as the CUI also does but CUI does not provide
same ease as the GUI do.

Using GUI it is easier to control and navigate the operating system which becomes very slow
in command user interface. GUI can be easily customized.

ENVIRONMENT SETUPENVIRONMENT SETUP
This section guides you on how to download and set up Java on your machine. Please follow the
following steps to set up the environment.

Java SE is freely available from the link Download Java. So you download a version based on your
operating system.

Follow the instructions to download java and run the .exe to install Java on your machine. Once
you installed Java on your machine, you would need to set environment variables to point to
correct installation directories:

Setting up the path for windows 2000/XP:
Assuming you have installed Java in c:\Program Files\java\jdk directory:

Right-click on 'My Computer' and select 'Properties'.

Click on the 'Environment variables' button under the 'Advanced' tab.

Now alter the 'Path' variable so that it also contains the path to the Java executable. Example,
if the path is currently set to 'C:\WINDOWS\SYSTEM32', then change your path to read
'C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin'.

Setting up the path for windows 95/98/ME:
Assuming you have installed Java in c:\Program Files\java\jdk directory:

Edit the 'C:\autoexec.bat' file and add the following line at the end:

'SET PATH=%PATH%;C:\Program Files\java\jdk\bin'

Setting up the path for Linux, UNIX, Solaris, FreeBSD:
Environment variable PATH should be set to point to where the java binaries have been installed.
Refer to your shell documentation if you have trouble doing this.

Example, if you use bash as your shell, then you would add the following line to the end of your
'.bashrc: export PATH=/path/to/java:$PATH'

http://java.sun.com/javase/downloads/index_jdk5.jsp

Popular Java Editors:
To write your java programs you will need a text editor. There are even more sophisticated IDE
available in the market. But for now, you can consider one of the following:

Notepad : On Windows machine you can use any simple text editor like Notepad
Recommendedforthistutorial, TextPad.

Netbeans :is a Java IDE that is open source and free which can be downloaded from
http://www.netbeans.org/index.html.

Eclipse : is also a java IDE developed by the eclipse open source community and can be
downloaded from http://www.eclipse.org/.

AWT CONTROLSAWT CONTROLS
Every user interface considers the following three main aspects:

UI elements : Thes are the core visual elements the user eventually sees and interacts with.
GWT provides a huge list of widely used and common elements varying from basic to
complex which we will cover in this tutorial.

Layouts: They define how UI elements should be organized on the screen and provide a
final look and feel to the GUI GraphicalUserInterface. This part will be covered in Layout chapter.

Behavior: These are events which occur when the user interacts with UI elements. This part
will be covered in Event Handling chapter.

Every AWT controls inherits properties from Component class.

AWT COMPONENT CLASSAWT COMPONENT CLASS
Introduction
The class Component is the abstract base class for the non menu user-interface controls of AWT.
Component represents an object with graphical representation.

Class declaration
Following is the declaration for java.awt.Component class:

public abstract class Component
 extends Object
 implements ImageObserver, MenuContainer, Serializable

http://www.netbeans.org/index.html
http://www.eclipse.org/

Field
Following are the fields for java.awt.Component class:

static float BOTTOM_ALIGNMENT -- Ease-of-use constant for getAlignmentY.

static float CENTER_ALIGNMENT -- Ease-of-use constant for getAlignmentY and
getAlignmentX.

static float LEFT_ALIGNMENT -- Ease-of-use constant for getAlignmentX.

static float RIGHT_ALIGNMENT -- Ease-of-use constant for getAlignmentX.

static float TOP_ALIGNMENT -- Ease-of-use constant for getAlignmentY.

Class constructors

S.N. Constructor & Description

1
protected Component

This creates a new Component.

Class methods

S.N. Method & Description

1
boolean actionEventevt, Objectwhat

Deprecated. As of JDK version 1.1, should register this component as ActionListener on
component which fires action events.

2
void addPopupMenupopup

Adds the specified popup menu to the component.

3
void addComponentListenerComponentListenerl

Adds the specified component listener to receive component events from this
component.

4
void addFocusListenerFocusListenerl

Adds the specified focus listener to receive focus events from this component when this
component gains input focus.

5
void addHierarchyBoundsListenerHierarchyBoundsListenerl

Adds the specified hierarchy bounds listener to receive hierarchy bounds events from
this component when the hierarchy to which this container belongs changes.

6
void addHierarchyListenerHierarchyListenerl

Adds the specified hierarchy listener to receive hierarchy changed events from this
component when the hierarchy to which this container belongs changes.

7
void addInputMethodListenerInputMethodListenerl

Adds the specified input method listener to receive input method events from this
component.

8
void addKeyListenerKeyListenerl

Adds the specified key listener to receive key events from this component.

9
void addMouseListenerMouseListenerl

Adds the specified mouse listener to receive mouse events from this component.

10
void addMouseMotionListenerMouseMotionListenerl

Adds the specified mouse motion listener to receive mouse motion events from this
component.

11
void addMouseWheelListenerMouseWheelListenerl

Adds the specified mouse wheel listener to receive mouse wheel events from this
component.

12
void addNotify

Makes this Component displayable by connecting it to a native screen resource.

13
void addPropertyChangeListenerPropertyChangeListenerlistener

Adds a PropertyChangeListener to the listener list.

14
void addPropertyChangeListenerStringpropertyName, PropertyChangeListenerlistener

Adds a PropertyChangeListener to the listener list for a specific property.

15
void applyComponentOrientationComponentOrientationorientation

Sets the ComponentOrientation property of this component and all components
contained within it.

16
boolean areFocusTraversalKeysSetintid

Returns whether the Set of focus traversal keys for the given focus traversal operation
has been explicitly defined for this Component.

17
int checkImageImageimage, ImageObserverobserver

Returns the status of the construction of a screen representation of the specified image.

18
int checkImageImageimage, intwidth, intheight, ImageObserverobserver

Returns the status of the construction of a screen representation of the specified image.

19
boolean containsintx, inty

Checks whether this component "contains" the specified point, where x and y are defined
to be relative to the coordinate system of this component.

20
boolean containsPointp

Checks whether this component "contains" the specified point, where the point's x and y
coordinates are defined to be relative to the coordinate system of this component.

21
Image createImageImageProducerproducer

Creates an image from the specified image producer.

22
Image createImageintwidth, intheight

Creates an off-screen drawable image to be used for double buffering.

23
VolatileImage createVolatileImageintwidth, intheight

Creates a volatile off-screen drawable image to be used for double buffering.

24
VolatileImage createVolatileImageintwidth, intheight, ImageCapabilitiescaps

Creates a volatile off-screen drawable image, with the given capabilities.

25
void deliverEventEvente

Deprecated. As of JDK version 1.1, replaced by dispatchEventAWTEvente.

26
void disable

Deprecated. As of JDK version 1.1, replaced by setEnabledboolean.

27
protected void disableEventslongeventsToDisable

Disables the events defined by the specified event mask parameter from being delivered
to this component.

28
void dispatchEventAWTEvente

Dispatches an event to this component or one of its sub components.

29
void doLayout

Prompts the layout manager to lay out this component.

30
void enable

Deprecated. As of JDK version 1.1, replaced by setEnabledboolean.

31
void enablebooleanb

Deprecated. As of JDK version 1.1, replaced by setEnabledboolean.

32
protected void enableEventslongeventsToEnable

Enables the events defined by the specified event mask parameter to be delivered to this
component.

33
void enableInputMethodsbooleanenable

Enables or disables input method support for this component.

34
protected void firePropertyChangeStringpropertyName, booleanoldValue, booleannewValue

Support for reporting bound property changes for boolean properties.

35
void firePropertyChangeStringpropertyName, byteoldValue, bytenewValue

Reports a bound property change.

36
void firePropertyChangeStringpropertyName, charoldValue, charnewValue

Reports a bound property change.

37
void firePropertyChangeStringpropertyName, doubleoldValue, doublenewValue

Reports a bound property change.

38
void firePropertyChangeStringpropertyName, floatoldValue, floatnewValue

Reports a bound property change.

39
void firePropertyChangeStringpropertyName, longoldValue, longnewValue

Reports a bound property change.

40
protected void firePropertyChangeStringpropertyName, ObjectoldValue, ObjectnewValue

Support for reporting bound property changes for Object properties.

41
void firePropertyChangeStringpropertyName, shortoldValue, shortnewValue

Reports a bound property change.

42
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Component.

43
float getAlignmentX

Returns the alignment along the x axis.

44
float getAlignmentY

Returns the alignment along the y axis.

45
Color getBackground

Gets the background color of this component.

46
int getBaselineintwidth, intheight

Returns the baseline.

47
Component.BaselineResizeBehavior getBaselineResizeBehavior

Returns an enum indicating how the baseline of the component changes as the size
changes.

48
Rectangle getBounds

Gets the bounds of this component in the form of a Rectangle object.

49
Rectangle getBoundsRectanglerv

Stores the bounds of this component into return value rv and return rv.

50
ColorModel getColorModel

Gets the instance of ColorModel used to display the component on the output device.

51
Component getComponentAtintx, inty

Determines if this component or one of its immediate subcomponents contains the x, y

location, and if so, returns the containing component.

52
Component getComponentAtPointp

Returns the component or subcomponent that contains the specified point.

53
ComponentListener[] getComponentListeners

Returns an array of all the component listeners registered on this component.

54
ComponentOrientation getComponentOrientation

Retrieves the language-sensitive orientation that is to be used to order the elements or
text within this component.

55
Cursor getCursor

Gets the cursor set in the component.

56
DropTarget getDropTarget

Gets the DropTarget associated with this Component.

57
Container getFocusCycleRootAncestor

Returns the Container which is the focus cycle root of this Component's focus traversal
cycle.

58
FocusListener[] getFocusListeners

Returns an array of all the focus listeners registered on this component.

59
Set<AWTKeyStroke> getFocusTraversalKeysintid

Returns the Set of focus traversal keys for a given traversal operation for this
Component.

60
boolean getFocusTraversalKeysEnabled

Returns whether focus traversal keys are enabled for this Component.

61
Font getFont

Gets the font of this component.

62
FontMetrics getFontMetricsFontfont

Gets the font metrics for the specified font.

63
Color getForeground

Gets the foreground color of this component.

64
Graphics getGraphics

Creates a graphics context for this component.

65
GraphicsConfiguration getGraphicsConfiguration

Gets the GraphicsConfiguration associated with this Component.

66
int getHeight

Returns the current height of this component.

67
HierarchyBoundsListener[] getHierarchyBoundsListeners

Returns an array of all the hierarchy bounds listeners registered on this component.

68
HierarchyListener[] getHierarchyListeners

Returns an array of all the hierarchy listeners registered on this component.

69
boolean getIgnoreRepaint

70
InputContext getInputContext

Gets the input context used by this component for handling the communication with input
methods when text is entered in this component.

71
InputMethodListener[] getInputMethodListeners

Returns an array of all the input method listeners registered on this component.

72
InputMethodRequests getInputMethodRequests

Gets the input method request handler which supports requests from input methods for
this component.

73
KeyListener[] getKeyListeners

Returns an array of all the key listeners registered on this component.

74
<T extends EventListener> T[] getListenersClass < T > listenerType

Returns an array of all the objects currently registered as FooListeners upon this

Component.

75
Locale getLocale

Gets the locale of this component.

76
Point getLocation

Gets the location of this component in the form of a point specifying the component's
top-left corner.

77
Point getLocationPointrv

Stores the x,y origin of this component into return value rv and return rv.

78
Point getLocationOnScreen

Gets the location of this component in the form of a point specifying the component's
top-left corner in the screen's coordinate space.

79
Dimension getMaximumSize

Gets the maximum size of this component.

80
Dimension getMinimumSize

Gets the mininimum size of this component.

81
MouseListener[] getMouseListeners

Returns an array of all the mouse listeners registered on this component.

82
MouseMotionListener[] getMouseMotionListeners

Returns an array of all the mouse motion listeners registered on this component.

83
Point getMousePosition

Returns the position of the mouse pointer in this Component's coordinate space if the
Component is directly under the mouse pointer, otherwise returns null.

84
MouseWheelListener[] getMouseWheelListeners

Returns an array of all the mouse wheel listeners registered on this component.

85
String getName

Gets the name of the component.

86
Container getParent

Gets the parent of this component.

87
java.awt.peer.ComponentPeer getPeer Deprecated. As of JDK version 1.1,
programs should not directly manipulate peers; replaced by boolean
isDisplayable.

88
Dimension getPreferredSize

Gets the preferred size of this component.

89
PropertyChangeListener[] getPropertyChangeListeners

Returns an array of all the property change listeners registered on this component.

90
PropertyChangeListener[] getPropertyChangeListenersStringpropertyName

Returns an array of all the listeners which have been associated with the named
property.

91
Dimension getSize

Returns the size of this component in the form of a Dimension object.

92
Dimension getSizeDimensionrvStores the width/height of this component into
return value rv and return rv.

93
Toolkit getToolkit

Gets the toolkit of this component.

94
Object getTreeLock

Gets this component's locking object theobjectthatownsthethreadsychronizationmonitor

for AWT component-tree and layout operations.

95
int getWidth

Returns the current width of this component.

96
int getX

Returns the current x coordinate of the components origin.

97
int getY

Returns the current y coordinate of the components origin.

98
boolean gotFocusEventevt, Objectwhat

Deprecated. As of JDK version 1.1, replaced by processFocusEventFocusEvent

.

99
boolean handleEventEventevt

Deprecated. As of JDK version 1.1 replaced by processEventAWTEvent.

100
boolean hasFocus

Returns true if this Component is the focus owner.

101
void hide

Deprecated. As of JDK version 1.1, replaced by setVisibleboolean.

102
boolean imageUpdateImageimg, intinfoflags, intx, inty, intw, inth

Repaints the component when the image has changed.

103
boolean insideintx, inty

Deprecated. As of JDK version 1.1, replaced by containsint, int.

104
void invalidate

Invalidates this component.

105
boolean isBackgroundSet

Returns whether the background color has been explicitly set for this Component.

106
boolean isCursorSet

Returns whether the cursor has been explicitly set for this Component.

107
boolean isDisplayable

Determines whether this component is displayable.

108
boolean isDoubleBuffered

Returns true if this component is painted to an offscreen image (buffer)

that's copied to the screen later.

109
boolean isEnabled

Determines whether this component is enabled.

110
boolean isFocusable

Returns whether this Component can be focused.

111
boolean isFocusCycleRootContainercontainer

Returns whether the specified Container is the focus cycle root of this Component's focus
traversal cycle.

112
boolean isFocusOwner

Returns true if this Component is the focus owner.

113
boolean isFocusTraversable

Deprecated. As of 1.4, replaced by isFocusable.

114
boolean isFontSet

Returns whether the font has been explicitly set for this Component.

115
boolean isForegroundSet

Returns whether the foreground color has been explicitly set for this Component.

116
boolean isLightweight

A lightweight component doesn't have a native toolkit peer.

117
boolean isMaximumSizeSet

Returns true if the maximum size has been set to a non-null value otherwise returns false.

118
boolean isMinimumSizeSet

Returns whether or not setMinimumSize has been invoked with a non-null value.

119
boolean isOpaque

Returns true if this component is completely opaque, returns false by default.

120

120
boolean isPreferredSizeSet

Returns true if the preferred size has been set to a non-null value otherwise returns false.

121
boolean isShowing

Determines whether this component is showing on screen.

122
boolean isValid

Determines whether this component is valid.

123
boolean isVisible

Determines whether this component should be visible when its parent is visible.

124
boolean keyDownEventevt, intkey

Deprecated. As of JDK version 1.1, replaced by processKeyEventKeyEvent.

125
boolean keyUpEventevt, intkey

Deprecated. As of JDK version 1.1, replaced by processKeyEventKeyEvent.

126
void layout

Deprecated. As of JDK version 1.1, replaced by doLayout.

127
void list

Prints a listing of this component to the standard system output stream System.out.

128
void listPrintStreamout

Prints a listing of this component to the specified output stream.

129
void listPrintStreamout, intindent

Prints out a list, starting at the specified indentation, to the specified print stream.

130
void listPrintWriterout

Prints a listing to the specified print writer.

131
void listPrintWriterout, intindent

Prints out a list, starting at the specified indentation, to the specified print writer.

132
Component locateintx, inty

Deprecated. As of JDK version 1.1, replaced by getComponentAtint, int.

133
Point location

Deprecated. As of JDK version 1.1, replaced by getLocation.

134
boolean lostFocusEventevt, Objectwhat

Deprecated. As of JDK version 1.1, replaced by processFocusEventFocusEvent.

135
boolean mouseDownEventevt, intx, inty

Deprecated. As of JDK version 1.1, replaced by processMouseEventMouseEvent.

136
boolean mouseDragEventevt, intx, inty

Deprecated. As of JDK version 1.1, replaced by processMouseMotionEventMouseEvent.

137
boolean mouseEnterEventevt, intx, inty

Deprecated. As of JDK version 1.1, replaced by processMouseEventMouseEvent.

138
boolean mouseExitEventevt, intx, inty

Deprecated. As of JDK version 1.1, replaced by processMouseEventMouseEvent..

139
boolean mouseMoveEventevt, intx, inty

Deprecated. As of JDK version 1.1, replaced by processMouseMotionEventMouseEvent..

140
boolean mouseUpEventevt, intx, inty

Deprecated. As of JDK version 1.1, replaced by processMouseEventMouseEvent.

141
void moveintx, inty

Deprecated. As of JDK version 1.1, replaced by setLocationint, int.

142
void nextFocus

Deprecated. As of JDK version 1.1, replaced by transferFocus.

143
void paintGraphicsg

Paints this component.

144
void paintAllGraphicsg

Paints this component and all of its subcomponents.

145
boolean postEventEvente

Deprecated. As of JDK version 1.1, replaced by dispatchEventAWTEvent.

146
boolean prepareImageImageimage, intwidth, intheight, ImageObserverobserver

Prepares an image for rendering on this component at the specified width and height.

147
void printGraphicsg

Prints this component.

148
void printAllGraphicsg

Prints this component and all of its subcomponents.

149
protectedvoid processComponentEventComponentEvente

Processes component events occurring on this component by dispatching them to any
registered ComponentListener objects.

150
protected void processEventAWTEvente

Processes events occurring on this component.

151
protected void processFocusEventFocusEvente

Processes focus events occurring on this component by dispatching them to any
registered FocusListener objects.

152
protected void processHierarchyBoundsEventHierarchyEvente

Processes hierarchy bounds events occurring on this component by dispatching them to
any registered HierarchyBoundsListener objects.

153
protected void processHierarchyEventHierarchyEvente

Processes hierarchy events occurring on this component by dispatching them to any
registered HierarchyListener objects.

154
protectedvoid processInputMethodEventInputMethodEvente

Processes input method events occurring on this component by dispatching them to any
registered InputMethodListener objects.

155
protected void processKeyEventKeyEvente

Processes key events occurring on this component by dispatching them to any registered
KeyListener objects.

156
protected void processMouseEventMouseEvente

Processes mouse events occurring on this component by dispatching them to any
registered MouseListener objects.

157
protected void processMouseMotionEventMouseEvente

Processes mouse motion events occurring on this component by dispatching them to any
registered MouseMotionListener objects.

158
protected void processMouseWheelEventMouseWheelEvente

Processes mouse wheel events occurring on this component by dispatching them to any
registered MouseWheelListener objects.

159
void removeMenuComponentpopup

Removes the specified popup menu from the component.

160
void removeComponentListenerComponentListenerl

Removes the specified component listener so that it no longer receives component
events from this component.

161
void removeFocusListenerFocusListenerl

Removes the specified focus listener so that it no longer receives focus events from this
component.

162
void removeHierarchyBoundsListenerHierarchyBoundsListenerl

Removes the specified hierarchy bounds listener so that it no longer receives hierarchy
bounds events from this component.

163
void removeHierarchyListenerHierarchyListenerl

Removes the specified hierarchy listener so that it no longer receives hierarchy changed
events from this component.

164
void removeInputMethodListenerInputMethodListenerl

Removes the specified input method listener so that it no longer receives input method
events from this component.

165
void removeKeyListenerKeyListenerl

Removes the specified key listener so that it no longer receives key events from this
component.

166
void removeMouseListenerMouseListenerl

Removes the specified mouse listener so that it no longer receives mouse events from
this component.

167
void removeMouseMotionListenerMouseMotionListenerl

Removes the specified mouse motion listener so that it no longer receives mouse motion
events from this component.

168
void removeMouseWheelListenerMouseWheelListenerl

Removes the specified mouse wheel listener so that it no longer receives mouse wheel
events from this component.

169
void removeNotify

Makes this Component undisplayable by destroying it native screen resource.

170
void removePropertyChangeListenerPropertyChangeListenerlistener

Removes a PropertyChangeListener from the listener list.

171
void removePropertyChangeListenerStringpropertyName, PropertyChangeListenerlistener

Removes a PropertyChangeListener from the listener list for a specific property.

172
void repaint

Repaints this component.

173
void repaintintx, inty, intwidth, intheight

Repaints the specified rectangle of this component.

174
void repaintlongtm

Repaints the component.

175
void repaintlongtm, intx, inty, intwidth, intheight

Repaints the specified rectangle of this component within tm milliseconds.

176

176
void requestFocus

Requests that this Component get the input focus, and that this Component's top-level
ancestor become the focused Window.

177
protected boolean requestFocusbooleantemporary

Requests that this Component get the input focus, and that this Component's top-level
ancestor become the focused Window.

178
boolean requestFocusInWindow

Requests that this Component get the input focus, if this Component's top-level ancestor
is already the focused Window.

179
protected boolean requestFocusInWindowbooleantemporary

Requests that this Component get the input focus, if this Component's top-level ancestor
is already the focused Window.

180
void reshapeintx, inty, intwidth, intheight

Deprecated. As of JDK version 1.1, replaced by setBoundsint, int, int, int.

181
void resizeDimensiond

Deprecated. As of JDK version 1.1, replaced by setSizeDimension.

182
void resizeintwidth, intheight

Deprecated. As of JDK version 1.1, replaced by setSizeint, int.

183
void setBackgroundColorc

Sets the background color of this component.

184
void setBoundsintx, inty, intwidth, intheight

Moves and resizes this component.

185
void setBoundsRectangler

Moves and resizes this component to conform to the new bounding rectangle r.

186
void setComponentOrientationComponentOrientationo

Sets the language-sensitive orientation that is to be used to order the elements or text
within this component.

187
void setCursorCursorcursor

Sets the cursor image to the specified cursor.

188
void setDropTargetDropTargetdt

Associate a DropTarget with this component.

189
void setEnabledbooleanb

Enables or disables this component, depending on the value of the parameter b.

190
void setFocusablebooleanfocusable

Sets the focusable state of this Component to the specified value.

191
void setFocusTraversalKeysintid, Set < ?extendsAWTKeyStroke > keystrokes

Sets the focus traversal keys for a given traversal operation for this Component.

192
void setFocusTraversalKeysEnabledbooleanfocusTraversalKeysEnabled

Sets whether focus traversal keys are enabled for this Component.

193
void setFontFontf

Sets the font of this component.

194
void setForegroundColorc

Sets the foreground color of this component.

195
void setIgnoreRepaintbooleanignoreRepaint

Sets whether or not paint messages received from the operating system should be
ignored.

196
void setLocaleLocalel

Sets the locale of this component.

197
void setLocationintx, inty

Moves this component to a new location.

198
void setLocationPointp

Moves this component to a new location.

199
void setMaximumSizeDimensionmaximumSize

Sets the maximum size of this component to a constant value.

200
void setMinimumSizeDimensionminimumSize

Sets the minimum size of this component to a constant value.

201
void setNameStringname

Sets the name of the component to the specified string.

202
void setPreferredSizeDimensionpreferredSize

Sets the preferred size of this component to a constant value.

203
void setSizeDimensiond

Resizes this component so that it has width d.width and height d.height.

204
void setSizeintwidth, intheight

Resizes this component so that it has width width and height height.

205
void setVisiblebooleanb

Shows or hides this component depending on the value of parameter b.

206
void show

Deprecated. As of JDK version 1.1, replaced by setVisibleboolean.

207
void showbooleanb

Deprecated. As of JDK version 1.1, replaced by setVisibleboolean.

208
Dimension size

Deprecated. As of JDK version 1.1, replaced by getSize.

209
String toString

Returns a string representation of this component and its values.

210
void transferFocus

Transfers the focus to the next component, as though this Component were the focus
owner.

211
void transferFocusBackward

Transfers the focus to the previous component, as though this Component were the focus
owner.

212
void transferFocusUpCycle

Transfers the focus up one focus traversal cycle.

213
void updateGraphicsg

Updates this component.

214
void validate

Ensures that this component has a valid layout.

215
Rectangle bounds

Deprecated. As of JDK version 1.1, replaced by getBounds.

216
protected AWTEvent coalesceEventsAWTEventexistingEvent, AWTEventnewEvent

Potentially coalesce an event being posted with an existing event.

217
protected String paramString

Returns a string representing the state of this component.

218
protected void firePropertyChangeStringpropertyName, intoldValue, intnewValue

Support for reporting bound property changes for integer properties.

219
Dimension preferredSize

Deprecated. As of JDK version 1.1, replaced by getPreferredSize.

220
boolean prepareImageImageimage, ImageObserverobserver

Prepares an image for rendering on this component.

221
Dimension minimumSize

Deprecated. As of JDK version 1.1, replaced by getMinimumSize.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

AWT LABEL CLASSAWT LABEL CLASS
Introduction
Label is a passive control because it does not create any event when accessed by the user. The
label control is an object of Label. A label displays a single line of read-only text. However the text
can be changed by the application programmer but cannot be changed by the end user in any
way.

Class declaration
Following is the declaration for java.awt.Label class:

public class Label
 extends Component
 implements Accessible

Field
Following are the fields for java.awt.Component class:

static int CENTER -- Indicates that the label should be centered.

static int LEFT -- Indicates that the label should be left justified.

static int RIGHT -- Indicates that the label should be right justified.

Class constructors

S.N. Constructor & Description

1
Label

Constructs an empty label.

2
LabelStringtext

Constructs a new label with the specified string of text, left justified.

3
LabelStringtext, intalignment

Constructs a new label that presents the specified string of text with the specified
alignment.

Class methods

S.N. Method & Description

1

1
void addNotify

Creates the peer for this label.

2
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Label.

3
int getAlignment

Gets the current alignment of this label.

4
String getText

Gets the text of this label.

5
protected String paramString

Returns a string representing the state of this Label.

6
void setAlignmentintalignment

Sets the alignment for this label to the specified alignment.

7
void setTextStringtext

Sets the text for this label to the specified text.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

Label Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){

 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showLabelDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showLabelDemo(){
 headerLabel.setText("Control in action: Label");

 Label label = new Label();
 label.setText("Welcome to TutorialsPoint AWT Tutorial.");
 label.setAlignment(Label.CENTER);
 label.setBackground(Color.GRAY);
 label.setForeground(Color.WHITE);
 controlPanel.add(label);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT BUTTON CLASSAWT BUTTON CLASS
Introduction
Button is a control component that has a label and generates an event when pressed. When a
button is pressed and released, AWT sends an instance of ActionEvent to the button, by calling
processEvent on the button. The button's processEvent method receives all events for the button;
it passes an action event along by calling its own processActionEvent method. The latter method
passes the action event on to any action listeners that have registered an interest in action events
generated by this button.

If an application wants to perform some action based on a button being pressed and released, it
should implement ActionListener and register the new listener to receive events from this button,
by calling the button's addActionListener method. The application can make use of the button's
action command as a messaging protocol.

Class declaration
Following is the declaration for java.awt.Button class:

public class Button
 extends Component
 implements Accessible

Class constructors

S.N. Constructor & Description

1
Button

Constructs a button with an empty string for its label.

2
ButtonStringtext

Constructs a new button with specified label.

Class methods

S.N. Method & Description

1
void addActionListenerActionListenerl

Adds the specified action listener to receive action events from this button.

2
void addNotify

Creates the peer of the button.

3
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Button.

4
String getActionCommand

Returns the command name of the action event fired by this button.

5
ActionListener[] getActionListeners

Returns an array of all the action listeners registered on this button.

6
String getLabel

Gets the label of this button.

7
<T extends EventListener> T[] getListenersClass < T > listenerType

Returns an array of all the objects currently registered as FooListeners upon this Button.

8
protected String paramString

Returns a string representing the state of this Button.

9
protected void processActionEventActionEvente

Processes action events occurring on this button by dispatching them to any registered
ActionListener objects.

10
protected void processEventAWTEvente

Processes events on this button.

11
void removeActionListenerActionListenerl

Removes the specified action listener so that it no longer receives action events from this
button.

12
void setActionCommandStringcommand

Sets the command name for the action event fired by this button.

13
void setLabelStringlabel

Sets the button's label to be the specified string.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

Button Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showButtonDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showButtonDemo(){
 headerLabel.setText("Control in action: Button");

 Button okButton = new Button("OK");
 Button submitButton = new Button("Submit");
 Button cancelButton = new Button("Cancel");

 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("Ok Button clicked.");
 }
 });

 submitButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("Submit Button clicked.");
 }
 });

 cancelButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("Cancel Button clicked.");
 }
 });

 controlPanel.add(okButton);
 controlPanel.add(submitButton);
 controlPanel.add(cancelButton);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT CHECKBOX CLASSAWT CHECKBOX CLASS
Introduction
Checkbox control is used to turn an option ontrue or offfalse. There is label for each checkbox
representing what the checkbox does.The state of a checkbox can be changed by clicking on it.

Class declaration
Following is the declaration for java.awt.Checkbox class:

public class Checkbox
 extends Component
 implements ItemSelectable,Accessible

Class constructors

S.N. Constructor & Description

1
Checkbox

Creates a check box with an empty string for its label.

2
CheckboxStringlabel

Creates a check box with the specified label.

3
CheckboxStringlabel, booleanstate

Creates a check box with the specified label and sets the specified state.

4
CheckboxStringlabel, booleanstate, CheckboxGroupgroup

Constructs a Checkbox with the specified label, set to the specified state, and in the
specified check box group.

5
CheckboxStringlabel, CheckboxGroupgroup, booleanstate

Creates a check box with the specified label, in the specified check box group, and set to
the specified state.

Class methods

S.N. Method & Description

1
void addItemListenerItemListenerl

Adds the specified item listener to receive item events from this check box.

2

2
void addNotify

Creates the peer of the Checkbox.

3
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Checkbox.

4
CheckboxGroup getCheckboxGroup

Determines this check box's group.

5
ItemListener[] getItemListeners

Returns an array of all the item listeners registered on this checkbox.

6
String getLabel

Gets the label of this check box.

7
<T extends EventListener>T[] getListenersClass < T > listenerType

Returns an array of all the objects currently registered as FooListeners upon this
Checkbox.

8
Object[] getSelectedObjects

Returns an array length1 containing the checkbox label or null if the checkbox is not
selected.

9
boolean getState

Determines whether this check box is in the on or off state.

10
protected String paramString

Returns a string representing the state of this Checkbox.

11
protected void processEventAWTEvente

Processes events on this check box.

12
protected void processItemEventItemEvente

Processes item events occurring on this check box by dispatching them to any registered
ItemListener objects.

13
void removeItemListenerItemListenerl

Removes the specified item listener so that the item listener no longer receives item
events from this check box.

14
void setCheckboxGroupCheckboxGroupg

Sets this check box's group to the specified check box group.

15
void setLabelStringlabel

Sets this check box's label to be the string argument.

16
void setStatebooleanstate

Sets the state of this check box to the specified state.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

CheckBox Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showCheckBoxDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();

 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showCheckBoxDemo(){

 headerLabel.setText("Control in action: CheckBox");

 Checkbox chkApple = new Checkbox("Apple");
 Checkbox chkMango = new Checkbox("Mango");
 Checkbox chkPeer = new Checkbox("Peer");

 chkApple.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 statusLabel.setText("Apple Checkbox: "
 + (e.getStateChange()==1?"checked":"unchecked"));
 }
 });

 chkMango.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 statusLabel.setText("Mango Checkbox: "
 + (e.getStateChange()==1?"checked":"unchecked"));
 }
 });

 chkPeer.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 statusLabel.setText("Peer Checkbox: "
 + (e.getStateChange()==1?"checked":"unchecked"));
 }
 });

 controlPanel.add(chkApple);
 controlPanel.add(chkMango);
 controlPanel.add(chkPeer);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT CHECKBOXGROUP CLASSAWT CHECKBOXGROUP CLASS
Introduction
The CheckboxGroup class is used to group the set of checkbox.

Class declaration
Following is the declaration for java.awt.CheckboxGroup class:

public class CheckboxGroup
 extends Object
 implements Serializable

Class constructors

S.N. Constructor & Description

1
CheckboxGroup

Creates a new instance of CheckboxGroup.

Class methods

S.N. Method & Description

1
Checkbox getCurrent

Deprecated. As of JDK version 1.1, replaced by getSelectedCheckbox.

2
Checkbox getSelectedCheckbox

Gets the current choice from this check box group.

3

3
void setCurrentCheckboxbox

Deprecated. As of JDK version 1.1, replaced by setSelectedCheckboxCheckbox.

4
void setSelectedCheckboxCheckboxbox

Sets the currently selected check box in this group to be the specified check box.

5
String toString

Returns a string representation of this check box group, including the value of its current
selection.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

CheckBoxGroup Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showCheckBoxGroupDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();

 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showCheckBoxGroupDemo(){

 headerLabel.setText("Control in action: CheckBoxGroup");

 CheckboxGroup fruitGroup = new CheckboxGroup();

 Checkbox chkApple = new Checkbox("Apple",fruitGroup,true);
 Checkbox chkMango = new Checkbox("Mango",fruitGroup,false);
 Checkbox chkPeer = new Checkbox("Peer",fruitGroup,false);

 statusLabel.setText("Apple Checkbox: checked");
 chkApple.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 statusLabel.setText("Apple Checkbox: checked");
 }
 });

 chkMango.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 statusLabel.setText("Mango Checkbox: checked");
 }
 });

 chkPeer.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 statusLabel.setText("Peer Checkbox: checked");
 }
 });

 controlPanel.add(chkApple);
 controlPanel.add(chkMango);
 controlPanel.add(chkPeer);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT LIST CLASSAWT LIST CLASS
Introduction
The List represents a list of text items. The list can be configured to that user can choose either
one item or multiple items.

Class declaration
Following is the declaration for java.awt.List class:

public class List
 extends Component
 implements ItemSelectable, Accessible

Class constructors

S.N. Constructor & Description

1
List

Creates a new scrolling list.

2
Listintrows

Creates a new scrolling list initialized with the specified number of visible lines.

3
Listintrows, booleanmultipleMode

Creates a new scrolling list initialized to display the specified number of rows.

Class methods
<T extends EventListener> T[] getListenersClass < T > listenerType

Returns an array of all the objects currently registered as FooListeners upon this List.

S.N. Method & Description

1
void addStringitem

Adds the specified item to the end of scrolling list.

2
void addStringitem, intindex

Adds the specified item to the the scrolling list at the position indicated by the index.

3
void addActionListenerActionListenerl

Adds the specified action listener to receive action events from this list.

4
void addItemStringitem

Deprecated. replaced by addString.

5
void addItemStringitem, intindex

Deprecated. replaced by addString, int.

6
void addItemListenerItemListenerl

Adds the specified item listener to receive item events from this list.

7
void addNotify

Creates the peer for the list.

8
boolean allowsMultipleSelections

Deprecated. As of JDK version 1.1, replaced by isMultipleMode.

9
void clear

Deprecated. As of JDK version 1.1, replaced by removeAll.

10
int countItems

Deprecated. As of JDK version 1.1, replaced by getItemCount.

11
void delItemintposition

Deprecated. replaced by removeString and removeint.

12
void delItemsintstart, intend

Deprecated. As of JDK version 1.1, Not for public use in the future. This method is
expected to be retained only as a package private method.

13

13
void deselectintindex

Deselects the item at the specified index.

14
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this List.

15
ActionListener[] getActionListeners

Returns an array of all the action listeners registered on this list.

16
String getItemintindex

Gets the item associated with the specified index.

17
int getItemCount

Gets the number of items in the list.

18
ItemListener[] getItemListeners

Returns an array of all the item listeners registered on this list.

19
String[] getItems

Gets the items in the list.

20
Dimension getMinimumSize

Determines the minimum size of this scrolling list.

21
Dimension getMinimumSizeintrows

Gets the minumum dimensions for a list with the specified number of rows.

22
Dimension getPreferredSize

Gets the preferred size of this scrolling list.

23
Dimension getPreferredSizeintrows

Gets the preferred dimensions for a list with the specified number of rows.

24
int getRows

Gets the number of visible lines in this list.

25
int getSelectedIndex

Gets the index of the selected item on the list,

26
int[] getSelectedIndexes

Gets the selected indexes on the list.

27
String getSelectedItem

Gets the selected item on this scrolling list.

28
String[] getSelectedItems

Gets the selected items on this scrolling list.

29
Object[] getSelectedObjects

Gets the selected items on this scrolling list in an array of Objects.

30
int getVisibleIndex

Gets the index of the item that was last made visible by the method makeVisible.

31
boolean isIndexSelectedintindex

Determines if the specified item in this scrolling list is selected.

32
boolean isMultipleMode

Determines whether this list allows multiple selections.

33
boolean isSelectedintindex

Deprecated. As of JDK version 1.1, replaced by isIndexSelectedint.

34
void makeVisibleintindex

Makes the item at the specified index visible.

35
Dimension minimumSize

Deprecated. As of JDK version 1.1, replaced by getMinimumSize.

36
Dimension minimumSizeintrows

Deprecated. As of JDK version 1.1, replaced by getMinimumSizeint.

37
protected String paramString

Returns the parameter string representing the state of this scrolling list.

38
Dimension preferredSize

Deprecated. As of JDK version 1.1, replaced by getPreferredSize.

39
Dimension preferredSizeintrows

Deprecated. As of JDK version 1.1, replaced by getPreferredSizeint.

40
protected void processActionEventActionEvente

Processes action events occurring on this component by dispatching them to any
registered ActionListener objects.

41
protected void processEventAWTEvent e

Processes events on this scrolling list.

42
protected void processItemEventItemEvent e

Processes item events occurring on this list by dispatching them to any registered
ItemListener objects.

43
void removeint position

Removes the item at the specified position from this scrolling list.

44
void removeString item

Removes the first occurrence of an item from the list.

45
void removeActionListenerActionListener l

Removes the specified action listener so that it no longer receives action events from this
list.

46
void removeAll

Removes all items from this list.

47
void removeItemListenerItemListener l

Removes the specified item listener so that it no longer receives item events from this
list.

48
void removeNotify

Removes the peer for this list.

49
void replaceItemString newValue, int index

Replaces the item at the specified index in the scrolling list with the new string.

50
void selectint index

Selects the item at the specified index in the scrolling list.

51
void setMultipleModeboolean b

Sets the flag that determines whether this list allows multiple selections.

52
void setMultipleSelectionsboolean b

Deprecated. As of JDK version 1.1, replaced by setMultipleModeboolean.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

List Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showListDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);

 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showListDemo(){

 headerLabel.setText("Control in action: List");
 final List fruitList = new List(4,false);

 fruitList.add("Apple");
 fruitList.add("Grapes");
 fruitList.add("Mango");
 fruitList.add("Peer");

 final List vegetableList = new List(4,true);

 vegetableList.add("Lady Finger");
 vegetableList.add("Onion");
 vegetableList.add("Potato");
 vegetableList.add("Tomato");

 Button showButton = new Button("Show");

 showButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 String data = "Fruits Selected: "
 + fruitList.getItem(fruitList.getSelectedIndex());
 data += ", Vegetables selected: ";
 for(String vegetable:vegetableList.getSelectedItems()){
 data += vegetable + " ";
 }
 statusLabel.setText(data);
 }
 });

 controlPanel.add(fruitList);
 controlPanel.add(vegetableList);
 controlPanel.add(showButton);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT TEXTFIELD CLASSAWT TEXTFIELD CLASS
Introduction
The textField component allows the user to edit single line of text.When the user types a key in the
text field the event is sent to the TextField. The key event may be key pressed, Key released or key
typed. The key event is passed to the registered KeyListener. It is also possible to for an
ActionEvent if the ActionEvent is enabled on the textfield then ActionEvent may be fired by
pressing the return key.

Class declaration
Following is the declaration for java.awt.TextField class:

public class TextField
 extends TextComponent

Class constructors

S.N. Constructor & Description

1
TextField

Constructs a new text field.

2
TextFieldint columns

Constructs a new empty text field with the specified number of columns.

3
TextFieldString text

Constructs a new text field initialized with the specified text.

4
TextFieldString text, int columns

Constructs a new text field initialized with the specified text to be displayed, and wide
enough to hold the specified number of columns.

Class methods

S.N. Method & Description

1
void addActionListenerActionListener l

Adds the specified action listener to receive action events from this text field.

2
void addNotify

Creates the TextField's peer.

3
boolean echoCharIsSet

Indicates whether or not this text field has a character set for echoing.

4
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this TextField.

5
ActionListener[] getActionListeners

Returns an array of all the action listeners registered on this textfield.

6
int getColumns

Gets the number of columns in this text field.

7
char getEchoChar

Gets the character that is to be used for echoing.

8
<T extends EventListener> T[] getListenersClass<T> listenerType

Returns an array of all the objects currently registered as FooListeners upon this
TextField.

9
Dimension getMinimumSize

Gets the minumum dimensions for this text field.

10
Dimension getMinimumSizeint columns Gets the minumum dimensions for a
text field with the specified number of columns.

11
Dimension getPreferredSize

Gets the preferred size of this text field.

12
Dimension getPreferredSizeint columns

Gets the preferred size of this text field with the specified number of columns.

13
Dimension minimumSize

Deprecated. As of JDK version 1.1, replaced by getMinimumSize.

14
Dimension minimumSizeint columns

Deprecated. As of JDK version 1.1, replaced by getMinimumSizeint.

15
protected String paramString

Returns a string representing the state of this TextField.

16
Dimension preferredSize

Deprecated. As of JDK version 1.1, replaced by getPreferredSize.

17
Dimension preferredSizeint columns

Deprecated. As of JDK version 1.1, replaced by getPreferredSizeint.

18
protected void processActionEventActionEvent e

Processes action events occurring on this text field by dispatching them to any registered
ActionListener objects.

19
protected void processEventAWTEvent e

Processes events on this text field.

20
void removeActionListenerActionListener l

Removes the specified action listener so that it no longer receives action events from this
text field.

21

21
void setColumnsint columns

Sets the number of columns in this text field.

22
void setEchoCharchar c

Sets the echo character for this text field.

23
void setEchoCharacterchar c

Deprecated. As of JDK version 1.1, replaced by setEchoCharchar.

24
void setTextString t

Sets the text that is presented by this text component to be the specified text.

Methods inherited
This class inherits methods from the following classes:

java.awt.TextComponent

java.awt.Component

java.lang.Object

TextField Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showTextFieldDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);

 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showTextFieldDemo(){
 headerLabel.setText("Control in action: TextField");

 Label namelabel= new Label("User ID: ", Label.RIGHT);
 Label passwordLabel = new Label("Password: ", Label.CENTER);
 final TextField userText = new TextField(6);
 final TextField passwordText = new TextField(6);
 passwordText.setEchoChar('*');

 Button loginButton = new Button("Login");

 loginButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String data = "Username: " + userText.getText();
 data += ", Password: " + passwordText.getText();
 statusLabel.setText(data);
 }
 });

 controlPanel.add(namelabel);
 controlPanel.add(userText);
 controlPanel.add(passwordLabel);
 controlPanel.add(passwordText);
 controlPanel.add(loginButton);
 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT TEXTAREA CLASSAWT TEXTAREA CLASS
Introduction
The TextArea control in AWT provide us multiline editor area. The user can type here as much as
he wants. When the text in the text area become larger than the viewable area the scroll bar is
automatically appears which help us to scroll the text up & down and right & left.

Class declaration
Following is the declaration for java.awt.TextArea class:

public class TextArea
 extends TextComponent

Field
Following are the fields for java.awt.TextArea class:

static int SCROLLBARS_BOTH -- Create and display both vertical and horizontal scrollbars.

static int SCROLLBARS_HORIZONTAL_ONLY -- Create and display horizontal scrollbar
only.

static int SCROLLBARS_NONE -- Do not create or display any scrollbars for the text area.

static int SCROLLBARS_VERTICAL_ONLY -- Create and display vertical scrollbar only.

Class constructors

S.N. Constructor & Description

1
TextArea

Constructs a new text area with the empty string as text.

2
TextAreaint rows, int columns

Constructs a new text area with the specified number of rows and columns and the empty
string as text.

3
TextAreaString text

Constructs a new text area with the specified text.

4
TextAreaString text, int rows, int columns

Constructs a new text area with the specified text, and with the specified number of rows
and columns.

5
TextAreaString text, int rows, int columns, int scrollbars

Constructs a new text area with the specified text, and with the rows, columns, and scroll
bar visibility as specified.

Class methods

S.N. Method & Description

1
void addNotify

Creates the TextArea's peer.

2
void appendString str

Appends the given text to the text area's current text.

3
void appendTextString str

Deprecated. As of JDK version 1.1, replaced by appendString.

4
AccessibleContext getAccessibleContext

Returns the AccessibleContext associated with this TextArea.

5
int getColumns

Returns the number of columns in this text area.

6
Dimension getMinimumSize

Determines the minimum size of this text area.

7
Dimension getMinimumSizeint rows, int columns

Determines the minimum size of a text area with the specified number of rows and
columns.

8
Dimension getPreferredSize

Determines the preferred size of this text area.

9
Dimension getPreferredSizeint rows, int columns

Determines the preferred size of a text area with the specified number of rows and
columns.

10
int getRows

Returns the number of rows in the text area.

11
int getScrollbarVisibility

Returns an enumerated value that indicates which scroll bars the text area uses.

12
void insertString str, int pos

Inserts the specified text at the specified position in this text area.

13
void insertTextString str, int pos

Deprecated. As of JDK version 1.1, replaced by insertString, int.

14
Dimension minimumSize

Deprecated. As of JDK version 1.1, replaced by getMinimumSize.

15
Dimension minimumSizeint rows, int columns

Deprecated. As of JDK version 1.1, replaced by getMinimumSizeint, int.

16
protected String paramString

Returns a string representing the state of this TextArea.

17
Dimension preferredSize

Deprecated. As of JDK version 1.1, replaced by getPreferredSize.

18
Dimension preferredSizeint rows, int columns

Deprecated. As of JDK version 1.1, replaced by getPreferredSizeint, int.

19
void replaceRangeString str, int start, int end

Replaces text between the indicated start and end positions with the specified
replacement text.

20
void replaceTextString str, int start, int end

Deprecated. As of JDK version 1.1, replaced by replaceRangeString, int, int.

21
void setColumnsint columns

Sets the number of columns for this text area.

22
void setRowsint rows

Sets the number of rows for this text area.

Methods inherited
This class inherits methods from the following classes:

java.awt.TextComponent

java.awt.Component

java.lang.Object

TextArea Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showTextAreaDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showTextAreaDemo(){
 headerLabel.setText("Control in action: TextArea");

 Label commentlabel= new Label("Comments: ", Label.RIGHT);

 final TextArea commentTextArea = new TextArea("This is a AWT tutorial "
 +"to make GUI application in Java.",5,30);

 Button showButton = new Button("Show");

 showButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText(commentTextArea.getText());
 }
 });

 controlPanel.add(commentlabel);
 controlPanel.add(commentTextArea);
 controlPanel.add(showButton);
 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT CHOICE CLASSAWT CHOICE CLASS
Introduction
Choice control is used to show pop up menu of choices. Selected choice is shown on the top of the
menu.

Class declaration
Following is the declaration for java.awt.Choice class:

public class Choice
 extends Component
 implements ItemSelectable, Accessible

Class constructors

S.N. Constructor & Description

1
Choice

Creates a new choice menu.

Class methods

S.N. Method & Description

1
void addString item

Adds an item to this Choice menu.

2
void addItemString item

Obsolete as of Java 2 platform v1.1.

3
void addItemListenerItemListener l

Adds the specified item listener to receive item events from this Choice menu.

4
void addNotify

Creates the Choice's peer.

5
int countItems

Deprecated. As of JDK version 1.1, replaced by getItemCount.

6
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Choice.

7
String getItemint index

Gets the string at the specified index in this Choice menu.

8
int getItemCount

Returns the number of items in this Choice menu.

9
ItemListener[] getItemListeners

Returns an array of all the item listeners registered on this choice.

10
<T extends EventListener> T[] getListenersClass<T> listenerType

Returns an array of all the objects currently registered as FooListeners upon this Choice.

11
int getSelectedIndex

Returns the index of the currently selected item.

12
String getSelectedItem

Gets a representation of the current choice as a string.

13
Object[] getSelectedObjects

Returns an array length 1 containing the currently selected item.

14
void insertString item, int index

Inserts the item into this choice at the specified position.

15
protected String paramString

Returns a string representing the state of this Choice menu.

16
protected void processEventAWTEvent e

Processes events on this choice.

17
protected void processItemEventItemEvent e

Processes item events occurring on this Choice menu by dispatching them to any
registered ItemListener objects.

18

18
void removeint position

Removes an item from the choice menu at the specified position.

19
void removeString item

Removes the first occurrence of item from the Choice menu.

20
void removeAll

Removes all items from the choice menu.

21
void removeItemListenerItemListener l

Removes the specified item listener so that it no longer receives item events from this
Choice menu.

22
void selectint pos

Sets the selected item in this Choice menu to be the item at the specified position.

23
void selectString str

Sets the selected item in this Choice menu to be the item whose name is equal to the
specified string.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

Choice Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){

 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showChoiceDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showChoiceDemo(){

 headerLabel.setText("Control in action: Choice");
 final Choice fruitChoice = new Choice();

 fruitChoice.add("Apple");
 fruitChoice.add("Grapes");
 fruitChoice.add("Mango");
 fruitChoice.add("Peer");

 Button showButton = new Button("Show");

 showButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String data = "Fruit Selected: "
 + fruitChoice.getItem(fruitChoice.getSelectedIndex());
 statusLabel.setText(data);
 }
 });

 controlPanel.add(fruitChoice);
 controlPanel.add(showButton);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT CANVAS CLASSAWT CANVAS CLASS
Introduction
Canvas control represents a rectangular area where application can draw something or can
receive inputs created by user.

Class declaration
Following is the declaration for java.awt.Canvas class:

public class Canvas
 extends Component
 implements Accessible

Class constructors

S.N. Constructor & Description

1
Canvas

Constructs a new Canvas.

2
CanvasGraphicsConfiguration config

Constructs a new Canvas given a GraphicsConfiguration object.

Class methods

S.N. Method & Description

1
void addNotify

Creates the peer of the canvas.

2
void createBufferStrategyint numBuffers

Creates a new strategy for multi-buffering on this component.

3
void createBufferStrategyint numBuffers, BufferCapabilities caps

Creates a new strategy for multi-buffering on this component with the required buffer
capabilities.

4
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Canvas.

5
BufferStrategy getBufferStrategy

Returns the BufferStrategy used by this component.

6
void paintGraphics g

Paints this canvas.

7
void pdateGraphics g

Updates this canvas.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

Canvas Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();

 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showCanvasDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showCanvasDemo(){
 headerLabel.setText("Control in action: Canvas");

 controlPanel.add(new MyCanvas());
 mainFrame.setVisible(true);
 }

 class MyCanvas extends Canvas {

 public MyCanvas () {
 setBackground (Color.GRAY);
 setSize(300, 300);
 }

 public void paint (Graphics g) {
 Graphics2D g2;
 g2 = (Graphics2D) g;
 g2.drawString ("It is a custom canvas area", 70, 70);
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT IMAGE CLASSAWT IMAGE CLASS
Introduction
Image control is superclass for all image classes representing graphical images.

Class declaration
Following is the declaration for java.awt.Image class:

public abstract class Image
 extends Object

Field
Following are the fields for java.awt.Image class:

protected float accelerationPriority -- Priority for accelerating this image.

static int SCALE_AREA_AVERAGING -- Use the Area Averaging image scaling algorithm.

static int SCALE_DEFAULT -- Use the default image-scaling algorithm.

static int SCALE_FAST -- Choose an image-scaling algorithm that gives higher priority to
scaling speed than smoothness of the scaled image.

static int SCALE_REPLICATE -- Use the image scaling algorithm embodied in the
ReplicateScaleFilter class.

static int SCALE_SMOOTH -- Choose an image-scaling algorithm that gives higher priority
to image smoothness than scaling speed.

static Object UndefinedProperty -- The UndefinedProperty object should be returned
whenever a property which was not defined for a particular image is fetched.

Class constructors

S.N. Constructor & Description

1
Image

Class methods

S.N. Method & Description

1
void flush

Flushes all reconstructable resources being used by this Image object.

2
float getAccelerationPriority

Returns the current value of the acceleration priority hint.

3
ImageCapabilities getCapabilitiesGraphicsConfiguration gc

Returns an ImageCapabilities object which can be inquired as to the capabilities of this
Image on the specified GraphicsConfiguration.

4
abstract Graphics getGraphics

Creates a graphics context for drawing to an off-screen image.

5
abstract int getHeightImageObserver observer

Determines the height of the image.

6
abstract Object getPropertyString name, ImageObserver observer

Gets a property of this image by name.

7
Image getScaledInstanceint width, int height, int hints

Creates a scaled version of this image.

8
abstract ImageProducer getSource

Gets the object that produces the pixels for the image.

9
abstract int getWidthImageObserver observer

Determines the width of the image.

10
void setAccelerationPriorityfloat priority

Sets a hint for this image about how important acceleration is.

Methods inherited

This class inherits methods from the following classes:

java.lang.Object

Image Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showImageDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showImageDemo(){
 headerLabel.setText("Control in action: Image");

 controlPanel.add(new ImageComponent("resources/java.jpg"));
 mainFrame.setVisible(true);
 }

 class ImageComponent extends Component {

 BufferedImage img;

 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, null);

 }

 public ImageComponent(String path) {
 try {
 img = ImageIO.read(new File(path));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 public Dimension getPreferredSize() {
 if (img == null) {
 return new Dimension(100,100);
 } else {
 return new Dimension(img.getWidth(), img.getHeight());
 }
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT SCROLLBAR CLASSAWT SCROLLBAR CLASS
Introduction
Scrollbar control represents a scroll bar component in order to enable user to select from range of
values.

Class declaration

Following is the declaration for java.awt.Scrollbar class:

public class Scrollbar
 extends Component
 implements Adjustable, Accessible

Field
Following are the fields for java.awt.Image class:

static int HORIZONTAL --A constant that indicates a horizontal scroll bar.

static int VERTICAL --A constant that indicates a vertical scroll bar.

Class constructors

S.N. Constructor & Description

1
Scrollbar

Constructs a new vertical scroll bar.

2
Scrollbarint orientation

Constructs a new scroll bar with the specified orientation.

3
Scrollbarint orientation, int value, int visible, int minimum, int maximum

Constructs a new scroll bar with the specified orientation, initial value, visible amount,
and minimum and maximum values.

Class methods
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Scrollbar.

AdjustmentListener[] getAdjustmentListeners

Returns an array of all the adjustment listeners registered on this scrollbar.

<T extends EventListener>T[] getListenersClass<T> listenerType

Returns an array of all the objects currently registered as FooListeners upon this Scrollbar.

S.N. Method & Description

1
void addAdjustmentListenerAdjustmentListener l

Adds the specified adjustment listener to receive instances of AdjustmentEvent from this
scroll bar.

2
void addNotify

Creates the Scrollbar's peer.

3
int getBlockIncrement

Gets the block increment of this scroll bar.

4
int getLineIncrement

Deprecated. As of JDK version 1.1, replaced by getUnitIncrement.

5
int getMaximum

Gets the maximum value of this scroll bar.

6
int getMinimum

Gets the minimum value of this scroll bar.

7
int getOrientation

Returns the orientation of this scroll bar.

8
int getPageIncrement

Deprecated. As of JDK version 1.1, replaced by getBlockIncrement.

9
int getUnitIncrement

Gets the unit increment for this scrollbar.

10
int getValue

Gets the current value of this scroll bar.

11
boolean

getValueIsAdjusting

Returns true if the value is in the process of changing as a result of actions being taken
by the user.

12
int getVisible

Deprecated. As of JDK version 1.1, replaced by getVisibleAmount.

13
int getVisibleAmount

Gets the visible amount of this scroll bar.

14
protected String paramString

Returns a string representing the state of this Scrollbar.

15
protected void processAdjustmentEventAdjustmentEvent e

Processes adjustment events occurring on this scrollbar by dispatching them to any
registered AdjustmentListener objects.

16
protected

1
void processEventAWTEvent e

Processes events on this scroll bar.

17
void removeAdjustmentListenerAdjustmentListener l

Removes the specified adjustment listener so that it no longer receives instances of
AdjustmentEvent from this scroll bar.

18
void setBlockIncrementint v

Sets the block increment for this scroll bar.

19
void setLineIncrementint v

Deprecated. As of JDK version 1.1, replaced by setUnitIncrementint.

20
void setMaximumint newMaximum

Sets the maximum value of this scroll bar.

21
void setMinimumint newMinimum

Sets the minimum value of this scroll bar.

22
void setOrientationint orientation

Sets the orientation for this scroll bar.

23
void setPageIncrementint v

Deprecated. As of JDK version 1.1, replaced by setBlockIncrement.

24
void setUnitIncrementint v

Sets the unit increment for this scroll bar.

25
void setValueint newValue

Sets the value of this scroll bar to the specified value.

26
void setValueIsAdjustingboolean b

Sets the valueIsAdjusting property.

27
void setValuesint value, int visible, int minimum, int maximum

Sets the values of four properties for this scroll bar: value, visibleAmount, minimum, and
maximum.

28
void setVisibleAmountint newAmount

Sets the visible amount of this scroll bar.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

Scrollbar Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showScrollbarDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);

 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showScrollbarDemo(){
 headerLabel.setText("Control in action: Scrollbar");

 final Scrollbar horizontalScroller = new Scrollbar(Scrollbar.HORIZONTAL);
 final Scrollbar verticalScroller = new Scrollbar();
 verticalScroller.setOrientation(Scrollbar.VERTICAL);
 horizontalScroller.setMaximum (100);
 horizontalScroller.setMinimum (1);
 verticalScroller.setMaximum (100);
 verticalScroller.setMinimum (1);

 horizontalScroller.addAdjustmentListener(new AdjustmentListener() {

 @Override
 public void adjustmentValueChanged(AdjustmentEvent e) {
 statusLabel.setText("Horozontal: "
 +horizontalScroller.getValue()
 +" ,Vertical: "
 + verticalScroller.getValue());
 }
 });

 verticalScroller.addAdjustmentListener(new AdjustmentListener() {

 @Override
 public void adjustmentValueChanged(AdjustmentEvent e) {
 statusLabel.setText("Horozontal: "
 +horizontalScroller.getValue()
 +" ,Vertical: "+ verticalScroller.getValue());
 }
 });

 controlPanel.add(horizontalScroller);
 controlPanel.add(verticalScroller);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT DIALOG CLASSAWT DIALOG CLASS
Introduction
Dialog control represents a top-level window with a title and a border used to take some form of
input from the user.

Class declaration
Following is the declaration for java.awt.Dialog class:

public class Dialog
extends Window

Field
Following are the fields for java.awt.Image class:

static Dialog.ModalityType DEFAULT_MODALITY_TYPE -- Default modality type for
modal dialogs.

Class constructors

S.N. Constructor & Description

1
DialogDialog owner

Constructs an initially invisible, modeless Dialog with the specified owner Dialog and an
empty title.

2
DialogDialog owner, String title

Constructs an initially invisible, modeless Dialog with the specified owner Dialog and title.

3
DialogDialog owner, String title, boolean modal

Constructs an initially invisible Dialog with the specified owner Dialog, title, and modality.

4
DialogDialog owner, String title, boolean modal, GraphicsConfiguration gc

Constructs an initially invisible Dialog with the specified owner Dialog, title, modality and
GraphicsConfiguration.

5
DialogFrame owner

Constructs an initially invisible, modeless Dialog with the specified owner Frame and an
empty title.

6
DialogFrame owner, boolean modal

Constructs an initially invisible Dialog with the specified owner Frame and modality and
an empty title.

7
DialogFrame owner, String title

Constructs an initially invisible, modeless Dialog with the specified owner Frame and title.

8
DialogFrame owner, String title, boolean modal

Constructs an initially invisible Dialog with the specified owner Frame, title and modality.

9
DialogFrame owner, String title, boolean modal, GraphicsConfiguration gc

Constructs an initially invisible Dialog with the specified owner Frame, title, modality, and
GraphicsConfiguration.

10
DialogWindow owner

Constructs an initially invisible, modeless Dialog with the specified owner Window and an
empty title.

11
DialogWindow owner, Dialog.ModalityType modalityType

Constructs an initially invisible Dialog with the specified owner Window and modality and
an empty title.

12
DialogWindow owner, String title

Constructs an initially invisible, modeless Dialog with the specified owner Window and
title.

13
DialogWindow owner, String title, Dialog.ModalityType modalityType

Constructs an initially invisible Dialog with the specified owner Window, title and
modality.

14
DialogWindow owner, String title, Dialog.ModalityType modalityType,
GraphicsConfiguration gc

Constructs an initially invisible Dialog with the specified owner Window, title, modality
and GraphicsConfiguration

Class methods

S.N. Method & Description

1
void addNotify

Makes this Dialog displayable by connecting it to a native screen resource.

2
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Dialog.

3
Dialog.ModalityType getModalityType

Returns the modality type of this dialog.

4
String getTitle

Gets the title of the dialog.

5
void hide

Deprecated. As of JDK version 1.5, replaced by setVisibleboolean.

6
boolean isModal

Indicates whether the dialog is modal.

7
boolean isResizable

Indicates whether this dialog is resizable by the user.

8
boolean isUndecorated

Indicates whether this dialog is undecorated.

9
protected String paramString

Returns a string representing the state of this dialog.

10
void setModalboolean modal

Specifies whether this dialog should be modal.

11
void setModalityTypeDialog.ModalityType type

Sets the modality type for this dialog.

12
void setResizableboolean resizable

Sets whether this dialog is resizable by the user.

13
void setTitleString title

Sets the title of the Dialog.

14
void setUndecoratedboolean undecorated

Disables or enables decorations for this dialog.

15
void setVisibleboolean b

Shows or hides this Dialog depending on the value of parameter b.

16
void show

Deprecated. As of JDK version 1.5, replaced by setVisibleboolean.

17
void toBack

If this Window is visible, sends this Window to the back and may cause it to lose focus or
activation if it is the focused or active Window.

Methods inherited
This class inherits methods from the following classes:

java.awt.Window

java.awt.Component

java.lang.Object

Dialog Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;

import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showDialogDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showDialogDemo(){
 headerLabel.setText("Control in action: Dialog");
 Button showAboutDialogButton = new Button("Show About Dialog");
 showAboutDialogButton.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 AboutDialog aboutDialog = new AboutDialog(mainFrame);
 aboutDialog.setVisible(true);
 }
 });

 controlPanel.add(showAboutDialogButton);
 mainFrame.setVisible(true);
 }

 class AboutDialog extends Dialog {
 public AboutDialog(Frame parent){
 super(parent, true);
 setBackground(Color.gray);
 setLayout(new BorderLayout());
 Panel panel = new Panel();
 panel.add(new Button("Close"));
 add("South", panel);
 setSize(200,200);

 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){

 dispose();
 }
 });
 }

 public boolean action(Event evt, Object arg){
 if(arg.equals("Close")){
 dispose();
 return true;
 }
 return false;
 }

 public void paint(Graphics g){
 g.setColor(Color.white);
 g.drawString("TutorialsPoint.Com", 25,70);
 g.drawString("Version 1.0", 60, 90);
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT FILEDIALOG CLASSAWT FILEDIALOG CLASS
Introduction
FileDialog control represents a dialog window from which the user can select a file.

Class declaration

Following is the declaration for java.awt.FileDialog class:

public class FileDialog
 extends Dialog

Field
Following are the fields for java.awt.Image class:

static int LOAD -- This constant value indicates that the purpose of the file dialog window is
to locate a file from which to read.

static int SAVE -- This constant value indicates that the purpose of the file dialog window is
to locate a file to which to write.

Class constructors

S.N. Constructor & Description

1
FileDialogDialog parent

Creates a file dialog for loading a file.

2
FileDialogDialog parent, String title

Creates a file dialog window with the specified title for loading a file.

3
FileDialogDialog parent, String title, int mode

Creates a file dialog window with the specified title for loading or saving a file.

4
FileDialogFrame parent

Creates a file dialog for loading a file.

5
FileDialogFrame parent, String title

Creates a file dialog window with the specified title for loading a file.

6
FileDialogFrame parent, String title, int mode

Creates a file dialog window with the specified title for loading or saving a file.

Class methods

S.N. Method & Description

1
void addNotify

Creates the file dialog's peer.

2
String getDirectory

Gets the directory of this file dialog.

3
String getFile

Gets the selected file of this file dialog.

4
FilenameFilter getFilenameFilter

Determines this file dialog's filename filter.

5
int getMode

Indicates whether this file dialog box is for loading from a file or for saving to a file.

6
protected String paramString

Returns a string representing the state of this FileDialog window.

7
void setDirectoryString dir

Sets the directory of this file dialog window to be the specified directory.

8
void setFileString file

Sets the selected file for this file dialog window to be the specified file.

9
void setFilenameFilterFilenameFilter filter

Sets the filename filter for this file dialog window to the specified filter.

10
void setModeint mode

Sets the mode of the file dialog.

Methods inherited
This class inherits methods from the following classes:

java.awt.Dialog

java.awt.Window

java.awt.Component

java.lang.Object

FileDialog Example

Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showFileDialogDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showFileDialogDemo(){
 headerLabel.setText("Control in action: FileDialog");

 final FileDialog fileDialog = new FileDialog(mainFrame,"Select file");
 Button showFileDialogButton = new Button("Open File");
 showFileDialogButton.addActionListener(new ActionListener() {
 @Override
 public void actionPerformed(ActionEvent e) {
 fileDialog.setVisible(true);
 statusLabel.setText("File Selected :"
 + fileDialog.getDirectory() + fileDialog.getFile());
 }
 });

 controlPanel.add(showFileDialogButton);
 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

EVENT HANDLINGEVENT HANDLING
What is an Event?
Change in the state of an object is known as event i.e. event describes the change in state of
source. Events are generated as result of user interaction with the graphical user interface
components. For example, clicking on a button, moving the mouse, entering a character through
keyboard,selecting an item from list, scrolling the page are the activities that causes an event to
happen.

Types of Event
The events can be broadly classified into two categories:

Foreground Events - Those events which require the direct interaction of user.They are
generated as consequences of a person interacting with the graphical components in
Graphical User Interface. For example, clicking on a button, moving the mouse, entering a
character through keyboard,selecting an item from list, scrolling the page etc.

Background Events - Those events that require the interaction of end user are known as
background events. Operating system interrupts, hardware or software failure, timer expires,
an operation completion are the example of background events.

What is Event Handling?
Event Handling is the mechanism that controls the event and decides what should happen if an
event occurs. This mechanism have the code which is known as event handler that is executed
when an event occurs. Java Uses the Delegation Event Model to handle the events. This model

defines the standard mechanism to generate and handle the events.Let's have a brief introduction
to this model.

The Delegation Event Model has the following key participants namely:

Source - The source is an object on which event occurs. Source is responsible for providing
information of the occurred event to it's handler. Java provide as with classes for source
object.

Listener - It is also known as event handler.Listener is responsible for generating response
to an event. From java implementation point of view the listener is also an object. Listener
waits until it receives an event. Once the event is received , the listener process the event an
then returns.

The benefit of this approach is that the user interface logic is completely separated from the logic
that generates the event. The user interface element is able to delegate the processing of an
event to the separate piece of code. In this model ,Listener needs to be registered with the source
object so that the listener can receive the event notification. This is an efficient way of handling the
event because the event notifications are sent only to those listener that want to receive them.

Steps involved in event handling
The User clicks the button and the event is generated.

Now the object of concerned event class is created automatically and information about the
source and the event get populated with in same object.

Event object is forwarded to the method of registered listener class.

the method is now get executed and returns.

Points to remember about listener
In order to design a listener class we have to develop some listener interfaces.These Listener
interfaces forecast some public abstract callback methods which must be implemented by
the listener class.

If you do not implement the any if the predefined interfaces then your class can not act as a
listener class for a source object.

Callback Methods
These are the methods that are provided by API provider and are defined by the application
programmer and invoked by the application developer. Here the callback methods represents an
event method. In response to an event java jre will fire callback method. All such callback methods
are provided in listener interfaces.

If a component wants some listener will listen to it's events the the source must register itself to the
listener.

Event Handling Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtControlDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtControlDemo {

 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtControlDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtControlDemo awtControlDemo = new AwtControlDemo();
 awtControlDemo.showEventDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showEventDemo(){
 headerLabel.setText("Control in action: Button");

 Button okButton = new Button("OK");
 Button submitButton = new Button("Submit");
 Button cancelButton = new Button("Cancel");

 okButton.setActionCommand("OK");
 submitButton.setActionCommand("Submit");
 cancelButton.setActionCommand("Cancel");

 okButton.addActionListener(new ButtonClickListener());
 submitButton.addActionListener(new ButtonClickListener());
 cancelButton.addActionListener(new ButtonClickListener());

 controlPanel.add(okButton);
 controlPanel.add(submitButton);
 controlPanel.add(cancelButton);

 mainFrame.setVisible(true);
 }

 private class ButtonClickListener implements ActionListener{
 public void actionPerformed(ActionEvent e) {
 String command = e.getActionCommand();
 if(command.equals("OK")) {
 statusLabel.setText("Ok Button clicked.");
 }
 else if(command.equals("Submit")) {
 statusLabel.setText("Submit Button clicked.");
 }
 else {
 statusLabel.setText("Cancel Button clicked.");
 }
 }

 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtControlDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtControlDemo

Verify the following output

AWT EVENT CLASSESAWT EVENT CLASSES
The Event classes represent the event. Java provides us various Event classes but we will discuss
those which are more frequently used.

EventObject class
It is the root class from which all event state objects shall be derived. All Events are constructed
with a reference to the object, the source, that is logically deemed to be the object upon which the
Event in question initially occurred upon. This class is defined in java.util package.

Class declaration
Following is the declaration for java.util.EventObject class:

public class EventObject
 extends Object
 implements Serializable

Field
Following are the fields for java.util.EventObject class:

protected Object source -- The object on which the Event initially occurred.

Class constructors

S.N. Constructor & Description

1
EventObjectObject source

Constructs a prototypical Event.

Class methods

S.N. Method & Description

1
Object getSource

The object on which the Event initially occurred.

2
String toString

Returns a String representation of this EventObject.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

AWT Event Classes:
Following is the list of commonly used event classes.

AWT AWTEVENT CLASSAWT AWTEVENT CLASS
It is the root event class for all AWT events. This class and its subclasses supercede the original
java.awt.Event class. This class is defined in java.awt package. This class has a method named
getID that can be used to determine the type of event.

Class declaration
Following is the declaration for java.awt.AWTEvent class:

public class AWTEvent
 extends EventObject

Field
Following are the fields for java.awt.AWTEvent class:

static int ACTION_FIRST -- The first number in the range of ids used for action events.

static long ACTION_EVENT_MASK -- The event mask for selecting action events.

static long ADJUSTMENT_EVENT_MASK -- The event mask for selecting adjustment
events.

static long COMPONENT_EVENT_MASK -- The event mask for selecting component
events.

protected boolean consumed -- Controls whether or not the event is sent back down to the
peer once the source has processed it - false means it's sent to the peer; true means it's not.

static long CONTAINER_EVENT_MASK -- The event mask for selecting container events.

static long FOCUS_EVENT_MASK -- The event mask for selecting focus events.

static long HIERARCHY_BOUNDS_EVENT_MASK -- The event mask for selecting
hierarchy bounds events.

static long HIERARCHY_EVENT_MASK -- The event mask for selecting hierarchy events.

protected int id -- The event's id.

static long INPUT_METHOD_EVENT_MASK -- The event mask for selecting input method
events.

static long INVOCATION_EVENT_MASK -- The event mask for selecting invocation events.

static long ITEM_EVENT_MASK -- The event mask for selecting item events.

static long KEY_EVENT_MASK -- The event mask for selecting key events.

static long MOUSE_EVENT_MASK -- The event mask for selecting mouse events.

static long MOUSE_MOTION_EVENT_MASK -- The event mask for selecting mouse motion
events.

static long MOUSE_WHEEL_EVENT_MASK -- The event mask for selecting mouse wheel
events.

static long PAINT_EVENT_MASK -- The event mask for selecting paint events.

static int RESERVED_ID_MAX -- The maximum value for reserved AWT event IDs.

static long TEXT_EVENT_MASK -- The event mask for selecting text events.

static long WINDOW_EVENT_MASK -- The event mask for selecting window events.

static long WINDOW_FOCUS_EVENT_MASK -- The event mask for selecting window focus
events.

static long WINDOW_STATE_EVENT_MASK -- The event mask for selecting window state
events.

Class constructors

S.N. Constructor & Description

1
AWTEventEvent event

Constructs an AWTEvent object from the parameters of a 1.0-style event.

2
AWTEventjava.lang.Object source, int id

Constructs an AWTEvent object with the specified source object and type.

Class methods

S.N. Method & Description

1
protected void consume

Consumes this event, if this event can be consumed.

2
int getID

Returns the event type.

3
protected boolean isConsumed

Returns whether this event has been consumed.

4
java.lang.String paramString

Returns a string representing the state of this Event.

5
void setSourcejava.lang.Object newSource

Retargets an event to a new source.

6
java.lang.String toString

Returns a String representation of this object.

Methods inherited
This class inherits methods from the following classes:

java.util.EventObject

java.lang.Object

AWT ACTIONEVENT CLASSAWT ACTIONEVENT CLASS
This class is defined in java.awt.event package. The ActionEvent is generated when button is
clicked or the item of a list is double clicked.

Class declaration
Following is the declaration for java.awt.event.ActionEvent class:

public class ActionEvent
 extends AWTEvent

Field
Following are the fields for java.awt.event.ActionEvent class:

static int ACTION_FIRST -- The first number in the range of ids used for action events.

static int ACTION_LAST -- The last number in the range of ids used for action events.

static int ACTION_PERFORMED -- This event id indicates that a meaningful action
occured.

static int ALT_MASK -- The alt modifier.

static int CTRL_MASK -- The control modifier.

static int META_MASK -- The meta modifier.

static int SHIFT_MASK -- The shift modifier.

Class constructors

S.N. Constructor & Description

1
ActionEventjava.lang.Object source, int id, java.lang.String command

Constructs an ActionEvent object.

2
ActionEventjava.lang.Object source, int id, java.lang.String command, int
modifiers

Constructs an ActionEvent object with modifier keys.

3
ActionEventjava.lang.Object source, int id, java.lang.String command, long
when, int modifiers

Constructs an ActionEvent object with the specified modifier keys and timestamp.

Class methods

S.N. Method & Description

1
java.lang.String getActionCommand

Returns the command string associated with this action.

2
int getModifiers

Returns the modifier keys held down during this action event.

3
long getWhen

Returns the timestamp of when this event occurred.

4
java.lang.String paramString

Returns a parameter string identifying this action event.

Methods inherited
This class inherits methods from the following classes:

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT INPUTEVENT CLASSAWT INPUTEVENT CLASS
The InputEvent class is root event class for all component-level input events. Input events are
delivered to listeners before they are processed normally by the source where they originated.
This allows listeners and component subclasses to "consume" the event so that the source will not
process them in their default manner. For example, consuming mousePressed events on a Button
component will prevent the Button from being activated.

Class declaration
Following is the declaration for java.awt.event.InputEvent class:

public abstract class InputEvent
 extends ComponentEvent

Field
Following are the fields for java.awt.event.InputEvent class:

static int ALT_DOWN_MASK -- The Alt key extended modifier constant.

static int ALT_GRAPH_DOWN_MASK -- The AltGraph key extended modifier constant.

static int ALT_GRAPH_MASK -- The AltGraph key modifier constant.

static int ALT_MASK -- The Alt key modifier constant.

static int BUTTON1_DOWN_MASK -- The Mouse Button1 extended modifier constant.

static int BUTTON1_MASK -- The Mouse Button1 modifier constant.

static int BUTTON2_DOWN_MASK -- The Mouse Button2 extended modifier constant.

static int BUTTON2_MASK -- The Mouse Button2 modifier constant.

static int BUTTON3_DOWN_MASK -- The Mouse Button3 extended modifier constant.

static int BUTTON3_MASK --The Mouse Button3 modifier constant.

static int CTRL_DOWN_MASK -- The Control key extended modifier constant.

static int CTRL_MASK -- The Control key modifier constant.

static int META_DOWN_MASK -- The Meta key extended modifier constant.

static int META_MASK -- The Meta key modifier constant.

static int SHIFT_DOWN_MASK -- The Shift key extended modifier constant.

static int SHIFT_MASK -- The Shift key modifier constant.

Class methods

S.N. Method & Description

1
void consume

Consumes this event so that it will not be processed in the default manner by the source
which originated it.

2
int getModifiers

Returns the modifier mask for this event.

3
int getModifiersEx

Returns the extended modifier mask for this event.

4
static String getModifiersExTextint modifiers

Returns a String describing the extended modifier keys and mouse buttons, such as
"Shift", "Button1", or "Ctrl+Shift".

5
long getWhen

Returns the timestamp of when this event occurred.

6
boolean isAltDown

Returns whether or not the Alt modifier is down on this event.

7
boolean isAltGraphDown

Returns whether or not the AltGraph modifier is down on this event.

8
boolean isConsumed

Returns whether or not this event has been consumed.

9
boolean isControlDown

Returns whether or not the Control modifier is down on this event.

10
boolean isMetaDown

Returns whether or not the Meta modifier is down on this event.

11
boolean isShiftDown

Returns whether or not the Shift modifier is down on this event.

Methods inherited

This class inherits methods from the following classes:

java.awt.event.ComponentEvent

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT KEYEVENT CLASSAWT KEYEVENT CLASS
On entering the character the Key event is generated.There are three types of key events which
are represented by the integer constants. These key events are following

KEY_PRESSED

KEY_RELASED

KEY_TYPED

Class declaration
Following is the declaration for java.awt.event.KeyEvent class:

public class KeyEvent
 extends InputEvent

Field
Following are the fields for java.awt.InputEvent class:

static char CHAR_UNDEFINED --KEY_PRESSED and KEY_RELEASED events which do not
map to a valid Unicode character use this for the keyChar value.

static int KEY_FIRST --The first number in the range of ids used for key events.

static int KEY_LAST --The last number in the range of ids used for key events.

static int KEY_LOCATION_LEFT --A constant indicating that the key pressed or released is
in the left key location there is more than one possible location for this key.

static int KEY_LOCATION_NUMPAD --A constant indicating that the key event originated
on the numeric keypad or with a virtual key corresponding to the numeric keypad.

static int KEY_LOCATION_RIGHT -- A constant indicating that the key pressed or released
is in the right key location there is more than one possible location for this key.

static int KEY_LOCATION_STANDARD --A constant indicating that the key pressed or
released is not distinguished as the left or right version of a key, and did not originate on the
numeric keypad or did not originate with a virtual key corresponding to the numeric keypad.

static int KEY_LOCATION_UNKNOWN -- A constant indicating that the keyLocation is
indeterminate or not relevant.

static int KEY_PRESSED --The "key pressed" event.

static int KEY_RELEASED --The "key released" event.

static int KEY_TYPED --The "key typed" event.

static int VK_0 --VK_0 thru VK_9 are the same as ASCII '0' thru '9' 0x30 - 0x39

static int VK_1

static int VK_2

static int VK_3

static int VK_4

static int VK_5

static int VK_6

static int VK_7

static int VK_8

static int VK_9

static int VK_A --VK_A thru VK_Z are the same as ASCII 'A' thru 'Z' 0x41 - 0x5A

static int VK_ACCEPT --Constant for the Accept or Commit function key.

static int VK_ADD

static int VK_AGAIN

static int VK_ALL_CANDIDATES --Constant for the All Candidates function key.

static int VK_ALPHANUMERIC --Constant for the Alphanumeric function key.

static int VK_ALT

static int VK_ALT_GRAPH --Constant for the AltGraph function key.

static int VK_AMPERSAND

static int VK_ASTERISK

static int VK_AT --constant for the "@" key.

static int VK_B

static int VK_BACK_QUOTE

static int VK_BACK_SLASH --Constant for the back slash key, "\"

static int VK_BACK_SPACE

static int VK_BEGIN --Constant for the Begin key.

static int VK_BRACELEFT

static int VK_BRACERIGHT

static int VK_C

static int VK_CANCEL

static int VK_CAPS_LOCK

static int VK_CIRCUMFLEX --Constant for the "^" key.

static int VK_CLEAR

static int VK_CLOSE_BRACKET --Constant for the close bracket key, "]"

static int VK_CODE_INPUT --Constant for the Code Input function key.

static int VK_COLON --Constant for the ":" key.

static int VK_COMMA --Constant for the comma key, ","

static int VK_COMPOSE --Constant for the Compose function key.

static int VK_CONTEXT_MENU --Constant for the Microsoft Windows Context Menu key.

static int VK_CONTROL

static int VK_CONVERT -- Constant for the Convert function key.

static int VK_COPY

static int VK_CUT

static int VK_D

static int VK_DEAD_ABOVEDOT

static int VK_DEAD_ABOVERING

static int VK_DEAD_ACUTE

static int VK_DEAD_BREVE

static int VK_DEAD_CARON

static int VK_DEAD_CEDILLA

static int VK_DEAD_CIRCUMFLEX

static int VK_DEAD_DIAERESIS

static int VK_DEAD_DOUBLEACUTE

static int VK_DEAD_GRAVE

static int VK_DEAD_IOTA

static int VK_DEAD_MACRON

static int VK_DEAD_OGONEK

static int VK_DEAD_SEMIVOICED_SOUND

static int VK_DEAD_TILDE

static int VK_DEAD_VOICED_SOUND

static int VK_DECIMAL

static int VK_DELETE

static int VK_DIVIDE

static int VK_DOLLAR --Constant for the "$" key.

static int VK_DOWN -- Constant for the non-numpad down arrow key.

static int VK_E

static int VK_END

static int VK_ENTER

static int VK_EQUALS --Constant for the equals key, "="

static int VK_ESCAPE

static int VK_EURO_SIGN --Constant for the Euro currency sign key.

static int VK_EXCLAMATION_MARK --Constant for the "!" key.

static int VK_F

static int VK_F1 --Constant for the F1 function key.

static int VK_F10 --Constant for the F10 function key.

static int VK_F11 --Constant for the F11 function key.

static int VK_F12 --Constant for the F12 function key.

static int VK_F13 --Constant for the F13 function key.

static int VK_F14 --Constant for the F14 function key.

static int VK_F15 --Constant for the F15 function key.

static int VK_F16 --Constant for the F16 function key.

static int VK_F17 --Constant for the F17 function key.

static int VK_F18 --Constant for the F18 function key.

static int VK_F19 --Constant for the F19 function key.

static int VK_F2 --Constant for the F2 function key.

static int VK_F20 --Constant for the F20 function key.

static int VK_F21 -- Constant for the F21 function key.

static int VK_F22 --Constant for the F22 function key.

static int VK_F23 --Constant for the F23 function key.

static int VK_F24 --Constant for the F24 function key.

static int VK_F3 --Constant for the F3 function key.

static int VK_F4 --Constant for the F4 function key.

static int VK_F5 -- Constant for the F5 function key.

static int VK_F6 --Constant for the F6 function key.

static int VK_F7 --Constant for the F7 function key.

static int VK_F8 --Constant for the F8 function key.

static int VK_F9 --Constant for the F9 function key.

static int VK_FINAL

static int VK_FIND

static int VK_FULL_WIDTH --Constant for the Full-Width Characters function key.

static int VK_G

static int VK_GREATER

static int VK_H

static int VK_HALF_WIDTH --Constant for the Half-Width Characters function key.

static int VK_HELP

static int VK_HIRAGANA --Constant for the Hiragana function key.

static int VK_HOME

static int VK_I

static int VK_INPUT_METHOD_ON_OFF -- Constant for the input method on/off key.

static int VK_INSERT

static int VK_INVERTED_EXCLAMATION_MARK --Constant for the inverted exclamation
mark key.

static int VK_J

static int VK_JAPANESE_HIRAGANA --Constant for the Japanese-Hiragana function key.

static int VK_JAPANESE_KATAKANA --Constant for the Japanese-Katakana function key.

static int VK_JAPANESE_ROMAN --Constant for the Japanese-Roman function key.

static int VK_K

static int VK_KANA

static int VK_KANA_LOCK -- Constant for the locking Kana function key.

static int VK_KANJI

static int VK_KATAKANA --Constant for the Katakana function key.

static int VK_KP_DOWN -- Constant for the numeric keypad down arrow key.

static int VK_KP_LEFT --Constant for the numeric keypad left arrow key.

static int VK_KP_RIGHT --Constant for the numeric keypad right arrow key.

static int VK_KP_UP --Constant for the numeric keypad up arrow key.

static int VK_L

static int VK_LEFT --Constant for the non-numpad left arrow key.

static int VK_LEFT_PARENTHESIS --Constant for the "(" key.

static int VK_LESS

static int VK_M

static int VK_META

static int VK_MINUS -- Constant for the minus key, "-"

static int VK_MODECHANGE

static int VK_MULTIPLY

static int VK_N

static int VK_NONCONVERT --Constant for the Don't Convert function key.

static int VK_NUM_LOCK

static int VK_NUMBER_SIGN --Constant for the "#" key.

static int VK_NUMPAD0

static int VK_NUMPAD1

static int VK_NUMPAD2

static int VK_NUMPAD3

static int VK_NUMPAD4

static int VK_NUMPAD5

static int VK_NUMPAD6

static int VK_NUMPAD7

static int VK_NUMPAD8

static int VK_NUMPAD9

static int VK_O

static int VK_OPEN_BRACKET --Constant for the open bracket key, "["

static int VK_P

static int VK_PAGE_DOWN

static int VK_PAGE_UP

static int VK_PASTE

static int VK_PAUSE

static int VK_PERIOD --Constant for the period key, "."

static int VK_PLUS -- Constant for the "+" key.

static int VK_PREVIOUS_CANDIDATE -- Constant for the Previous Candidate function key.

static int VK_PRINTSCREEN

static int VK_PROPS

static int VK_Q

static int VK_QUOTE

static int VK_QUOTEDBL

static int VK_R

static int VK_RIGHT -- Constant for the non-numpad right arrow key.

static int VK_RIGHT_PARENTHESIS --Constant for the ")" key.

static int VK_ROMAN_CHARACTERS --Constant for the Roman Characters function key.

static int VK_S

static int VK_SCROLL_LOCK

static int VK_SEMICOLON -- Constant for the semicolon key, ";"

static int VK_SEPARATER --This constant is obsolete, and is included only for backwards
compatibility.

static int VK_SEPARATOR --Constant for the Numpad Separator key.

static int VK_SHIFT

static int VK_SLASH -- Constant for the forward slash key, "/"

static int VK_SPACE

static int VK_STOP

static int VK_SUBTRACT

static int VK_T

static int VK_TAB

static int VK_U

static int VK_UNDEFINED -- This value is used to indicate that the keyCode is unknown.

static int VK_UNDERSCORE --Constant for the "_" key.

static int VK_UNDO

static int VK_UP --Constant for the non-numpad up arrow key.

static int VK_V

static int VK_W

static int VK_WINDOWS --Constant for the Microsoft Windows "Windows" key.

static int VK_X

static int VK_Y

static int VK_Z

Class constructors

S.N. Constructor & Description

1
KeyEventComponent source, int id, long when, int modifiers, int keyCode

Deprecated. as of JDK1.1

2
KeyEventComponent source, int id, long when, int modifiers, int keyCode, char
keyChar

Constructs a KeyEvent object.

3
KeyEventComponent source, int id, long when, int modifiers, int keyCode, char
keyChar, int keyLocation

Class methods

S.N. Method & Description

1
char getKeyChar

Returns the character associated with the key in this event.

2
int getKeyCode

Returns the integer keyCode associated with the key in this event.

3
int getKeyLocation

Returns the location of the key that originated this key event.

4
static String getKeyModifiersTextint modifiers

Returns a String describing the modifier keys, such as "Shift", or "Ctrl+Shift".

5
static String getKeyTextint keyCode

Returns a String describing the keyCode, such as "HOME", "F1" or "A".

6
boolean isActionKey

Returns whether the key in this event is an "action" key.

7
String paramString

Returns a parameter string identifying this event.

8
void setKeyCharchar keyChar

Set the keyChar value to indicate a logical character.

9
void setKeyCodeint keyCode

Set the keyCode value to indicate a physical key.

10
void setModifiersint modifiers

Deprecated. as of JDK1.1.4

Methods inherited
This class inherits methods from the following classes:

java.awt.event.InputEvent

java.awt.event.ComponentEvent

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT MOUSEEVENT CLASSAWT MOUSEEVENT CLASS
This event indicates a mouse action occurred in a component. This low-level event is generated by
a component object for Mouse Events and Mouse motion events.

a mouse button is pressed

a mouse button is released

a mouse button is clicked pressed and released

a mouse cursor enters the unobscured part of component's geometry

a mouse cursor exits the unobscured part of component's geometry

a mouse is moved

the mouse is dragged

Class declaration
Following is the declaration for java.awt.event.MouseEvent class:

public class MouseEvent
 extends InputEvent

Field
Following are the fields for java.awt.event.MouseEvent class:

static int BUTTON1 --Indicates mouse button #1; used by getButton

static int BUTTON2 --Indicates mouse button #2; used by getButton

static int BUTTON3 --Indicates mouse button #3; used by getButton

static int MOUSE_CLICKED --The "mouse clicked" event

static int MOUSE_DRAGGED --The "mouse dragged" event

static int MOUSE_ENTERED --The "mouse entered" event

static int MOUSE_EXITED --The "mouse exited" event

static int MOUSE_FIRST --The first number in the range of ids used for mouse events

static int MOUSE_LAST -- The last number in the range of ids used for mouse events

static int MOUSE_MOVED --The "mouse moved" event

static int MOUSE_PRESSED -- The "mouse pressed" event

static int MOUSE_RELEASED --The "mouse released" event

static int MOUSE_WHEEL --The "mouse wheel" event

static int NOBUTTON --Indicates no mouse buttons; used by getButton

static int VK_WINDOWS --Constant for the Microsoft Windows "Windows" key.

Class constructors

S.N. Constructor & Description

1
MouseEventComponent source, int id, long when, int modifiers, int x, int y, int
clickCount, boolean popupTrigger

Constructs a MouseEvent object with the specified source component, type, modifiers,
coordinates, and click count.

2
MouseEventComponent source, int id, long when, int modifiers, int x, int y, int
clickCount, boolean popupTrigger, int button

Constructs a MouseEvent object with the specified source component, type, modifiers,
coordinates, and click count.

3
MouseEventComponent source, int id, long when, int modifiers, int x, int y, int
xAbs, int yAbs, int clickCount, boolean popupTrigger, int button

Constructs a MouseEvent object with the specified source component, type, modifiers,
coordinates, absolute coordinates, and click count.

Class methods

S.N. Method & Description

1
int getButton

Returns which, if any, of the mouse buttons has changed state.

2
int getClickCount

Returns the number of mouse clicks associated with this event.

3
Point getLocationOnScreen

Returns the absolute x, y position of the event.

4
static String getMouseModifiersTextint modifiers

Returns a String describing the modifier keys and mouse buttons that were down during
the event, such as "Shift", or "Ctrl+Shift".

5
Point getPoint

Returns the x,y position of the event relative to the source component.

6
int getX

Returns the horizontal x position of the event relative to the source component.

7
int getXOnScreen

Returns the absolute horizontal x position of the event.

8
int getY

Returns the vertical y position of the event relative to the source component.

9
int getYOnScreen

Returns the absolute vertical y position of the event.

10
boolean isPopupTrigger Returns whether or not this mouse event is the popup
menu trigger event for the platform.

11
String paramString

Returns a parameter string identifying this event.

12
void translatePointint x, int y

Translates the event's coordinates to a new position by adding specified x horizontal and
y vertical offsets.

Methods inherited
This class inherits methods from the following classes:

java.awt.event.InputEvent

java.awt.event.ComponentEvent

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT TEXTEVENT CLASSAWT TEXTEVENT CLASS
The object of this class represents the text events.The TextEvent is generated when character is
entered in the text fields or text area. The TextEvent instance does not include the characters
currently in the text component that generated the event rather we are provided with other
methods to retrieve that information.

Class declaration
Following is the declaration for java.awt.event.TextEvent class:

public class TextEvent
 extends AWTEvent

Field
Following are the fields for java.awt.event.TextEvent class:

static int TEXT_FIRST --The first number in the range of ids used for text events.

static int TEXT_LAST --The last number in the range of ids used for text events.

static int TEXT_VALUE_CHANGED --This event id indicates that object's text changed.

Class constructors

<0tr>

S.N. Constructor & Description

1
TextEventObject source, int id

Constructs a TextEvent object.

Class methods

S.N. Method & Description

1
String paramString

Returns a parameter string identifying this text event.

Methods inherited
This class inherits methods from the following classes:

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT WINDOWEVENT CLASSAWT WINDOWEVENT CLASS
The object of this class represents the change in state of a window.This low-level event is
generated by a Window object when it is opened, closed, activated, deactivated, iconified, or
deiconified, or when focus is transfered into or out of the Window.

Class declaration
Following is the declaration for java.awt.event.WindowEvent class:

public class WindowEvent
 extends ComponentEvent

Field
Following are the fields for java.awt.event.WindowEvent class:

static int WINDOW_ACTIVATED --The window-activated event type.

static int WINDOW_CLOSED -- The window closed event.

static int WINDOW_CLOSING -- The "window is closing" event.

static int WINDOW_DEACTIVATED -- The window-deactivated event type.

static int WINDOW_DEICONIFIED -- The window deiconified event type.

static int WINDOW_FIRST -- The first number in the range of ids used for window events.

static int WINDOW_GAINED_FOCUS -- The window-gained-focus event type.

static int WINDOW_ICONIFIED -- The window iconified event.

static int WINDOW_LAST -- The last number in the range of ids used for window events.

static int WINDOW_LOST_FOCUS -- The window-lost-focus event type.

static int WINDOW_OPENED -- The window opened event.

static int WINDOW_STATE_CHANGED -- The window-state-changed event type.

Class constructors
<0tr>

S.N. Constructor & Description

1
WindowEventWindow source, int id

Constructs a WindowEvent object.

2
WindowEventWindow source, int id, int oldState, int newState

Constructs a WindowEvent object with the specified previous and new window states.

3
WindowEventWindow source, int id, Window opposite

Constructs a WindowEvent object with the specified opposite Window.

4
WindowEventWindow source, int id, Window opposite, int oldState, int
newState

Constructs a WindowEvent object.

Class methods

S.N. Method & Description

1
int getNewState

For WINDOW_STATE_CHANGED events returns the new state of the window.

2
int getOldState

For WINDOW_STATE_CHANGED events returns the previous state of the window.

3
Window getOppositeWindow

Returns the other Window involved in this focus or activation change.

4
Window getWindow

Returns the originator of the event.

5
String paramString

Returns a parameter string identifying this event.

Methods inherited
This class inherits methods from the following classes:

java.awt.event.ComponentEvent

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT ADJUSTMENTEVENT CLASSAWT ADJUSTMENTEVENT CLASS
Introduction
The Class AdjustmentEvent represents adjustment event emitted by Adjustable objects.

Class declaration
Following is the declaration for java.awt.event.AdjustmentEvent class:

public class AdjustmentEvent
 extends AWTEvent

Field
Following are the fields for java.awt.Component class:

static int ADJUSTMENT_FIRST -- Marks the first integer id for the range of adjustment
event ids.

static int ADJUSTMENT_LAST -- Marks the last integer id for the range of adjustment event
ids.

static int ADJUSTMENT_VALUE_CHANGED -- The adjustment value changed event.

static int BLOCK_DECREMENT -- The block decrement adjustment type.

static int BLOCK_INCREMENT -- The block increment adjustment type.

static int TRACK -- The absolute tracking adjustment type.

static int UNIT_DECREMENT -- The unit decrement adjustment type.

static int UNIT_INCREMENT -- The unit increment adjustment type.

Class constructors

S.N. Constructor & Description

1
AdjustmentEventAdjustable source, int id, int type, int value

Constructs an AdjustmentEvent object with the specified Adjustable source, event type,

adjustment type, and value.

2
AdjustmentEventAdjustable source, int id, int type, int value, boolean
isAdjusting

Constructs an AdjustmentEvent object with the specified Adjustable source, event type,
adjustment type, and value.

Class methods

S.N. Method & Description

1
Adjustable getAdjustable

Returns the Adjustable object where this event originated.

2
int getAdjustmentType

Returns the type of adjustment which caused the value changed event.

3
int getValue

Returns the current value in the adjustment event.

4
boolean getValueIsAdjusting

Returns true if this is one of multiple adjustment events.

5
String paramString

Returns a string representing the state of this Event.

Methods inherited
This interface inherits methods from the following classes:

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT COMPONENTEVENT CLASSAWT COMPONENTEVENT CLASS
Introduction
The Class ComponentEvent represents that a component moved, changed size, or changed
visibility

Class declaration

Following is the declaration for java.awt.event.ComponentEvent class:

public class ComponentEvent
 extends AWTEvent

Field
Following are the fields for java.awt.Component class:

static int COMPONENT_FIRST -- The first number in the range of ids used for component
events.

static int COMPONENT_HIDDEN --This event indicates that the component was rendered
invisible.

static int COMPONENT_LAST -- The last number in the range of ids used for component
events.

static int COMPONENT_MOVED -- This event indicates that the component's position
changed.

static int COMPONENT_RESIZED -- This event indicates that the component's size
changed.

static int COMPONENT_SHOWN -- This event indicates that the component was made
visible.

Class constructors

S.N. Constructor & Description

1
ComponentEventComponent source, int id

Constructs a ComponentEvent object.

Class methods

S.N. Method & Description

1
Component getComponent

Returns the originator of the event.

2
String paramString

Returns a parameter string identifying this event.

Methods inherited
This interface inherits methods from the following classes:

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT CONTAINEREVENT CLASSAWT CONTAINEREVENT CLASS
Introduction
The Class ContainerEvent represents that a container's contents changed because a component
was added or removed.

Class declaration
Following is the declaration for java.awt.event.ContainerEvent class:

public class ContainerEvent
 extends ComponentEvent

Field
Following are the fields for java.awt.Component class:

static int COMPONENT_ADDED -- This event indicates that a component was added to the
container.

static int COMPONENT_REMOVED -- This event indicates that a component was removed
from the container.

static int CONTAINER_FIRST -- The first number in the range of ids used for container
events.

static int CONTAINER_LAST -- The last number in the range of ids used for container
events.

Class constructors

S.N. Constructor & Description

1
ContainerEventComponent source, int id, Component child

Constructs a ContainerEvent object.

Class methods

S.N. Method & Description

1
Component getChild

Returns the component that was affected by the event.

2
Container getContainer

Returns the originator of the event.

3
String paramString

Returns a parameter string identifying this event.

Methods inherited
This class inherits methods from the following classes:

java.awt.ComponentEvent

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT MOUSEMOTIONEVENT CLASSAWT MOUSEMOTIONEVENT CLASS
Introduction
The interface MouseMotionEvent indicates a mouse action occurred in a component. This low-
level event is generated by a component object when mouse is dragged or moved.

Class declaration
Following is the declaration for java.awt.event.MouseMotionEvent Class:

public class MouseMotionEvent
 extends InputEvent

Interface methods

S.N. Method & Description

1
void mouseDraggedMouseEvent e

Invoked when a mouse button is pressed on a component and then dragged.

2
void mouseMovedMouseEvent e

Invoked when the mouse cursor has been moved onto a component but no buttons have
been pushed.

Methods inherited
This interface inherits methods from the following classes:

java.awt.event.InputEvent

java.awt.event.ComponentEvent

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT PAINTEVENT CLASSAWT PAINTEVENT CLASS
Introduction

The Class PaintEvent used to ensure that paint/update method calls are serialized along with the
other events delivered from the event queue

Class declaration
Following is the declaration for java.awt.event.PaintEvent class:

public class PaintEvent
 extends ComponentEvent

Field
Following are the fields for java.awt.Component class:

static int PAINT -- The paint event type.

static int PAINT_FIRST -- Marks the first integer id for the range of paint event ids.

static int PAINT_LAST -- Marks the last integer id for the range of paint event ids.

static int UPDATE -- The update event type.

Class constructors

S.N. Constructor & Description

1
PaintEventComponent source, int id, Rectangle updateRect

Constructs a PaintEvent object with the specified source component and type.

Class methods

S.N. Method & Description

1
Rectangle getUpdateRect

Returns the rectangle representing the area which needs to be repainted in response to
this event.

2
String paramString

Returns a parameter string identifying this event.

3
void setUpdateRectRectangle updateRect

Sets the rectangle representing the area which needs to be repainted in response to this
event.

Methods inherited
This class inherits methods from the following classes:

java.awt.ComponentEvent

java.awt.AWTEvent

java.util.EventObject

java.lang.Object

AWT EVENT LISTENERSAWT EVENT LISTENERS
The Event listener represent the interfaces responsible to handle events. Java provides us various
Event listener classes but we will discuss those which are more frequently used. Every method of
an event listener method has a single argument as an object which is subclass of EventObject
class. For example, mouse event listener methods will accept instance of MouseEvent, where
MouseEvent derives from EventObject.

EventListner interface
It is a marker interface which every listener interface has to extend.This class is defined in java.util
package.

Class declaration
Following is the declaration for java.util.EventListener interface:

public interface EventListener

AWT Event Listener Interfaces:
Following is the list of commonly used event listeners.

AWT ACTIONLISTENER INTERFACEAWT ACTIONLISTENER INTERFACE
The class which processes the ActionEvent should implement this interface.The object of that class
must be registered with a component. The object can be registered using the addActionListener
method. When the action event occurs, that object's actionPerformed method is invoked.

Interface declaration
Following is the declaration for java.awt.event.ActionListener interface:

public interface ActionListener
 extends EventListener

Interface methods

S.N. Method & Description

1
void actionPerformedActionEvent e

Invoked when an action occurs.

Methods inherited
This interface inherits methods from the following interfaces:

java.awt.EventListener

ActionListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >

tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showActionListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showActionListenerDemo(){
 headerLabel.setText("Listener in action: ActionListener");

 ScrollPane panel = new ScrollPane();
 panel.setBackground(Color.magenta);

 Button okButton = new Button("OK");

 okButton.addActionListener(new CustomActionListener());
 panel.add(okButton);
 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }

 class CustomActionListener implements ActionListener{

 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("Ok Button Clicked.");
 }
 }

}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT COMPONENTLISTENER INTERFACEAWT COMPONENTLISTENER INTERFACE
The class which processes the ComponentEvent should implement this interface.The object of that
class must be registered with a component. The object can be registered using the
addComponentListener method. Component event are raised for information only.

Interface declaration
Following is the declaration for java.awt.event.ComponentListener interface:

public interface ComponentListener
 extends EventListener

Interface methods

S.N. Method & Description

1
void componentHiddenComponentEvent e

Invoked when the component has been made invisible.

2

2
void componentMovedComponentEvent e

Invoked when the component's position changes.

3
void componentResizedComponentEvent e

Invoked when the component's size changes.

4
void componentShownComponentEvent e

Invoked when the component has been made visible.

Methods inherited
This interface inherits methods from the following interfaces:

java.awt.EventListener

ComponentListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showComponentListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showComponentListenerDemo(){
 headerLabel.setText("Listener in action: ComponentListener");

 ScrollPane panel = new ScrollPane();
 panel.setBackground(Color.magenta);

 Label msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");
 panel.add(msglabel);

 msglabel.addComponentListener(new CustomComponentListener());
 controlPanel.add(panel);
 mainFrame.setVisible(true);
 }

 class CustomComponentListener implements ComponentListener {

 public void componentResized(ComponentEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " resized. ");
 }

 public void componentMoved(ComponentEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " moved. ");
 }

 public void componentShown(ComponentEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " shown. ");
 }

 public void componentHidden(ComponentEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " hidden. ");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT ITEMLISTENER INTERFACEAWT ITEMLISTENER INTERFACE
The class which processes the ItemEvent should implement this interface.The object of that class
must be registered with a component. The object can be registered using the addItemListener
method. When the action event occurs, that object's itemStateChanged method is invoked.

Interface declaration
Following is the declaration for java.awt.event.ItemListener interface:

public interface ItemListener
 extends EventListener

Interface methods

S.N. Method & Description

1
void itemStateChangedItemEvent e

Invoked when an item has been selected or deselected by the user.

Methods inherited
This interface inherits methods from the following interfaces:

java.awt.EventListener

ItemListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){

 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showItemListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showItemListenerDemo(){
 headerLabel.setText("Listener in action: ItemListener");
 Checkbox chkApple = new Checkbox("Apple");
 Checkbox chkMango = new Checkbox("Mango");
 Checkbox chkPeer = new Checkbox("Peer");

 chkApple.addItemListener(new CustomItemListener());
 chkMango.addItemListener(new CustomItemListener());
 chkPeer.addItemListener(new CustomItemListener());

 controlPanel.add(chkApple);
 controlPanel.add(chkMango);
 controlPanel.add(chkPeer);
 mainFrame.setVisible(true);
 }

 class CustomItemListener implements ItemListener {
 public void itemStateChanged(ItemEvent e) {
 statusLabel.setText(e.getItem()
 +" Checkbox: "
 + (e.getStateChange()==1?"checked":"unchecked"));
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT KEYLISTENER INTERFACEAWT KEYLISTENER INTERFACE
The class which processes the KeyEvent should implement this interface.The object of that class
must be registered with a component. The object can be registered using the addKeyListener
method.

Interface declaration
Following is the declaration for java.awt.event.KeyListener interface:

public interface KeyListener
 extends EventListener

Interface methods

S.N. Method & Description

1
void keyPressedKeyEvent e

Invoked when a key has been pressed.

2
void keyReleasedKeyEvent e

Invoked when a key has been released.

3
void keyTypedKeyEvent e

Invoked when a key has been typed.

Methods inherited

This interface inherits methods from the following interfaces:

java.awt.EventListener

KeyListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private TextField textField;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showKeyListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showKeyListenerDemo(){
 headerLabel.setText("Listener in action: KeyListener");

 textField = new TextField(10);

 textField.addKeyListener(new CustomKeyListener());
 Button okButton = new Button("OK");
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("Entered text: " + textField.getText());
 }
 });

 controlPanel.add(textField);
 controlPanel.add(okButton);
 mainFrame.setVisible(true);
 }

 class CustomKeyListener implements KeyListener{
 public void keyTyped(KeyEvent e) {
 }

 public void keyPressed(KeyEvent e) {
 if(e.getKeyCode() == KeyEvent.VK_ENTER){
 statusLabel.setText("Entered text: " + textField.getText());
 }
 }

 public void keyReleased(KeyEvent e) {
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT MOUSELISTENER INTERFACEAWT MOUSELISTENER INTERFACE
The class which processes the MouseEvent should implement this interface.The object of that class
must be registered with a component. The object can be registered using the addMouseListener
method.

Interface declaration

Following is the declaration for java.awt.event.MouseListener interface:

public interface MouseListener
 extends EventListener

Interface methods

S.N. Method & Description

1
void mouseClickedMouseEvent e

Invoked when the mouse button has been clicked pressed and released on a component.

2
void mouseEnteredMouseEvent e

Invoked when the mouse enters a component.

3
void mouseExitedMouseEvent e

Invoked when the mouse exits a component.

4
void mousePressedMouseEvent e

Invoked when a mouse button has been pressed on a component.

5
void mouseReleasedMouseEvent e

Invoked when a mouse button has been released on a component.

Methods inherited
This interface inherits methods from the following interfaces:

java.awt.EventListener

MouseListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showMouseListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMouseListenerDemo(){
 headerLabel.setText("Listener in action: MouseListener");

 Panel panel = new Panel();
 panel.setBackground(Color.magenta);
 panel.setLayout(new FlowLayout());
 panel.addMouseListener(new CustomMouseListener());

 Label msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 msglabel.addMouseListener(new CustomMouseListener());
 panel.add(msglabel);

 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }

 class CustomMouseListener implements MouseListener{

 public void mouseClicked(MouseEvent e) {
 statusLabel.setText("Mouse Clicked: ("
 +e.getX()+", "+e.getY() +")");
 }

 public void mousePressed(MouseEvent e) {
 }

 public void mouseReleased(MouseEvent e) {
 }

 public void mouseEntered(MouseEvent e) {
 }

 public void mouseExited(MouseEvent e) {
 }

 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT TEXTLISTENER INTERFACEAWT TEXTLISTENER INTERFACE
The class which processes the TextEvent should implement this interface.The object of that class
must be registered with a component. The object can be registered using the addTextListener
method.

Interface declaration
Following is the declaration for java.awt.event.TextListener interface:

public interface TextListener
 extends EventListener

Interface methods

S.N. Method & Description

1
void textValueChangedTextEvent e

Invoked when the value of the text has changed.

Methods inherited
This interface inherits methods from the following interfaces:

java.awt.EventListener

TextListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private TextField textField;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showTextListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showTextListenerDemo(){
 headerLabel.setText("Listener in action: TextListener");

 textField = new TextField(10);

 textField.addTextListener(new CustomTextListener());
 Button okButton = new Button("OK");
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("Entered text: "

 + textField.getText());
 }
 });

 controlPanel.add(textField);
 controlPanel.add(okButton);
 mainFrame.setVisible(true);
 }

 class CustomTextListener implements TextListener {
 public void textValueChanged(TextEvent e) {
 statusLabel.setText("Entered text: " + textField.getText());
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT WINDOWLISTENER INTERFACEAWT WINDOWLISTENER INTERFACE
The class which processes the WindowEvent should implement this interface.The object of that
class must be registered with a component. The object can be registered using the
addWindowListener method.

Interface declaration
Following is the declaration for java.awt.event.WindowListener interface:

public interface WindowListener
 extends EventListener

Interface methods

S.N. Method & Description

1
void windowActivatedWindowEvent e

Invoked when the Window is set to be the active Window.

2
void windowClosedWindowEvent e

Invoked when a window has been closed as the result of calling dispose on the window.

3
void windowClosingWindowEvent e

Invoked when the user attempts to close the window from the window's system menu.

4
void windowDeactivatedWindowEvent e

Invoked when a Window is no longer the active Window.

5
void windowDeiconifiedWindowEvent e

Invoked when a window is changed from a minimized to a normal state.

6
void windowIconifiedWindowEvent e

Invoked when a window is changed from a normal to a minimized state.

7
void windowOpenedWindowEvent e

Invoked the first time a window is made visible.

Methods inherited
This interface inherits methods from the following interfaces:

java.awt.EventListener

WindowListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;

 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showWindowListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showWindowListenerDemo(){
 headerLabel.setText("Listener in action: WindowListener");

 Button okButton = new Button("OK");

 aboutFrame = new Frame();
 aboutFrame.setSize(300,200);;
 aboutFrame.setTitle("WindowListener Demo");
 aboutFrame.addWindowListener(new CustomWindowListener());

 Label msgLabel = new Label("Welcome to tutorialspoint.");
 msgLabel.setAlignment(Label.CENTER);
 msgLabel.setSize(100,100);
 aboutFrame.add(msgLabel);
 aboutFrame.setVisible(true);
 }

 class CustomWindowListener implements WindowListener {
 public void windowOpened(WindowEvent e) {
 }

 public void windowClosing(WindowEvent e) {
 aboutFrame.dispose();
 }

 public void windowClosed(WindowEvent e) {
 }

 public void windowIconified(WindowEvent e) {
 }

 public void windowDeiconified(WindowEvent e) {
 }

 public void windowActivated(WindowEvent e) {
 }

 public void windowDeactivated(WindowEvent e) {
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT ADJUSTMENTLISTENER INTERFACEAWT ADJUSTMENTLISTENER INTERFACE
Introduction
The interfaceAdjustmentListener is used for receiving adjustment events. The class that process
adjustment events needs to implements this interface.

Class declaration
Following is the declaration for java.awt.event.AdjustmentListener interface:

public interface AdjustmentListener
extends EventListener

Interface methods

S.N. Method & Description

1
void adjustmentValueChangedAdjustmentEvent e

Invoked when the value of the adjustable has changed.

Methods inherited
This class inherits methods from the following interfaces:

java.awt.event.EventListener

AdjustmentListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showAdjustmentListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showAdjustmentListenerDemo(){
 headerLabel.setText("Listener in action: AdjustmentListener");

 ScrollPane panel = new ScrollPane();
 panel.setBackground(Color.magenta);
 panel.getHAdjustable().addAdjustmentListener(new CustomAdjustmentListener());

 Label msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");
 panel.add(msglabel);

 controlPanel.add(panel);
 mainFrame.setVisible(true);
 }

 class CustomAdjustmentListener implements AdjustmentListener {
 public void adjustmentValueChanged(AdjustmentEvent e) {
 statusLabel.setText("Adjustment value: "+Integer.toString(e.getValue()));
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT CONTAINERLISTENER INTERFACEAWT CONTAINERLISTENER INTERFACE
Introduction
The interfaceContainerListener is used for receiving container events. The class that process
container events needs to implements this interface.

Class declaration
Following is the declaration for java.awt.event.ContainerListener interface:

public interface ContainerListener
extends EventListener

Interface methods

S.N. Method & Description

1
void componentAddedContainerEvent e

Invoked when a component has been added to the container.

2
void componentRemovedContainerEvent e

Invoked when a component has been removed from the container.

Methods inherited
This class inherits methods from the following interfaces:

java.awt.event.EventListener

AdjustmentListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showContainerListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showContainerListenerDemo(){
 headerLabel.setText("Listener in action: ContainerListener");

 ScrollPane panel = new ScrollPane();
 panel.setBackground(Color.magenta);
 panel.addContainerListener(new CustomContainerListener());

 Label msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");
 panel.add(msglabel);

 controlPanel.add(panel);
 mainFrame.setVisible(true);
 }

 class CustomContainerListener implements ContainerListener {
 public void componentAdded(ContainerEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " added. ");
 }

 public void componentRemoved(ContainerEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " removed. ");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT MOUSEMOTIONLISTENER INTERFACEAWT MOUSEMOTIONLISTENER INTERFACE
Introduction
The interfaceMouseMotionListener is used for receiving mouse motion events on a component.
The class that process mouse motion events needs to implements this interface.

Class declaration
Following is the declaration for java.awt.event.MouseMotionListener interface:

public interface MouseMotionListener
extends EventListener

Interface methods

S.N. Method & Description

1
void mouseDraggedMouseEvent e

Invoked when a mouse button is pressed on a component and then dragged.

2
void mouseMovedMouseEvent e

Invoked when the mouse cursor has been moved onto a component but no buttons have
been pushed.

Methods inherited
This class inherits methods from the following interfaces:

java.awt.event.EventListener

MouseMotionListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;

 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showMouseMotionListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMouseMotionListenerDemo(){
 headerLabel.setText("Listener in action: MouseMotionListener");

 Panel panel = new Panel();
 panel.setBackground(Color.magenta);
 panel.setLayout(new FlowLayout());
 panel.addMouseMotionListener(new CustomMouseMotionListener());

 Label msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");
 panel.add(msglabel);

 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }

 class CustomMouseMotionListener implements MouseMotionListener {

 public void mouseDragged(MouseEvent e) {
 statusLabel.setText("Mouse Dragged: ("+e.getX()+", "+e.getY() +")");
 }

 public void mouseMoved(MouseEvent e) {
 statusLabel.setText("Mouse Moved: ("+e.getX()+", "+e.getY() +")");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT FOCUSLISTENER INTERFACEAWT FOCUSLISTENER INTERFACE
Introduction
The interfaceFocusListener is used for receiving keyboard focus events. The class that process
focus events needs to implements this interface.

Class declaration
Following is the declaration for java.awt.event.FocusListener interface:

public interface FocusListener
extends EventListener

Interface methods

S.N. Method & Description

1
void focusGainedFocusEvent e

Invoked when a component gains the keyboard focus.

2
void focusLostFocusEvent e

Invoked when a component loses the keyboard focus.

Methods inherited
This class inherits methods from the following interfaces:

java.awt.event.EventListener

FocusListener Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtListenerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtListenerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtListenerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtListenerDemo awtListenerDemo = new AwtListenerDemo();
 awtListenerDemo.showFocusListenerDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showFocusListenerDemo(){

 headerLabel.setText("Listener in action: FocusListener");

 Button okButton = new Button("OK");
 Button cancelButton = new Button("Cancel");
 okButton.addFocusListener(new CustomFocusListener());

 cancelButton.addFocusListener(new CustomFocusListener());

 controlPanel.add(okButton);
 controlPanel.add(cancelButton);
 mainFrame.setVisible(true);
 }

 class CustomFocusListener implements FocusListener{
 public void focusGained(FocusEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " gained focus. ");
 }

 public void focusLost(FocusEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName() + " lost focus. ");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtListenerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtListenerDemo

Verify the following output

AWT EVENT ADAPTERSAWT EVENT ADAPTERS
Adapters are abstract classes for receiving various events. The methods in these classes are
empty. These classes exists as convenience for creating listener objects.

AWT Adapters:
Following is the list of commonly used adapters while listening GUI events in AWT.

AWT FOCUSADAPTER CLASSAWT FOCUSADAPTER CLASS
Introduction
The class FocusAdapter is an abstract adapter class for receiving keyboard focus events. All
methods of this class are empty. This class is convenience class for creating listener objects.

Class declaration
Following is the declaration for java.awt.event.FocusAdapter class:

public abstract class FocusAdapter
 extends Object
 implements FocusListener

Class constructors

S.N. Constructor & Description

1
FocusAdapter

Class methods

S.N. Method & Description

1
void focusGainedFocusEvent e

Invoked when a component gains the keyboard focus.

2
focusLostFocusEvent e

Invoked when a component loses the keyboard focus.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

FocusAdapter Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtAdapterDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtAdapterDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;

 private Panel controlPanel;

 public AwtAdapterDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtAdapterDemo awtAdapterDemo = new AwtAdapterDemo();
 awtAdapterDemo.showFocusAdapterDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showFocusAdapterDemo(){

 headerLabel.setText("Listener in action: FocusAdapter");

 Button okButton = new Button("OK");
 Button cancelButton = new Button("Cancel");
 okButton.addFocusListener(new FocusAdapter(){
 public void focusGained(FocusEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName()
 + " gained focus. ");
 }
 });

 cancelButton.addFocusListener(new FocusAdapter(){
 public void focusLost(FocusEvent e) {
 statusLabel.setText(statusLabel.getText()
 + e.getComponent().getClass().getSimpleName()
 + " lost focus. ");
 }
 });

 controlPanel.add(okButton);
 controlPanel.add(cancelButton);
 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtAdapterDemo.java

If no error comes that means compilation is successful. Run the program using following

command.

D:\AWT>java com.tutorialspoint.gui.AwtAdapterDemo

Verify the following output

AWT KEYADAPTER CLASSAWT KEYADAPTER CLASS
Introduction
The class KeyAdapter is an abstract adapter class for receiving keyboard events. All methods of
this class are empty. This class is convenience class for creating listener objects.

Class declaration
Following is the declaration for java.awt.event.KeyAdapter class:

public abstract class KeyAdapter
 extends Object
 implements KeyListener

Class constructors

S.N. Constructor & Description

1
KeyAdapter

Class methods

S.N. Method & Description

1
void keyPressedKeyEvent e

Invoked when a key has been pressed.

2
void keyReleasedKeyEvent e

Invoked when a key has been released.

3
void keyTypedKeyEvent e

Invoked when a key has been typed.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

KeyAdapter Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtAdapterDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtAdapterDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtAdapterDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtAdapterDemo awtAdapterDemo = new AwtAdapterDemo();
 awtAdapterDemo.showKeyAdapterDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);

 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showKeyAdapterDemo(){
 headerLabel.setText("Listener in action: KeyAdapter");

 final TextField textField = new TextField(10);

 textField.addKeyListener(new KeyAdapter() {
 public void keyPressed(KeyEvent e) {
 if(e.getKeyCode() == KeyEvent.VK_ENTER){
 statusLabel.setText("Entered text: " + textField.getText());
 }
 }
 });
 Button okButton = new Button("OK");
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("Entered text: " + textField.getText());
 }
 });

 controlPanel.add(textField);
 controlPanel.add(okButton);
 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtAdapterDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtAdapterDemo

Verify the following output

AWT MOUSEADAPTER CLASSAWT MOUSEADAPTER CLASS
Introduction
The class MouseAdapter is an abstract adapter class for receiving mouse events. All methods of
this class are empty. This class is convenience class for creating listener objects.

Class declaration
Following is the declaration for java.awt.event.MouseAdapter class:

public abstract class MouseAdapter
 extends Object
 implements MouseListener, MouseWheelListener, MouseMotionListener

Class constructors

S.N. Constructor & Description

1
MouseAdapter

Class methods

S.N. Method & Description

1
void mouseClickedMouseEvent e

Invoked when the mouse button has been clicked pressed and released on a component.

2
void mouseDraggedMouseEvent e

Invoked when a mouse button is pressed on a component and then dragged.

3
void mouseEnteredMouseEvent e

Invoked when the mouse enters a component.

4
void mouseExitedMouseEvent e

Invoked when the mouse exits a component.

5
void mouseMovedMouseEvent e

Invoked when the mouse cursor has been moved onto a component but no buttons have
been pushed.

6
void mousePressedMouseEvent e

Invoked when a mouse button has been pressed on a component.

7
void mouseReleasedMouseEvent e

Invoked when a mouse button has been released on a component.

8
void mouseWheelMovedMouseWheelEvent e

Invoked when the mouse wheel is rotated.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

MouseAdapter Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtAdapterDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtAdapterDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtAdapterDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtAdapterDemo awtAdapterDemo = new AwtAdapterDemo();
 awtAdapterDemo.showMouseAdapterDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMouseAdapterDemo(){
 headerLabel.setText("Listener in action: MouseAdapter");

 Panel panel = new Panel();
 panel.setBackground(Color.magenta);
 panel.setLayout(new FlowLayout());
 panel.addMouseListener(new MouseAdapter(){
 public void mouseClicked(MouseEvent e) {
 statusLabel.setText("Mouse Clicked: ("
 +e.getX()+", "+e.getY() +")");
 }
 });

 Label msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 msglabel.addMouseListener(new MouseAdapter(){
 public void mouseClicked(MouseEvent e) {
 statusLabel.setText("Mouse Clicked: ("
 +e.getX()+", "+e.getY() +")");
 }
 });
 panel.add(msglabel);
 controlPanel.add(panel);
 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtAdapterDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtAdapterDemo

Verify the following output

AWT MOUSEMOTIONADAPTER CLASSAWT MOUSEMOTIONADAPTER CLASS
Introduction
The class MouseMotionAdapter is an abstract adapter class for receiving mouse motion events.
All methods of this class are empty. This class is convenience class for creating listener objects.

Class declaration
Following is the declaration for java.awt.event.MouseMotionAdapter class:

public abstract class MouseMotionAdapter
 extends Object
 implements MouseMotionListener

Class constructors

S.N. Constructor & Description

1
MouseMotionAdapter

Class methods

S.N. Method & Description

1
void mouseDraggedMouseEvent e

Invoked when a mouse button is pressed on a component and then dragged.

2
void mouseMovedMouseEvent e

Invoked when the mouse cursor has been moved onto a component but no buttons have
been pushed.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

MouseMotionAdapter Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtAdapterDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtAdapterDemo {
 private Frame mainFrame;
 private Label headerLabel;

 private Label statusLabel;
 private Panel controlPanel;

 public AwtAdapterDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtAdapterDemo awtAdapterDemo = new AwtAdapterDemo();
 awtAdapterDemo.showMouseMotionAdapterDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMouseMotionAdapterDemo(){
 headerLabel.setText("Listener in action: MouseMotionAdapter");

 Panel panel = new Panel();
 panel.setBackground(Color.magenta);
 panel.setLayout(new FlowLayout());
 panel.addMouseMotionListener(new MouseMotionAdapter(){
 public void mouseMoved(MouseEvent e) {
 statusLabel.setText("Mouse Moved: ("+e.getX()+", "+e.getY() +")");
 }
 });

 Label msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");
 panel.add(msglabel);

 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtAdapterDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtAdapterDemo

Verify the following output

AWT WINDOWADAPTER CLASSAWT WINDOWADAPTER CLASS
Introduction
The class WindowAdapter is an abstract adapter class for receiving window events. All methods
of this class are empty. This class is convenience class for creating listener objects.

Class declaration
Following is the declaration for java.awt.event.WindowAdapter class:

public abstract class WindowAdapter
 extends Object
 implements WindowListener, WindowStateListener, WindowFocusListener

Class constructors

S.N. Constructor & Description

1
WindowAdapter

Class methods

S.N. Method & Description

1
void windowActivatedWindowEvent e

Invoked when a window is activated.

2

2
void windowClosedWindowEvent e

Invoked when a window has been closed.

3
void windowClosingWindowEvent e

Invoked when a window is in the process of being closed.

4
void windowDeactivatedWindowEvent e

Invoked when a window is de-activated.

5
void windowDeiconifiedWindowEvent e

Invoked when a window is de-iconified.

6
void windowGainedFocusWindowEvent e

Invoked when the Window is set to be the focused Window, which means that the
Window, or one of its subcomponents, will receive keyboard events.

7
void windowIconifiedWindowEvent e

Invoked when a window is iconified.

8
void windowLostFocusWindowEvent e

Invoked when the Window is no longer the focused Window, which means that keyboard
events will no longer be delivered to the Window or any of its subcomponents.

9
void windowOpenedWindowEvent e

Invoked when a window has been opened.

10
void windowStateChangedWindowEvent e

Invoked when a window state is changed.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

WindowAdapter Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtAdapterDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtAdapterDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AwtAdapterDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtAdapterDemo awtAdapterDemo = new AwtAdapterDemo();
 awtAdapterDemo.showWindowAdapterDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showWindowAdapterDemo(){
 headerLabel.setText("Listener in action: WindowAdapter");

 Button okButton = new Button("OK");

 final Frame aboutFrame = new Frame();
 aboutFrame.setSize(300,200);;
 aboutFrame.setTitle("WindowAdapter Demo");
 aboutFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 aboutFrame.dispose();
 }
 });
 Label msgLabel = new Label("Welcome to tutorialspoint.");
 msgLabel.setAlignment(Label.CENTER);
 msgLabel.setSize(100,100);
 aboutFrame.add(msgLabel);
 aboutFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtAdapterDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtAdapterDemo

Verify the following output

AWT LAYOUTSAWT LAYOUTS
Introduction
Layout means the arrangement of components within the container. In other way we can say that
placing the components at a particular position within the container. The task of layouting the
controls is done automatically by the Layout Manager.

Layout Manager
The layout manager automatically positions all the components within the container. If we do not
use layout manager then also the components are positioned by the default layout manager. It is
possible to layout the controls by hand but it becomes very difficult because of the following two
reasons.

It is very tedious to handle a large number of controls within the container.

Oftenly the width and height information of a component is not given when we need to
arrange them.

Java provide us with various layout manager to position the controls. The properties like size,shape
and arrangement varies from one layout manager to other layout manager. When the size of the
applet or the application window changes the size, shape and arrangement of the components
also changes in response i.e. the layout managers adapt to the dimensions of appletviewer or the
application window.

The layout manager is associated with every Container object. Each layout manager is an object of
the class that implements the LayoutManager interface.

Following are the interfaces and classes defining functionalities of Layout Managers.

AWT LAYOUTMANAGER INTERFACEAWT LAYOUTMANAGER INTERFACE

Introduction
The interfaceLayoutManager is used to define the interface for classes that know how to lay out
Containers.

Class declaration
Following is the declaration for java.awt.LayoutManager interface:

public interface LayoutManager

Interface methods

S.N. Method & Description

1
void addLayoutComponentString name, Component comp

If the layout manager uses a per-component string, adds the component comp to the
layout, associating it with the string specified by name.

2
void layoutContainerContainer parent

Lays out the specified container.

3
Dimension minimumLayoutSizeContainer parent

Calculates the minimum size dimensions for the specified container, given the
components it contains.

4
Dimension preferredLayoutSizeContainer parent

Calculates the preferred size dimensions for the specified container, given the
components it contains.

5
void removeLayoutComponentComponent comp

Removes the specified component from the layout.

AWT LAYOUTMANAGER2 INTERFACEAWT LAYOUTMANAGER2 INTERFACE
Introduction
The interfaceLayoutManger is used to define the interface for classes that know how to lay out
Containers based on a layout constraints object.

Class declaration
Following is the declaration for java.awt.LayoutManager2 interface:

public interface LayoutManger2
 extends LayoutManager

Interface methods

S.N. Method & Description

1
void addLayoutComponentComponent comp, Object constraints

Adds the specified component to the layout, using the specified constraint object.

2
float getLayoutAlignmentXContainer target

Returns the alignment along the x axis.

3
float getLayoutAlignmentYContainer target

Returns the alignment along the y axis.

4
void invalidateLayoutContainer target

Invalidates the layout, indicating that if the layout manager has cached information it
should be discarded.

5
Dimension maximumLayoutSizeContainer target

Calculates the maximum size dimensions for the specified container, given the
components it contains.

AWT BORDERLAYOUT CLASSAWT BORDERLAYOUT CLASS
Introduction
The class BorderLayout arranges the components to fit in the five regions: east, west, north,
south and center. Each region is can contain only one component and each component in each
region is identified by the corresponding constant NORTH, SOUTH, EAST, WEST, and CENTER.

Class declaration
Following is the declaration for java.awt.BorderLayout class:

public class BorderLayout
 extends Object
 implements LayoutManager2, Serializable

Field
Following are the fields for java.awt.BorderLayout class:

static String AFTER_LAST_LINE -- Synonym for PAGE_END.

static String AFTER_LINE_ENDS -- Synonym for LINE_END.

static String BEFORE_FIRST_LINE -- Synonym for PAGE_START.

static String BEFORE_LINE_BEGINS -- Synonym for LINE_START.

static String CENTER -- The center layout constraint middle of container.

static String EAST -- The east layout constraint right side of container.

static String LINE_END -- The component goes at the end of the line direction for the
layout.

static String LINE_START -- The component goes at the beginning of the line direction for
the layout.

static String NORTH -- The north layout constraint top of container.

static String PAGE_END -- The component comes after the last line of the layout's content.

static String PAGE_START -- The component comes before the first line of the layout's
content.

static String SOUTH -- The south layout constraint bottom of container.

static String WEST -- The west layout constraint left side of container.

Class constructors

S.N. Constructor & Description

1
BorderLayout

Constructs a new border layout with no gaps between components.

2
BorderLayoutint hgap, int vgap

Constructs a border layout with the specified gaps between components.

Class methods

S.N. Method & Description

1
void addLayoutComponentComponent comp, Object constraints

Adds the specified component to the layout, using the specified constraint object.

2
void addLayoutComponentString name, Component comp

If the layout manager uses a per-component string, adds the component comp to the
layout, associating it with the string specified by name.

3
int getHgap

Returns the horizontal gap between components.

4
float getLayoutAlignmentXContainer parent

Returns the alignment along the x axis.

5
float getLayoutAlignmentYContainer parent

Returns the alignment along the y axis.

6
int getVgap

Returns the vertical gap between components.

7
void invalidateLayoutContainer target

Invalidates the layout, indicating that if the layout manager has cached information it
should be discarded.

8
void layoutContainerContainer target

9
Dimension maximumLayoutSizeContainer target

Returns the maximum dimensions for this layout given the components in the specified
target container.

10
Dimension minimumLayoutSizeContainer target

Determines the minimum size of the target container using this layout manager.

11
Dimension preferredLayoutSizeContainer target

Determines the preferred size of the target container using this layout manager, based
on the components in the container.

12
void removeLayoutComponentComponent comp

Removes the specified component from this border layout.

13
void setHgapint hgap

Sets the horizontal gap between components.

14
void setVgapint vgap

Sets the vertical gap between components.

15
String toString

Returns a string representation of the state of this border layout.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

BorderLayout Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtLayoutDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtLayoutDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtLayoutDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtLayoutDemo awtLayoutDemo = new AwtLayoutDemo();
 awtLayoutDemo.showBorderLayoutDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showBorderLayoutDemo(){
 headerLabel.setText("Layout in action: BorderLayout");

 Panel panel = new Panel();
 panel.setBackground(Color.darkGray);
 panel.setSize(300,300);
 BorderLayout layout = new BorderLayout();

 layout.setHgap(10);
 layout.setVgap(10);
 panel.setLayout(layout);

 panel.add(new Button("Center"),BorderLayout.CENTER);
 panel.add(new Button("Line Start"),BorderLayout.LINE_START);
 panel.add(new Button("Line End"),BorderLayout.LINE_END);
 panel.add(new Button("East"),BorderLayout.EAST);
 panel.add(new Button("West"),BorderLayout.WEST);
 panel.add(new Button("North"),BorderLayout.NORTH);
 panel.add(new Button("South"),BorderLayout.SOUTH);

 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtlayoutDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtlayoutDemo

Verify the following output

AWT CARDLAYOUT CLASSAWT CARDLAYOUT CLASS
Introduction
The class CardLayout arranges each component in the container as a card. Only one card is
visible at a time, and the container acts as a stack of cards.

Class declaration
Following is the declaration for java.awt.CardLayout class:

public class CardLayout
 extends Object
 implements LayoutManager2, Serializable

Class constructors

S.N. Constructor & Description

1
CardLayout

Creates a new card layout with gaps of size zero.

2
CardLayoutint hgap, int vgap

Creates a new card layout with the specified horizontal and vertical gaps.

Class methods

S.N. Method & Description

1
void addLayoutComponentComponent comp, Object constraints

Adds the specified component to this card layout's internal table of names.

2
void addLayoutComponentString name, Component comp

If the layout manager uses a per-component string, adds the component comp to the
layout, associating it with the string specified by name.

3
void firstContainer parent

Flips to the first card of the container.

4
int getHgap

Gets the horizontal gap between components.

5
float getLayoutAlignmentXContainer parent

Returns the alignment along the x axis.

6
float getLayoutAlignmentYContainer parent

Returns the alignment along the y axis.

7
int getVgap

Gets the vertical gap between components.

8
void invalidateLayoutContainer target

Invalidates the layout, indicating that if the layout manager has cached information it
should be discarded.

9
void lastContainer parent

Flips to the last card of the container.

10
void layoutContainerContainer parent

Lays out the specified container using this card layout.

11
Dimension maximumLayoutSizeContainer target

Returns the maximum dimensions for this layout given the components in the specified
target container.

12
Dimension minimumLayoutSizeContainer parent

Calculates the minimum size for the specified panel.

13
void nextContainer parent

Flips to the next card of the specified container.

14
Dimension preferredLayoutSizeContainer parent

Determines the preferred size of the container argument using this card layout.

15
void previousContainer parent

Flips to the previous card of the specified container.

16
void removeLayoutComponentComponent comp

Removes the specified component from the layout.

17
void setHgapint hgap

Sets the horizontal gap between components.

18
void setVgapint vgap

Sets the vertical gap between components.

19

19
void showContainer parent, String name

Flips to the component that was added to this layout with the specified name, using
addLayoutComponent.

20
String toString

Returns a string representation of the state of this card layout.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

CardLayout Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtLayoutDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtLayoutDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtLayoutDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtLayoutDemo awtLayoutDemo = new AwtLayoutDemo();
 awtLayoutDemo.showCardLayoutDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showCardLayoutDemo(){
 headerLabel.setText("Layout in action: CardLayout");

 final Panel panel = new Panel();
 panel.setBackground(Color.CYAN);
 panel.setSize(300,300);

 CardLayout layout = new CardLayout();
 layout.setHgap(10);
 layout.setVgap(10);
 panel.setLayout(layout);

 Panel buttonPanel = new Panel(new FlowLayout());

 buttonPanel.add(new Button("OK"));
 buttonPanel.add(new Button("Cancel"));

 Panel textBoxPanel = new Panel(new FlowLayout());

 textBoxPanel.add(new Label("Name:"));
 textBoxPanel.add(new TextField(20));

 panel.add("Button", buttonPanel);
 panel.add("Text", textBoxPanel);

 Choice choice = new Choice();
 choice.add("Button");
 choice.add("Text");

 choice.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 CardLayout cardLayout = (CardLayout)(panel.getLayout());
 cardLayout.show(panel, (String)e.getItem());
 }
 });
 controlPanel.add(choice);
 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtlayoutDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtlayoutDemo

Verify the following output

AWT FLOWLAYOUT CLASSAWT FLOWLAYOUT CLASS
Introduction
The class FlowLayout components in a left-to-right flow.

Class declaration
Following is the declaration for java.awt.FlowLayout class:

public class FlowLayout
 extends Object
 implements LayoutManager, Serializable

Field
Following are the fields for java.awt.BorderLayout class:

static int CENTER -- This value indicates that each row of components should be centered.

static int LEADING -- This value indicates that each row of components should be justified
to the leading edge of the container's orientation, for example, to the left in left-to-right
orientations.

static int LEFT -- This value indicates that each row of components should be left-justified.

static int RIGHT -- This value indicates that each row of components should be right-
justified.

static int TRAILING -- This value indicates that each row of components should be justified
to the trailing edge of the container's orientation, for example, to the right in left-to-right
orientations.

Class constructors

S.N. Constructor & Description

1
FlowLayout

Constructs a new FlowLayout with a centered alignment and a default 5-unit horizontal
and vertical gap.

2
FlowLayoutint align

Constructs a new FlowLayout with the specified alignment and a default 5-unit horizontal
and vertical gap.

3
FlowLayoutint align, int hgap, int vgap

Creates a new flow layout manager with the indicated alignment and the indicated
horizontal and vertical gaps.

Class methods

S.N. Method & Description

1
void addLayoutComponentString name, Component comp

Adds the specified component to the layout.

2
int getAlignment

Gets the alignment for this layout.

3
int getHgap

Gets the horizontal gap between components.

4
int getVgap

Gets the vertical gap between components.

5
void layoutContainerContainer target

Lays out the container.

6
Dimension minimumLayoutSizeContainer target

Returns the minimum dimensions needed to layout the visible components contained in
the specified target container.

7
Dimension preferredLayoutSizeContainer target

Returns the preferred dimensions for this layout given the visible components in the
specified target container.

8
void removeLayoutComponentComponent comp

Removes the specified component from the layout.

9
void setAlignmentint align

Sets the alignment for this layout.

10
void setHgapint hgap

Sets the horizontal gap between components.

11
void setVgapint vgap

Sets the vertical gap between components.

12
String toString

Returns a string representation of this FlowLayout object and its values.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

FlowLayout Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtLayoutDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtLayoutDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtLayoutDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtLayoutDemo awtLayoutDemo = new AwtLayoutDemo();
 awtLayoutDemo.showFlowLayoutDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);

 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showFlowLayoutDemo(){
 headerLabel.setText("Layout in action: FlowLayout");

 Panel panel = new Panel();
 panel.setBackground(Color.darkGray);
 panel.setSize(200,200);
 FlowLayout layout = new FlowLayout();
 layout.setHgap(10);
 layout.setVgap(10);
 panel.setLayout(layout);
 panel.add(new Button("OK"));
 panel.add(new Button("Cancel"));

 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtlayoutDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtlayoutDemo

Verify the following output

AWT GRIDLAYOUT CLASSAWT GRIDLAYOUT CLASS
Introduction
The class GridLayout arranges components in a rectangular grid.

Class declaration
Following is the declaration for java.awt.GridLayout class:

public class GridLayout
 extends Object
 implements LayoutManager, Serializable

Class constructors

S.N. Constructor & Description

1
GridLayout

Creates a grid layout with a default of one column per component, in a single row.

2
GridLayoutint rows, int cols

Creates a grid layout with the specified number of rows and columns.

3
GridLayoutint rows, int cols, int hgap, int vgap

Creates a grid layout with the specified number of rows and columns.

Class methods

S.N. Method & Description

1
void addLayoutComponentString name, Component comp

Adds the specified component with the specified name to the layout.

2
int getColumns

Gets the number of columns in this layout.

3
int getHgap

Gets the horizontal gap between components.

4
int getRows

Gets the number of rows in this layout.

5
int getVgap

Gets the vertical gap between components.

6
void layoutContainerContainer parent

Lays out the specified container using this layout.

7
Dimension minimumLayoutSizeContainer parent

Determines the minimum size of the container argument using this grid layout.

8
Dimension preferredLayoutSizeContainer parent

Determines the preferred size of the container argument using this grid layout.

9
void removeLayoutComponentComponent comp

Removes the specified component from the layout.

10
void setColumnsint cols

Sets the number of columns in this layout to the specified value.

11
void setHgapint hgap

Sets the horizontal gap between components to the specified value.

12
void setRowsint rows

Sets the number of rows in this layout to the specified value.

13
void setVgapint vgap

Sets the vertical gap between components to the specified value.

14
String toString

Returns the string representation of this grid layout's values.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

GridLayout Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtLayoutDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtLayoutDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtLayoutDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtLayoutDemo awtLayoutDemo = new AwtLayoutDemo();
 awtLayoutDemo.showGridLayoutDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showGridLayoutDemo(){
 headerLabel.setText("Layout in action: GridLayout");

 Panel panel = new Panel();
 panel.setBackground(Color.darkGray);
 panel.setSize(300,300);
 GridLayout layout = new GridLayout(0,3);
 layout.setHgap(10);
 layout.setVgap(10);

 panel.setLayout(layout);
 panel.add(new Button("Button 1"));
 panel.add(new Button("Button 2"));

 panel.add(new Button("Button 3"));
 panel.add(new Button("Button 4"));
 panel.add(new Button("Button 5"));
 controlPanel.add(panel);
 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtlayoutDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtlayoutDemo

Verify the following output

AWT GRIDBAGLAYOUT CLASSAWT GRIDBAGLAYOUT CLASS
Introduction
The class GridBagLayout arranges components in a horizontal and vertical manner.

Class declaration
Following is the declaration for java.awt.GridBagLayout class:

public class GridBagLayout
 extends Object
 implements LayoutManager2, Serializable

Field
Following are the fields for java.awt.BorderLayout class:

double[] columnWeights -- This field holds the overrides to the column weights.

int[] columnWidths -- This field holds the overrides to the column minimum width.

protected Hashtable comptable -- This hashtable maintains the association between a
component and its gridbag constraints.

protected GridBagConstraints defaultConstraints -- This field holds a gridbag
constraints instance containing the default values, so if a component does not have gridbag
constraints associated with it, then the component will be assigned a copy of the
defaultConstraints.

protected java.awt.GridBagLayoutInfo layoutInfo -- This field holds the layout
information for the gridbag.

protected static int MAXGRIDSIZE -- The maximum number of grid positions both
horizontally and vertically that can be laid out by the grid bag layout.

protected static int MINSIZE -- The smallest grid that can be laid out by the grid bag
layout.

protected static int PREFERREDSIZE -- The preferred grid size that can be laid out by the
grid bag layout.

int[] rowHeights -- This field holds the overrides to the row minimum heights.

double[] rowWeights -- This field holds the overrides to the row weights.

Class constructors

S.N. Constructor & Description

1
GridBagLayout

Creates a grid bag layout manager.

Class methods

S.N. Method & Description

1
void addLayoutComponentComponent comp, Object constraints

Adds the specified component to the layout, using the specified constraints object.

2
void addLayoutComponentString name, Component comp

Adds the specified component with the specified name to the layout.

3
protected void adjustForGravityGridBagConstraints constraints, Rectangle r

Adjusts the x, y, width, and height fields to the correct values depending on the constraint
geometry and pads.

4
protected void AdjustForGravityGridBagConstraints constraints, Rectangle r

This method is obsolete and supplied for backwards compatability only; new code should
call adjustForGravity instead.

5
protected void arrangeGridContainer parent

Lays out the grid.

6
protected void ArrangeGridContainer parent

This method is obsolete and supplied for backwards compatability only; new code should
call arrangeGrid instead.

7
GridBagConstraints getConstraintsComponent comp

Gets the constraints for the specified component.

8
float getLayoutAlignmentXContainer parent

Returns the alignment along the x axis.

9
float getLayoutAlignmentYContainer parent

Returns the alignment along the y axis.

10
int[][] getLayoutDimensions

Determines column widths and row heights for the layout grid.

11
protected java.awt.GridBagLayoutInfo getLayoutInfoContainer parent, int
sizeflag

Fills in an instance of GridBagLayoutInfo for the current set of managed children.

12
protected java.awt.GridBagLayoutInfo GetLayoutInfoContainer parent, int
sizeflag

This method is obsolete and supplied for backwards compatability only; new code should
call getLayoutInfo instead.

13
Point getLayoutOrigin

Determines the origin of the layout area, in the graphics coordinate space of the target
container.

14
double[][] getLayoutWeights

Determines the weights of the layout grid's columns and rows.

15
protected Dimension getMinSizeContainer parent, java.awt.GridBagLayoutInfo
info

Figures out the minimum size of the master based on the information from getLayoutInfo.

16
protected Dimension GetMinSizeContainer parent, java.awt.GridBagLayoutInfo
info

This method is obsolete and supplied for backwards compatability only; new code should
call getMinSize instead.

17
void invalidateLayoutContainer target

Invalidates the layout, indicating that if the layout manager has cached information it
should be discarded.

18
void layoutContainerContainer parent

Lays out the specified container using this grid bag layout.

19
Point locationint x, int y

Determines which cell in the layout grid contains the point specified by x, y.

20
protected GridBagConstraints lookupConstraintsComponent comp

Retrieves the constraints for the specified component.

21
Dimension maximumLayoutSizeContainer target

Returns the maximum dimensions for this layout given the components in the specified
target container.

22
Dimension minimumLayoutSizeContainer parent

Determines the minimum size of the parent container using this grid bag layout.

23
Dimension preferredLayoutSizeContainer parent

Determines the preferred size of the parent container using this grid bag layout.

24
void removeLayoutComponentComponent comp

Removes the specified component from this layout.

25
void setConstraintsComponent comp, GridBagConstraints constraints

Sets the constraints for the specified component in this layout.

26
String toString

Returns a string representation of this grid bag layout's values.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

GridBagLayout Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtLayoutDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtLayoutDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtLayoutDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtLayoutDemo awtLayoutDemo = new AwtLayoutDemo();
 awtLayoutDemo.showGridBagLayoutDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showGridBagLayoutDemo(){
 headerLabel.setText("Layout in action: GridBagLayout");

 Panel panel = new Panel();
 panel.setBackground(Color.darkGray);
 panel.setSize(300,300);
 GridBagLayout layout = new GridBagLayout();

 panel.setLayout(layout);
 GridBagConstraints gbc = new GridBagConstraints();

 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.gridx = 0;
 gbc.gridy = 0;
 panel.add(new Button("Button 1"),gbc);

 gbc.gridx = 1;
 gbc.gridy = 0;
 panel.add(new Button("Button 2"),gbc);

 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.ipady = 20;
 gbc.gridx = 0;
 gbc.gridy = 1;
 panel.add(new Button("Button 3"),gbc);

 gbc.gridx = 1;
 gbc.gridy = 1;
 panel.add(new Button("Button 4"),gbc);

 gbc.gridx = 0;
 gbc.gridy = 2;
 gbc.fill = GridBagConstraints.HORIZONTAL;
 gbc.gridwidth = 2;
 panel.add(new Button("Button 5"),gbc);

 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtlayoutDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtlayoutDemo

Verify the following output

AWT CONTAINERSAWT CONTAINERS
Containers are integral part of AWT GUI components. A container provides a space where a
component can be located. A Container in AWT is a component itself and it adds the capability to
add component to itself. Following are noticable points to be considered.

Sub classes of Container are called as Containter. For example Panel, Frame and Window.

Container can add only Component to itself.

A default layout is present in each container which can be overridden using setLayout
method.

AWT CONTAINER CLASSAWT CONTAINER CLASS
Introduction
The class Container is the super class for the containers of AWT. Container object can contain
other AWT components.

Class declaration
Following is the declaration for java.awt.Container class:

public class Container
 extends Component

Class constructors

S.N. Constructor & Description

1
Container

This creates a new Container.

Class methods

S.N. Method & Description

1
Component addComponent comp

Appends the specified component to the end of this container.

2
Component addComponent comp, int index

Adds the specified component to this container at the given position.

3
void addComponent comp, Object constraints

Adds the specified component to the end of this container.

4
void addComponent comp, Object constraints, int index

Adds the specified component to this container with the specified constraints at the
specified index.

5
Component addString name, Component comp

Adds the specified component to this container.

6
void addContainerListenerContainerListener l

Adds the specified container listener to receive container events from this container.

7
protected void addImplComponent comp, Object constraints, int index

Adds the specified component to this container at the specified index.

8
void addNotify

Makes this Container displayable by connecting it to a native screen resource.

9
void addPropertyChangeListenerPropertyChangeListener listener

Adds a PropertyChangeListener to the listener list.

10
void addPropertyChangeListenerString propertyName, PropertyChangeListener
listener

Adds a PropertyChangeListener to the listener list for a specific property.

11
void applyComponentOrientationComponentOrientation o

Sets the ComponentOrientation property of this container and all components contained
within it.

12
boolean areFocusTraversalKeysSetint id

Returns whether the Set of focus traversal keys for the given focus traversal operation
has been explicitly defined for this Container.

13
int countComponents

Deprecated. As of JDK version 1.1, replaced by getComponentCount.

14

14
void deliverEventEvent e

Deprecated. As of JDK version 1.1, replaced by dispatchEventAWTEvent e

15
void doLayout

Causes this container to lay out its components.

16
Component findComponentAtint x, int y

Locates the visible child component that contains the specified position.

17
Component findComponentAtPoint p

Locates the visible child component that contains the specified point.

18
float getAlignmentX

Returns the alignment along the x axis.

19
float getAlignmentY

Returns the alignment along the y axis.

20
Component getComponentint n

Gets the nth component in this container.

21
Component getComponentAtint x, int y

Locates the component that contains the x,y position.

22
Component getComponentAtPoint p

Gets the component that contains the specified point.

23
int getComponentCount

Gets the number of components in this panel.

24
Component[] getComponents

Gets all the components in this container.

25
int getComponentZOrderComponent comp

Returns the z-order index of the component inside the container.

26
ContainerListener[] getContainerListeners

Returns an array of all the container listeners registered on this container.

27
Set<AWTKeyStroke> getFocusTraversalKeysint id

Returns the Set of focus traversal keys for a given traversal operation for this Container.

28
FocusTraversalPolicy getFocusTraversalPolicy

Returns the focus traversal policy that will manage keyboard traversal of this Container's
children, or null if this Container is not a focus cycle root.

29
Insets getInsets

Determines the insets of this container, which indicate the size of the container's border.

30
LayoutManager getLayout

Gets the layout manager for this container.

31
<T extends EventListener> T[] getListenersClass<T> listenerType

Returns an array of all the objects currently registered as FooListeners upon this
Container.

32
Dimension getMaximumSize

Returns the maximum size of this container.

33
Dimension getMinimumSize

Returns the minimum size of this container.

34
Point getMousePositionboolean allowChildren

Returns the position of the mouse pointer in this Container's coordinate space if the
Container is under the mouse pointer, otherwise returns null.

35
Dimension getPreferredSize

Returns the preferred size of this container.

36
Insets insets

Deprecated. As of JDK version 1.1, replaced by getInsets.

37
void invalidate

Invalidates the container.

38
boolean isAncestorOfComponent c

Checks if the component is contained in the component hierarchy of this container.

39
boolean isFocusCycleRoot

Returns whether this Container is the root of a focus traversal cycle.

40
boolean isFocusCycleRootContainer container

Returns whether the specified Container is the focus cycle root of this Container's focus
traversal cycle.

41
boolean isFocusTraversalPolicyProvider

Returns whether this container provides focus traversal policy.

42
boolean isFocusTraversalPolicySet

Returns whether the focus traversal policy has been explicitly set for this Container.

43
void layout

Deprecated. As of JDK version 1.1, replaced by doLayout.

44
void listPrintStream out, int indent

Prints a listing of this container to the specified output stream.

45
void listPrintWriter out, int indent

Prints out a list, starting at the specified indentation, to the specified print writer.

46
Component locateint x, int y

Deprecated. As of JDK version 1.1, replaced by getComponentAtint, int.

47
Dimension minimumSize

Deprecated. As of JDK version 1.1, replaced by getMinimumSize.

48
void paintGraphics g

Paints the container.

49
void paintComponentsGraphics g

Paints each of the components in this container.

50
protected String paramString

Returns a string representing the state of this Container.

51
Dimension preferredSize

Deprecated. As of JDK version 1.1, replaced by getPreferredSize.

52
void printGraphics g

Prints the container.

53
void printComponentsGraphics g

Prints each of the components in this container.

54
protected void processContainerEventContainerEvent e

Processes container events occurring on this container by dispatching them to any
registered ContainerListener objects.

55
protected void processEventAWTEvent e

Processes events on this container.

56
void removeComponent comp

Removes the specified component from this container.

57
void removeint index

Removes the component, specified by index, from this container.

58
void removeAll

Removes all the components from this container.

59
void removeContainerListenerContainerListener l

Removes the specified container listener so it no longer receives container events from
this container.

60
void removeNotify

Makes this Container undisplayable by removing its connection to its native screen
resource.

61
void setComponentZOrderComponent comp, int index

Moves the specified component to the specified z-order index in the container.

62
void setFocusCycleRootboolean focusCycleRoot

Sets whether this Container is the root of a focus traversal cycle.

63
void setFocusTraversalKeysint id, Set<? extends AWTKeyStroke> keystrokes

Sets the focus traversal keys for a given traversal operation for this Container.

64
void setFocusTraversalPolicyFocusTraversalPolicy policy

Sets the focus traversal policy that will manage keyboard traversal of this Container's
children, if this Container is a focus cycle root.

65
void setFocusTraversalPolicyProviderboolean provider

Sets whether this container will be used to provide focus traversal policy.

66
void setFontFont f

Sets the font of this container.

67
void setLayoutLayoutManager mgr

Sets the layout manager for this container.

68
void transferFocusBackward

Transfers the focus to the previous component, as though this Component were the focus
owner.

69
void transferFocusDownCycle

Transfers the focus down one focus traversal cycle.

70
void updateGraphics g

Updates the container.

71
void validate

Validates this container and all of its subcomponents.

72
protected void validateTree

Recursively descends the container tree and recomputes the layout for any subtrees
marked as needing it those marked as invalid.

Methods inherited
This class inherits methods from the following classes:

java.awt.Component

java.lang.Object

AWT PANEL CLASSAWT PANEL CLASS
Introduction
The class Panel is the simplest container class. It provides space in which an application can
attach any other component, including other panels. It uses FlowLayout as default layout manager.

Class declaration
Following is the declaration for java.awt.Panel class:

public class Panel
 extends Container
 implements Accessible

Class constructors

S.N. Constructor & Description

1
Panel

Creates a new panel using the default layout manager.

2
PanelLayoutManager layout

Creates a new panel with the specified layout manager.

Class methods

S.N. Method & Description

1
void addNotify

Creates the Panel's peer.

2
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Panel.

Methods inherited
This class inherits methods from the following classes:

java.awt.Container

java.awt.Component

java.lang.Object

Panel Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtContainerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtContainerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtContainerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtContainerDemo awtContainerDemo = new AwtContainerDemo();
 awtContainerDemo.showPanelDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showPanelDemo(){

 headerLabel.setText("Container in action: Panel");

 Panel panel = new Panel();
 panel.setBackground(Color.magenta);
 panel.setLayout(new FlowLayout());
 panel.add(msglabel);

 controlPanel.add(panel);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtContainerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtContainerDemo

Verify the following output

AWT FRAME CLASSAWT FRAME CLASS
Introduction
The class Frame is a top level window with border and title. It uses BorderLayout as default layout
manager.

Class declaration
Following is the declaration for java.awt.Frame class:

public class Frame
 extends Window
 implements MenuContainer

Field
Following are the fields for java.awt.Frame class:

static float BOTTOM_ALIGNMENT -- Ease-of-use constant for getAlignmentY.

static int CROSSHAIR_CURSOR -- Deprecated. replaced by Cursor.CROSSHAIR_CURSOR.

static int DEFAULT_CURSOR -- Deprecated. replaced by Cursor.DEFAULT_CURSOR.

static int E_RESIZE_CURSOR -- Deprecated. replaced by Cursor.E_RESIZE_CURSOR.

static int HAND_CURSOR -- Deprecated. replaced by Cursor.HAND_CURSOR.

static int ICONIFIED -- This state bit indicates that frame is iconified.

static int MAXIMIZED_BOTH -- This state bit mask indicates that frame is fully maximized
that is both horizontally and vertically.

static int MAXIMIZED_HORIZ -- This state bit indicates that frame is maximized in the
horizontal direction.

static int MAXIMIZED_VERT -- This state bit indicates that frame is maximized in the
vertical direction.

static int MOVE_CURSOR -- Deprecated. replaced by Cursor.MOVE_CURSOR.

static int N_RESIZE_CURSOR -- Deprecated. replaced by Cursor.N_RESIZE_CURSOR.

static int NE_RESIZE_CURSOR -- Deprecated. replaced by Cursor.NE_RESIZE_CURSOR.

static int NORMAL -- Frame is in the "normal" state.

static int NW_RESIZE_CURSOR -- Deprecated. replaced by Cursor.NW_RESIZE_CURSOR.

static int S_RESIZE_CURSOR -- Deprecated. replaced by Cursor.S_RESIZE_CURSOR.

static int SE_RESIZE_CURSOR -- Deprecated. replaced by Cursor.SE_RESIZE_CURSOR.

static int SW_RESIZE_CURSOR -- Deprecated. replaced by Cursor.SW_RESIZE_CURSOR.

static int TEXT_CURSOR -- Deprecated. replaced by Cursor.TEXT_CURSOR.

static int W_RESIZE_CURSOR -- Deprecated. replaced by Cursor.W_RESIZE_CURSOR.

static int WAIT_CURSOR -- Deprecated. replaced by Cursor.WAIT_CURSOR.

Class constructors

S.N. Constructor & Description

1
Frame

Constructs a new instance of Frame that is initially invisible.

2
FrameGraphicsConfiguration gc

Constructs a new, initially invisible Frame with the specified GraphicsConfiguration.

3
FrameString title

Constructs a new, initially invisible Frame object with the specified title.

4
FrameString title, GraphicsConfiguration gc

Constructs a new, initially invisible Frame object with the specified title and a
GraphicsConfiguration.

Class methods

S.N. Method & Description

1
void addNotify

Makes this Frame displayable by connecting it to a native screen resource.

2
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Frame.

3
int getCursorType

Deprecated. As of JDK version 1.1, replaced by Component.getCursor.

4
int getExtendedState

Gets the state of this frame.

5
static Frame[] getFrames

Returns an array of all Frames created by this application.

6
Image getIconImage

Returns the image to be displayed as the icon for this frame.

7
Rectangle getMaximizedBounds

Gets maximized bounds for this frame.

8
MenuBar getMenuBar

Gets the menu bar for this frame.

9
int getState

Gets the state of this frame obsolete.

10
String getTitle

Gets the title of the frame.

11
boolean isResizable

Indicates whether this frame is resizable by the user.

12
boolean isUndecorated

Indicates whether this frame is undecorated.

13
protected String paramString

Returns a string representing the state of this Frame.

14
void removeMenuComponent m

Removes the specified menu bar from this frame.

15
void removeNotify

Makes this Frame undisplayable by removing its connection to its native screen resource.

16
void setCursorint cursorType

Deprecated. As of JDK version 1.1, replaced by Component.setCursorCursor.

17
void setExtendedStateint state

Sets the state of this frame.

18
void setIconImageImage image

Sets the image to be displayed as the icon for this window.

19
void setMaximizedBoundsRectangle bounds

Sets the maximized bounds for this frame.

20
void setMenuBarMenuBar mb

Sets the menu bar for this frame to the specified menu bar.

21
void setResizableboolean resizable

Sets whether this frame is resizable by the user.

22

22
void setStateint state

Sets the state of this frame obsolete.

23
void setTitleString title

Sets the title for this frame to the specified string.

24
void setUndecoratedboolean undecorated

Disables or enables decorations for this frame.

Methods inherited
This class inherits methods from the following classes:

java.awt.Window

java.awt.Container

java.awt.Component

java.lang.Object

Frame Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtContainerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtContainerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtContainerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtContainerDemo awtContainerDemo = new AwtContainerDemo();
 awtContainerDemo.showFrameDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);

 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showFrameDemo(){
 headerLabel.setText("Container in action: Frame");

 final Frame frame = new Frame();
 frame.setSize(300, 300);
 frame.setLayout(new FlowLayout());
 frame.add(msglabel);
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 frame.dispose();
 }
 });
 Button okButton = new Button("Open a Frame");

 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText("A Frame shown to the user.");
 frame.setVisible(true);
 }
 });
 controlPanel.add(okButton);

 mainFrame.setVisible(true);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtContainerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtContainerDemo

Verify the following output

AWT WINDOW CLASSAWT WINDOW CLASS
Introduction
The class Window is a top level window with no border and no menubar. It uses BorderLayout as
default layout manager.

Class declaration
Following is the declaration for java.awt.Window class:

public class Window
 extends Container
 implements Accessible

Class constructors

S.N. Constructor & Description

1
WindowFrame owner

Constructs a new, initially invisible window with the specified Frame as its owner.

2
WindowWindow owner

Constructs a new, initially invisible window with the specified Window as its owner.

3
WindowWindow owner, GraphicsConfiguration gc

Constructs a new, initially invisible window with the specified owner Window and a
GraphicsConfiguration of a screen device.

Class methods

S.N. Method & Description

1
void addNotify

Makes this Window displayable by creating the connection to its native screen resource.

2
void addPropertyChangeListenerPropertyChangeListener listener

Adds a PropertyChangeListener to the listener list.

3
void addPropertyChangeListenerString propertyName, PropertyChangeListener
listener

Adds a PropertyChangeListener to the listener list for a specific property.

4
void addWindowFocusListenerWindowFocusListener l

Adds the specified window focus listener to receive window events from this window.

5
void addWindowListenerWindowListener l

Adds the specified window listener to receive window events from this window.

6
void addWindowStateListenerWindowStateListener l

Adds the specified window state listener to receive window events from this window.

7
void applyResourceBundleResourceBundle rb

Deprecated. As of J2SE 1.4, replaced by Component.applyComponentOrientation.

8
void applyResourceBundleString rbName

Deprecated. As of J2SE 1.4, replaced by Component.applyComponentOrientation.

9
void createBufferStrategyint numBuffers

Creates a new strategy for multi-buffering on this component.

10
void createBufferStrategyint numBuffers, BufferCapabilities caps

Creates a new strategy for multi-buffering on this component with the required buffer
capabilities.

11
void dispose

Releases all of the native screen resources used by this Window, its subcomponents, and
all of its owned children.

12
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Window.

13
BufferStrategy getBufferStrategy

Returns the BufferStrategy used by this component.

14
boolean getFocusableWindowState

Returns whether this Window can become the focused Window if it meets the other
requirements outlined in isFocusableWindow.

15
Container getFocusCycleRootAncestor

Always returns null because Windows have no ancestors; they represent the top of the
Component hierarchy.

16
Component getFocusOwner

Returns the child Component of this Window that has focus if this Window is focused;
returns null otherwise.

17
Set<AWTKeyStroke> getFocusTraversalKeysint id

Gets a focus traversal key for this Window.

18
GraphicsConfiguration getGraphicsConfiguration

This method returns the GraphicsConfiguration used by this Window.

19
List<Image> getIconImages

Returns the sequence of images to be displayed as the icon for this window.

20
InputContext getInputContext

Gets the input context for this window.

21
<T extends EventListener> T[] getListenersClass<T> listenerType

Returns an array of all the objects currently registered as FooListeners upon this Window.

22
Locale getLocale

Gets the Locale object that is associated with this window, if the locale has been set.

23
Dialog.ModalExclusionType getModalExclusionType

Returns the modal exclusion type of this window.

24
Component getMostRecentFocusOwner

Returns the child Component of this Window that will receive the focus when this Window
is focused.

25
Window[] getOwnedWindows

Return an array containing all the windows this window currently owns.

26
Window getOwner

Returns the owner of this window.

27
static Window[] getOwnerlessWindows

Returns an array of all Windows created by this application that have no owner.

28
Toolkit getToolkit

Returns the toolkit of this frame.

29
String getWarningString

Gets the warning string that is displayed with this window.

30
WindowFocusListener[] getWindowFocusListeners

Returns an array of all the window focus listeners registered on this window.

31
WindowListener[] getWindowListeners

Returns an array of all the window listeners registered on this window.

32
static Window[] getWindows

Returns an array of all Windows, both owned and ownerless, created by this application.

33
WindowStateListener[] getWindowStateListeners

Returns an array of all the window state listeners registered on this window.

34
void hide

Deprecated. As of JDK version 1.5, replaced by setVisibleboolean.

35
boolean isActive

Returns whether this Window is active.

36
boolean isAlwaysOnTop

Returns whether this window is an always-on-top window.

37
boolean isAlwaysOnTopSupported

Returns whether the always-on-top mode is supported for this window.

38
boolean isFocusableWindow

Returns whether this Window can become the focused Window, that is, whether this
Window or any of its subcomponents can become the focus owner.

39
boolean isFocusCycleRoot

Always returns true because all Windows must be roots of a focus traversal cycle.

40
boolean isFocused

Returns whether this Window is focused.

41
boolean isLocationByPlatform

Returns true if this Window will appear at the default location for the native windowing
system the next time this Window is made visible.

42
boolean isShowing

Checks if this Window is showing on screen.

43
void pack

Causes this Window to be sized to fit the preferred size and layouts of its subcomponents.

44
void paintGraphics g

Paints the container.

45
boolean postEventEvent e

Deprecated. As of JDK version 1.1 replaced by dispatchEventAWTEvent.

46
protected void processEventAWTEvent e

Processes events on this window.

47
protected void processWindowEventWindowEvent e

Processes window events occurring on this window by dispatching them to any registered
WindowListener objects.

48

48
protected void processWindowFocusEventWindowEvent e

Processes window focus event occuring on this window by dispatching them to any
registered WindowFocusListener objects.

49
protected void processWindowStateEventWindowEvent e

Processes window state event occuring on this window by dispatching them to any
registered WindowStateListener objects.

50
void removeNotify

Makes this Container undisplayable by removing its connection to its native screen
resource.

51
void removeWindowFocusListenerWindowFocusListener l

Removes the specified window focus listener so that it no longer receives window events
from this window.

52
void removeWindowListenerWindowListener l

Removes the specified window listener so that it no longer receives window events from
this window.

53
void removeWindowStateListenerWindowStateListener l

Removes the specified window state listener so that it no longer receives window events
from this window.

54
void reshapeint x, int y, int width, int height

Deprecated. As of JDK version 1.1, replaced by setBoundsint, int, int, int.

55
void setAlwaysOnTopboolean alwaysOnTop

Sets whether this window should always be above other windows.

56
void setBoundsint x, int y, int width, int height

Moves and resizes this component.

57
void setBoundsRectangle r

Moves and resizes this component to conform to the new bounding rectangle r.

58
void setCursorCursor cursor

Set the cursor image to a specified cursor.

59
void setFocusableWindowStateboolean focusableWindowState

Sets whether this Window can become the focused Window if it meets the other
requirements outlined in isFocusableWindow.

60
void setFocusCycleRootboolean focusCycleRoot

Does nothing because Windows must always be roots of a focus traversal cycle.

61
void setIconImageImage image

Sets the image to be displayed as the icon for this window.

62
void setIconImagesList<? extends Image> icons

Sets the sequence of images to be displayed as the icon for this window.

63
void setLocationByPlatformboolean locationByPlatform

Sets whether this Window should appear at the default location for the native windowing
system or at the current location returned by getLocation the next time the Window is
made visible.

64
void setLocationRelativeToComponent c

Sets the location of the window relative to the specified component.

65
void setMinimumSizeDimension minimumSize

Sets the minimum size of this window to a constant value.

66
void setModalExclusionTypeDialog.ModalExclusionType exclusionType

Specifies the modal exclusion type for this window.

67
void setSizeDimension d

Resizes this component so that it has width d.width and height d.height.

68
void setSizeint width, int height

Resizes this component so that it has width width and height height.

69
void setVisibleboolean b

Shows or hides this Window depending on the value of parameter b.

70

70
void show

Deprecated. As of JDK version 1.5, replaced by setVisibleboolean.

71
void toBack

If this Window is visible, sends this Window to the back and may cause it to lose focus or
activation if it is the focused or active Window.

72
void toFront

If this Window is visible, brings this Window to the front and may make it the focused
Window.

Methods inherited
This class inherits methods from the following classes:

java.awt.Window

java.awt.Container

java.awt.Component

java.lang.Object

Window Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AwtContainerDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AwtContainerDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;
 private Label msglabel;

 public AwtContainerDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AwtContainerDemo awtContainerDemo = new AwtContainerDemo();
 awtContainerDemo.showFrameDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });

 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 msglabel = new Label();
 msglabel.setAlignment(Label.CENTER);
 msglabel.setText("Welcome to TutorialsPoint AWT Tutorial.");

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showWindowDemo(){
 headerLabel.setText("Container in action: Window");
 final MessageWindow window =
 new MessageWindow(mainFrame,
 "Welcome to TutorialsPoint AWT Tutorial.");

 Button okButton = new Button("Open a Window");
 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 window.setVisible(true);
 statusLabel.setText("A Window shown to the user.");
 }
 });
 controlPanel.add(okButton);
 mainFrame.setVisible(true);
 }

 class MessageWindow extends Window{
 private String message;

 public MessageWindow(Frame parent, String message) {
 super(parent);
 this.message = message;
 setSize(300, 300);
 setLocationRelativeTo(parent);
 setBackground(Color.gray);
 }

 public void paint(Graphics g) {
 super.paint(g);
 g.drawRect(0,0,getSize().width - 1,getSize().height - 1);
 g.drawString(message,50,150);
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtContainerDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtContainerDemo

Verify the following output

AWT MENU CLASSESAWT MENU CLASSES
As we know that every top-level window has a menu bar associated with it. This menu bar consist
of various menu choices available to the end user. Further each choice contains list of options
which is called drop down menus. Menu and MenuItem controls are subclass of MenuComponent
class.

Menu Hiearchy

AWT MENUCOMPONENT CLASSAWT MENUCOMPONENT CLASS
Introduction
MenuComponent is an abstract class and is the superclass for all menu-related components.

Class declaration
Following is the declaration for java.awt.MenuComponent class:

public abstract class MenuComponent
 extends Object
 implements Serializable

Class constructors

S.N. Constructor & Description

1
MenuComponent

Creates a MenuComponent.

Class methods
void dispatchEventAWTEvent e

S.N. Method & Description

1
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this MenuComponent.

2
Font getFont

Gets the font used for this menu component.

3
String getName

Gets the name of the menu component.

4
MenuContainer getParent

Returns the parent container for this menu component.

5
java.awt.peer.MenuComponentPeer getPeer

Deprecated. As of JDK version 1.1, programs should not directly manipulate peers.

6
protected Object getTreeLock

Gets this component's locking object the object that owns the thread sychronization
monitor for AWT component-tree and layout operations.

7
protected String paramString

Returns a string representing the state of this MenuComponent.

8
boolean postEventEvent evt

Deprecated. As of JDK version 1.1, replaced by dispatchEvent.

9

9
protected void processEventAWTEvent e

Processes events occurring on this menu component.

10
void removeNotify

Removes the menu component's peer.

11
void setFontFont f

Sets the font to be used for this menu component to the specified font.

12
void setNameString name

Sets the name of the component to the specified string.

13
String toString

Returns a representation of this menu component as a string.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

AWT MENUBAR CLASSAWT MENUBAR CLASS
Introduction
The MenuBar class provides menu bar bound to a frame and is platform specific.

Class declaration
Following is the declaration for java.awt.MenuBar class:

public class MenuBar
 extends MenuComponent
 implements MenuContainer, Accessible

Class constructors

S.N. Constructor & Description

1
MenuBar

Creates a new menu bar.

Class methods

S.N. Method & Description

1
void dispatchEventAWTEvent e

2
Menu addMenu m

Adds the specified menu to the menu bar.

3
void addNotify

Creates the menu bar's peer.

4
int countMenus

Deprecated. As of JDK version 1.1, replaced by getMenuCount.

5
void deleteShortcutMenuShortcut s

Deletes the specified menu shortcut.

6
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this MenuBar.

7
Menu getHelpMenu

Gets the help menu on the menu bar.

8
Menu getMenuint i

Gets the specified menu.

9
int getMenuCount

Gets the number of menus on the menu bar.

10
MenuItem getShortcutMenuItemMenuShortcut s

Gets the instance of MenuItem associated with the specified MenuShortcut object, or null
if none of the menu items being managed by this menu bar is associated with the
specified menu shortcut.

11
void removeint index

Removes the menu located at the specified index from this menu bar.

12
void removeMenuComponent m

Removes the specified menu component from this menu bar.

13
void removeNotify

Removes the menu bar's peer.

14
void setHelpMenuMenu m

Sets the specified menu to be this menu bar's help menu.

15
Enumeration shortcuts

Gets an enumeration of all menu shortcuts this menu bar is managing.

Methods inherited
This class inherits methods from the following classes:

java.awt.MenuComponent

java.lang.Object

MenuBar Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTMenuDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AWTMenuDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AWTMenuDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AWTMenuDemo awtMenuDemo = new AWTMenuDemo();
 awtMenuDemo.showMenuDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();

 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMenuDemo(){
 //create a menu bar
 final MenuBar menuBar = new MenuBar();

 //create menus
 Menu fileMenu = new Menu("File");
 Menu editMenu = new Menu("Edit");
 final Menu aboutMenu = new Menu("About");

 //create menu items
 MenuItem newMenuItem =
 new MenuItem("New",new MenuShortcut(KeyEvent.VK_N));
 newMenuItem.setActionCommand("New");

 MenuItem openMenuItem = new MenuItem("Open");
 openMenuItem.setActionCommand("Open");

 MenuItem saveMenuItem = new MenuItem("Save");
 saveMenuItem.setActionCommand("Save");

 MenuItem exitMenuItem = new MenuItem("Exit");
 exitMenuItem.setActionCommand("Exit");

 MenuItem cutMenuItem = new MenuItem("Cut");
 cutMenuItem.setActionCommand("Cut");

 MenuItem copyMenuItem = new MenuItem("Copy");
 copyMenuItem.setActionCommand("Copy");

 MenuItem pasteMenuItem = new MenuItem("Paste");
 pasteMenuItem.setActionCommand("Paste");

 MenuItemListener menuItemListener = new MenuItemListener();

 newMenuItem.addActionListener(menuItemListener);
 openMenuItem.addActionListener(menuItemListener);
 saveMenuItem.addActionListener(menuItemListener);
 exitMenuItem.addActionListener(menuItemListener);
 cutMenuItem.addActionListener(menuItemListener);
 copyMenuItem.addActionListener(menuItemListener);
 pasteMenuItem.addActionListener(menuItemListener);

 final CheckboxMenuItem showWindowMenu =
 new CheckboxMenuItem("Show About", true);
 showWindowMenu.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 if(showWindowMenu.getState()){
 menuBar.add(aboutMenu);
 }else{
 menuBar.remove(aboutMenu);
 }
 }
 });

 //add menu items to menus
 fileMenu.add(newMenuItem);
 fileMenu.add(openMenuItem);

 fileMenu.add(saveMenuItem);
 fileMenu.addSeparator();
 fileMenu.add(showWindowMenu);
 fileMenu.addSeparator();
 fileMenu.add(exitMenuItem);

 editMenu.add(cutMenuItem);
 editMenu.add(copyMenuItem);
 editMenu.add(pasteMenuItem);

 //add menu to menubar
 menuBar.add(fileMenu);
 menuBar.add(editMenu);
 menuBar.add(aboutMenu);

 //add menubar to the frame
 mainFrame.setMenuBar(menuBar);
 mainFrame.setVisible(true);
 }

 class MenuItemListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText(e.getActionCommand()
 + " MenuItem clicked.");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTMenuDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTMenuDemo

Verify the following output

AWT MENUITEM CLASSAWT MENUITEM CLASS

Introduction
The MenuBar class represents the actual item in a menu. All items in a menu should derive from
class MenuItem, or one of its subclasses. By default, it embodies a simple labeled menu item.

Class declaration
Following is the declaration for java.awt.MenuItem class:

public class MenuItem
 extends MenuComponent
 implements Accessible

Class constructors

S.N. Constructor & Description

1
MenuItem

Constructs a new MenuItem with an empty label and no keyboard shortcut.

2
MenuItemString label

Constructs a new MenuItem with the specified label and no keyboard shortcut.

3
MenuItemString label, MenuShortcut s

Create a menu item with an associated keyboard shortcut.

Class methods

S.N. Method & Description

1
void addActionListenerActionListener l

Adds the specified action listener to receive action events from this menu item.

2
void addNotify

Creates the menu item's peer.

3
void deleteShortcut

Delete any MenuShortcut object associated with this menu item.

4
void disable

Deprecated. As of JDK version 1.1, replaced by setEnabledboolean.

5

5
protected void disableEventslong eventsToDisable

Disables event delivery to this menu item for events defined by the specified event mask
parameter.

6
void enable

Deprecated. As of JDK version 1.1, replaced by setEnabledboolean.

7
void enableboolean b

Deprecated. As of JDK version 1.1, replaced by setEnabledboolean.

8
protected void enableEventslong eventsToEnable

Enables event delivery to this menu item for events to be defined by the specified event
mask parameter.

9
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this MenuItem.

10
String getActionCommand

Gets the command name of the action event that is fired by this menu item.

11
ActionListener[] getActionListeners

Returns an array of all the action listeners registered on this menu item.

12
String getLabel

Gets the label for this menu item.

13
EventListener[] getListenersClass listenerType

Returns an array of all the objects currently registered as FooListeners upon this
MenuItem.

14
MenuShortcut getShortcut

Get the MenuShortcut object associated with this menu item.

15
boolean isEnabled

Checks whether this menu item is enabled.

16
String paramString

Returns a string representing the state of this MenuItem.

17
protected void processActionEventActionEvent e

Processes action events occurring on this menu item, by dispatching them to any
registered ActionListener objects.

18
protected void processEventAWTEvent e

Processes events on this menu item.

19
void removeActionListenerActionListener l

Removes the specified action listener so it no longer receives action events from this
menu item.

20
void setActionCommandString command

Sets the command name of the action event that is fired by this menu item.

21
void setEnabledboolean b

Sets whether or not this menu item can be chosen.

22
void setLabelString label

Sets the label for this menu item to the specified label.

23
void setShortcutMenuShortcut s

Set the MenuShortcut object associated with this menu item.

Methods inherited
This class inherits methods from the following classes:

java.awt.MenuComponent

java.lang.Object

MenuItem Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTMenuDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AWTMenuDemo {
 private Frame mainFrame;

 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AWTMenuDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AWTMenuDemo awtMenuDemo = new AWTMenuDemo();
 awtMenuDemo.showMenuDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMenuDemo(){
 //create a menu bar
 final MenuBar menuBar = new MenuBar();

 //create menus
 Menu fileMenu = new Menu("File");
 Menu editMenu = new Menu("Edit");
 final Menu aboutMenu = new Menu("About");

 //create menu items
 MenuItem newMenuItem =
 new MenuItem("New",new MenuShortcut(KeyEvent.VK_N));
 newMenuItem.setActionCommand("New");

 MenuItem openMenuItem = new MenuItem("Open");
 openMenuItem.setActionCommand("Open");

 MenuItem saveMenuItem = new MenuItem("Save");
 saveMenuItem.setActionCommand("Save");

 MenuItem exitMenuItem = new MenuItem("Exit");
 exitMenuItem.setActionCommand("Exit");

 MenuItem cutMenuItem = new MenuItem("Cut");
 cutMenuItem.setActionCommand("Cut");

 MenuItem copyMenuItem = new MenuItem("Copy");
 copyMenuItem.setActionCommand("Copy");

 MenuItem pasteMenuItem = new MenuItem("Paste");
 pasteMenuItem.setActionCommand("Paste");

 MenuItemListener menuItemListener = new MenuItemListener();

 newMenuItem.addActionListener(menuItemListener);
 openMenuItem.addActionListener(menuItemListener);
 saveMenuItem.addActionListener(menuItemListener);
 exitMenuItem.addActionListener(menuItemListener);
 cutMenuItem.addActionListener(menuItemListener);
 copyMenuItem.addActionListener(menuItemListener);
 pasteMenuItem.addActionListener(menuItemListener);

 final CheckboxMenuItem showWindowMenu =
 new CheckboxMenuItem("Show About", true);
 showWindowMenu.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 if(showWindowMenu.getState()){
 menuBar.add(aboutMenu);
 }else{
 menuBar.remove(aboutMenu);
 }
 }
 });

 //add menu items to menus
 fileMenu.add(newMenuItem);
 fileMenu.add(openMenuItem);
 fileMenu.add(saveMenuItem);
 fileMenu.addSeparator();
 fileMenu.add(showWindowMenu);
 fileMenu.addSeparator();
 fileMenu.add(exitMenuItem);

 editMenu.add(cutMenuItem);
 editMenu.add(copyMenuItem);
 editMenu.add(pasteMenuItem);

 //add menu to menubar
 menuBar.add(fileMenu);
 menuBar.add(editMenu);
 menuBar.add(aboutMenu);

 //add menubar to the frame
 mainFrame.setMenuBar(menuBar);
 mainFrame.setVisible(true);
 }

 class MenuItemListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText(e.getActionCommand()
 + " MenuItem clicked.");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTMenuDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTMenuDemo

Verify the following output. Click on File Menu. Select any menu item.

AWT MENU CLASSAWT MENU CLASS
Introduction
The Menu class represents pull-down menu component which is deployed from a menu bar.

Class declaration
Following is the declaration for java.awt.Menu class:

public class Menu
 extends MenuItem
 implements MenuContainer, Accessible

Class constructors

S.N. Constructor & Description

1
Menu

Constructs a new menu with an empty label.

2
MenuString label

Constructs a new menu with the specified label.

3
MenuString label, boolean tearOff

Constructs a new menu with the specified label, indicating whether the menu can be torn
off.

Class methods

S.N. Method & Description

1
MenuItem addMenuItem mi

Adds the specified menu item to this menu.

2
void addString label

Adds an item with the specified label to this menu.

3
void addNotify

Creates the menu's peer.

4
void addSeparator

Adds a separator line, or a hypen, to the menu at the current position.

5
int countItems

Deprecated. As of JDK version 1.1, replaced by getItemCount.

6
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this Menu.

7
MenuItem getItemint index

Gets the item located at the specified index of this menu.

8
int getItemCount

Get the number of items in this menu.

9
void insertMenuItem menuitem, int index

Inserts a menu item into this menu at the specified position.

10
void insertString label, int index

Inserts a menu item with the specified label into this menu at the specified position.

11
void insertSeparatorint index

Inserts a separator at the specified position.

12
boolean isTearOff

Indicates whether this menu is a tear-off menu.

13
String paramString

Returns a string representing the state of this Menu.

14
void removeint index

Removes the menu item at the specified index from this menu.

15
void removeMenuComponent item

Removes the specified menu item from this menu.

16
void removeAll

Removes all items from this menu.

17
void removeNotify

Removes the menu's peer.

Methods inherited
This class inherits methods from the following classes:

java.awt.MenuItem

java.awt.MenuComponent

java.lang.Object

Menu Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTMenuDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AWTMenuDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AWTMenuDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AWTMenuDemo awtMenuDemo = new AWTMenuDemo();
 awtMenuDemo.showMenuDemo();
 }

 private void prepareGUI(){

 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMenuDemo(){
 //create a menu bar
 final MenuBar menuBar = new MenuBar();

 //create menus
 Menu fileMenu = new Menu("File");
 Menu editMenu = new Menu("Edit");
 final Menu aboutMenu = new Menu("About");

 //create menu items
 MenuItem newMenuItem =
 new MenuItem("New",new MenuShortcut(KeyEvent.VK_N));
 newMenuItem.setActionCommand("New");

 MenuItem openMenuItem = new MenuItem("Open");
 openMenuItem.setActionCommand("Open");

 MenuItem saveMenuItem = new MenuItem("Save");
 saveMenuItem.setActionCommand("Save");

 MenuItem exitMenuItem = new MenuItem("Exit");
 exitMenuItem.setActionCommand("Exit");

 MenuItem cutMenuItem = new MenuItem("Cut");
 cutMenuItem.setActionCommand("Cut");

 MenuItem copyMenuItem = new MenuItem("Copy");
 copyMenuItem.setActionCommand("Copy");

 MenuItem pasteMenuItem = new MenuItem("Paste");
 pasteMenuItem.setActionCommand("Paste");

 MenuItemListener menuItemListener = new MenuItemListener();

 newMenuItem.addActionListener(menuItemListener);
 openMenuItem.addActionListener(menuItemListener);
 saveMenuItem.addActionListener(menuItemListener);
 exitMenuItem.addActionListener(menuItemListener);
 cutMenuItem.addActionListener(menuItemListener);
 copyMenuItem.addActionListener(menuItemListener);
 pasteMenuItem.addActionListener(menuItemListener);

 final CheckboxMenuItem showWindowMenu =
 new CheckboxMenuItem("Show About", true);
 showWindowMenu.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {

 if(showWindowMenu.getState()){
 menuBar.add(aboutMenu);
 }else{
 menuBar.remove(aboutMenu);
 }
 }
 });

 //add menu items to menus
 fileMenu.add(newMenuItem);
 fileMenu.add(openMenuItem);
 fileMenu.add(saveMenuItem);
 fileMenu.addSeparator();
 fileMenu.add(showWindowMenu);
 fileMenu.addSeparator();
 fileMenu.add(exitMenuItem);

 editMenu.add(cutMenuItem);
 editMenu.add(copyMenuItem);
 editMenu.add(pasteMenuItem);

 //add menu to menubar
 menuBar.add(fileMenu);
 menuBar.add(editMenu);
 menuBar.add(aboutMenu);

 //add menubar to the frame
 mainFrame.setMenuBar(menuBar);
 mainFrame.setVisible(true);
 }

 class MenuItemListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText(e.getActionCommand()
 + " MenuItem clicked.");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTMenuDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTMenuDemo

Verify the following output. Click on File Menu.

AWT CHECKBOXMENUITEM CLASSAWT CHECKBOXMENUITEM CLASS
Introduction
The CheckboxMenuItem class represents a check box which can be included in a menu. Selecting
the check box in the menu changes control's state from on to off or from off to on.

Class declaration
Following is the declaration for java.awt.CheckboxMenuItem class:

public class CheckboxMenuItem
 extends MenuItem
 implements ItemSelectable, Accessible

Class constructors

S.N. Constructor & Description

1
CheckboxMenuItem

Create a check box menu item with an empty label.

2
CheckboxMenuItemString label

Create a check box menu item with the specified label.

3
CheckboxMenuItemString label, boolean state

Create a check box menu item with the specified label and state.

Class methods

S.N. Method & Description

1
void addItemListenerItemListener l

Adds the specified item listener to receive item events from this check box menu item.

2
void addNotify

Creates the peer of the checkbox item.

3
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this CheckboxMenuItem.

4
ItemListener[] getItemListeners

Returns an array of all the item listeners registered on this checkbox menuitem.

5
<T extends EventListener> T[] getListenersClass<T> listenerType

Returns an array of all the objects currently registered as FooListeners upon this
CheckboxMenuItem.

6
Object[] getSelectedObjects

Returns the an array length 1 containing the checkbox menu item label or null if the
checkbox is not selected.

7
boolean getState

Determines whether the state of this check box menu item is "on" or "off."

8
String paramString

Returns a string representing the state of this CheckBoxMenuItem.

9
protected void processEventAWTEvent e

Processes events on this check box menu item.

10
protected void processItemEventItemEvent e

Processes item events occurring on this check box menu item by dispatching them to any
registered ItemListener objects.

11
void removeItemListenerItemListener l

Removes the specified item listener so that it no longer receives item events from this
check box menu item.

12
void setStateboolean b

Sets this check box menu item to the specifed state.

Methods inherited
This class inherits methods from the following classes:

java.awt.MenuItem

java.awt.MenuComponent

java.lang.Object

CheckboxMenuItem Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTMenuDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AWTMenuDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AWTMenuDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AWTMenuDemo awtMenuDemo = new AWTMenuDemo();
 awtMenuDemo.showMenuDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showMenuDemo(){
 //create a menu bar
 final MenuBar menuBar = new MenuBar();

 //create menus
 Menu fileMenu = new Menu("File");
 Menu editMenu = new Menu("Edit");
 final Menu aboutMenu = new Menu("About");

 //create menu items
 MenuItem newMenuItem =
 new MenuItem("New",new MenuShortcut(KeyEvent.VK_N));
 newMenuItem.setActionCommand("New");

 MenuItem openMenuItem = new MenuItem("Open");
 openMenuItem.setActionCommand("Open");

 MenuItem saveMenuItem = new MenuItem("Save");
 saveMenuItem.setActionCommand("Save");

 MenuItem exitMenuItem = new MenuItem("Exit");
 exitMenuItem.setActionCommand("Exit");

 MenuItem cutMenuItem = new MenuItem("Cut");
 cutMenuItem.setActionCommand("Cut");

 MenuItem copyMenuItem = new MenuItem("Copy");
 copyMenuItem.setActionCommand("Copy");

 MenuItem pasteMenuItem = new MenuItem("Paste");
 pasteMenuItem.setActionCommand("Paste");

 MenuItemListener menuItemListener = new MenuItemListener();

 newMenuItem.addActionListener(menuItemListener);
 openMenuItem.addActionListener(menuItemListener);
 saveMenuItem.addActionListener(menuItemListener);
 exitMenuItem.addActionListener(menuItemListener);
 cutMenuItem.addActionListener(menuItemListener);
 copyMenuItem.addActionListener(menuItemListener);
 pasteMenuItem.addActionListener(menuItemListener);

 final CheckboxMenuItem showWindowMenu =
 new CheckboxMenuItem("Show About", true);
 showWindowMenu.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent e) {
 if(showWindowMenu.getState()){
 menuBar.add(aboutMenu);
 }else{
 menuBar.remove(aboutMenu);
 }
 }
 });

 //add menu items to menus
 fileMenu.add(newMenuItem);
 fileMenu.add(openMenuItem);
 fileMenu.add(saveMenuItem);
 fileMenu.addSeparator();
 fileMenu.add(showWindowMenu);
 fileMenu.addSeparator();
 fileMenu.add(exitMenuItem);

 editMenu.add(cutMenuItem);
 editMenu.add(copyMenuItem);
 editMenu.add(pasteMenuItem);

 //add menu to menubar
 menuBar.add(fileMenu);
 menuBar.add(editMenu);
 menuBar.add(aboutMenu);

 //add menubar to the frame
 mainFrame.setMenuBar(menuBar);
 mainFrame.setVisible(true);
 }

 class MenuItemListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText(e.getActionCommand()
 + " MenuItem clicked.");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTMenuDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTMenuDemo

Verify the following output. Click on File Menu. Unselect "Show About" menu item.

AWT POPUPMENU CLASSAWT POPUPMENU CLASS
Introduction
Popup menu represents a menu which can be dynamically popped up at a specified position within
a component.

Class declaration
Following is the declaration for java.awt.PopupMenu class:

public class CheckboxMenuItem
 extends MenuItem
 implements ItemSelectable, Accessible

Class constructors

S.N. Constructor & Description

1
PopupMenu

Creates a new popup menu with an empty name.

2

2
PopupMenuString label

Creates a new popup menu with the specified name.

Class methods

S.N. Method & Description

1
void addNotify

Creates the popup menu's peer.

2
AccessibleContext getAccessibleContext

Gets the AccessibleContext associated with this PopupMenu.

3
MenuContainer getParent

Returns the parent container for this menu component.

4
void showComponent origin, int x, int y

Shows the popup menu at the x, y position relative to an origin component.

Methods inherited
This class inherits methods from the following classes:

java.awt.MenuItem

java.awt.MenuComponent

java.lang.Object

PopupMenu Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTMenuDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

public class AWTMenuDemo {
 private Frame mainFrame;
 private Label headerLabel;
 private Label statusLabel;
 private Panel controlPanel;

 public AWTMenuDemo(){
 prepareGUI();
 }

 public static void main(String[] args){
 AWTMenuDemo awtMenuDemo = new AWTMenuDemo();
 awtMenuDemo.showPopupMenuDemo();
 }

 private void prepareGUI(){
 mainFrame = new Frame("Java AWT Examples");
 mainFrame.setSize(400,400);
 mainFrame.setLayout(new GridLayout(3, 1));
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 headerLabel = new Label();
 headerLabel.setAlignment(Label.CENTER);
 statusLabel = new Label();
 statusLabel.setAlignment(Label.CENTER);
 statusLabel.setSize(350,100);

 controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());

 mainFrame.add(headerLabel);
 mainFrame.add(controlPanel);
 mainFrame.add(statusLabel);
 mainFrame.setVisible(true);
 }

 private void showPopupMenuDemo(){
 final PopupMenu editMenu = new PopupMenu("Edit");

 MenuItem cutMenuItem = new MenuItem("Cut");
 cutMenuItem.setActionCommand("Cut");

 MenuItem copyMenuItem = new MenuItem("Copy");
 copyMenuItem.setActionCommand("Copy");

 MenuItem pasteMenuItem = new MenuItem("Paste");
 pasteMenuItem.setActionCommand("Paste");

 MenuItemListener menuItemListener = new MenuItemListener();

 cutMenuItem.addActionListener(menuItemListener);
 copyMenuItem.addActionListener(menuItemListener);
 pasteMenuItem.addActionListener(menuItemListener);

 editMenu.add(cutMenuItem);
 editMenu.add(copyMenuItem);
 editMenu.add(pasteMenuItem);

 controlPanel.addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 editMenu.show(controlPanel, e.getX(), e.getY());
 }
 });
 controlPanel.add(editMenu);

 mainFrame.setVisible(true);
 }

 class MenuItemListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 statusLabel.setText(e.getActionCommand()
 + " MenuItem clicked.");
 }
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTMenuDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTMenuDemo

Verify the following output. Click in the middle on the screen.

AWT GRAPHICS CLASSESAWT GRAPHICS CLASSES
Graphics controls allows application to draw onto the component or on image.

AWT GRAPHICS CLASSAWT GRAPHICS CLASS
Introduction
The Graphics class is the abstract super class for all graphics contexts which allow an application
to draw onto components that can be realized on various devices, or onto off-screen images as
well.

A Graphics object encapsulates all state information required for the basic rendering operations
that Java supports. State information includes the following properties.

The Component object on which to draw.

A translation origin for rendering and clipping coordinates.

The current clip.

The current color.

The current font.

The current logical pixel operation function.

The current XOR alternation color

Class declaration
Following is the declaration for java.awt.Graphics class:

public abstract class Graphics
 extends Object

Class constructors

S.N. Constructor & Description

1
Graphics

Constructs a new Graphics object.

Class methods

S.N. Method & Description

1
abstract void clearRectint x, int y, int width, int height

Clears the specified rectangle by filling it with the background color of the current
drawing surface.

2
abstract void clipRectint x, int y, int width, int height

Intersects the current clip with the specified rectangle.

3
abstract void copyAreaint x, int y, int width, int height, int dx, int dy

Copies an area of the component by a distance specified by dx and dy.

4
abstract Graphics create

Creates a new Graphics object that is a copy of this Graphics object.

5
Graphics createint x, int y, int width, int height

Creates a new Graphics object based on this Graphics object, but with a new translation
and clip area.

6
abstract void dispose

Disposes of this graphics context and releases any system resources that it is using.

7
void draw3DRectint x, int y, int width, int height, boolean raised

Draws a 3-D highlighted outline of the specified rectangle.

8
abstract void drawArcint x, int y, int width, int height, int startAngle, int
arcAngle

Draws the outline of a circular or elliptical arc covering the specified rectangle.

9
void drawBytesbyte[] data, int offset, int length, int x, int y

Draws the text given by the specified byte array, using this graphics context's current font
and color.

10
void drawCharschar[] data, int offset, int length, int x, int y

Draws the text given by the specified character array, using this graphics context's
current font and color.

11
abstract boolean drawImageImage img, int x, int y, Color bgcolor,
ImageObserver observer

Draws as much of the specified image as is currently available.

12
abstract boolean drawImageImage img, int x, int y, ImageObserver observer

Draws as much of the specified image as is currently available.

13
abstract boolean drawImageImage img, int x, int y, int width, int height, Color
bgcolor, ImageObserver observer

Draws as much of the specified image as has already been scaled to fit inside the
specified rectangle.

14
abstract boolean drawImageImage img, int x, int y, int width, int height,
ImageObserver observer

Draws as much of the specified image as has already been scaled to fit inside the
specified rectangle.

15
abstract boolean drawImageImage img, int dx1, int dy1, int dx2, int dy2, int
sx1, int sy1, int sx2, int sy2, Color bgcolor, ImageObserver observer

Draws as much of the specified area of the specified image as is currently available,
scaling it on the fly to fit inside the specified area of the destination drawable surface.

16
abstract boolean drawImageImage img, int dx1, int dy1, int dx2, int dy2, int
sx1, int sy1, int sx2, int sy2, ImageObserver observer

Draws as much of the specified area of the specified image as is currently available,
scaling it on the fly to fit inside the specified area of the destination drawable surface.

17
abstract void drawLineint x1, int y1, int x2, int y2

Draws a line, using the current color, between the points x1, y1 and x2, y2 in this graphics
context's coordinate system.

18
abstract void drawOvalint x, int y, int width, int height

Draws the outline of an oval.

19
abstract void drawPolygonint[] xPoints, int[] yPoints, int nPoints

Draws a closed polygon defined by arrays of x and y coordinates.

20
void drawPolygonPolygon p

Draws the outline of a polygon defined by the specified Polygon object.

21
abstract void drawPolylineint[] xPoints, int[] yPoints, int nPoints

Draws a sequence of connected lines defined by arrays of x and y coordinates.

22
void drawRectint x, int y, int width, int height

Draws the outline of the specified rectangle.

23
abstract void drawRoundRectint x, int y, int width, int height, int arcWidth, int
arcHeight

Draws an outlined round-cornered rectangle using this graphics context's current color.

24
abstract void drawStringAttributedCharacterIterator iterator, int x, int y

Renders the text of the specified iterator applying its attributes in accordance with the
specification of the TextAttribute class.

25
abstract void drawStringString str, int x, int y

Draws the text given by the specified string, using this graphics context's current font and
color.

26
void fill3DRectint x, int y, int width, int height, boolean raised

Paints a 3-D highlighted rectangle filled with the current color.

27
abstract void fillArcint x, int y, int width, int height, int startAngle, int arcAngle

Fills a circular or elliptical arc covering the specified rectangle.

28
abstract void fillOvalint x, int y, int width, int height

Fills an oval bounded by the specified rectangle with the current color.

29
abstract void fillPolygonint[] xPoints, int[] yPoints, int nPoints

Fills a closed polygon defined by arrays of x and y coordinates.

30
void fillPolygonPolygon p

Fills the polygon defined by the specified Polygon object with the graphics context's
current color.

31
abstract void fillRectint x, int y, int width, int height

Fills the specified rectangle.

32
abstract void fillRoundRectint x, int y, int width, int height, int arcWidth, int
arcHeight

Fills the specified rounded corner rectangle with the current color.

33
void finalize

Disposes of this graphics context once it is no longer referenced.

34
abstract Shape getClip

Gets the current clipping area.

35
abstract Rectangle getClipBounds

Returns the bounding rectangle of the current clipping area.

36
Rectangle getClipBoundsRectangle r

Returns the bounding rectangle of the current clipping area.

37
Rectangle getClipRect

Deprecated. As of JDK version 1.1, replaced by getClipBounds.

38
abstract Color getColor

Gets this graphics context's current color.

39
abstract Font getFont

Gets the current font.

40
FontMetrics getFontMetrics

Gets the font metrics of the current font.

41
abstract FontMetrics getFontMetricsFont f

Gets the font metrics for the specified font.

42
boolean hitClipint x, int y, int width, int height

Returns true if the specified rectangular area might intersect the current clipping area.

43
abstract void setClipint x, int y, int width, int height

Sets the current clip to the rectangle specified by the given coordinates.

44
abstract void setClipShape clip

Sets the current clipping area to an arbitrary clip shape.

45
abstract void setColorColor c

Sets this graphics context's current color to the specified color.

46
abstract void setFontFont font

Sets this graphics context's font to the specified font.

47
abstract void setPaintMode

Sets the paint mode of this graphics context to overwrite the destination with this
graphics context's current color.

48
abstract void setXORModeColor c1

Sets the paint mode of this graphics context to alternate between this graphics context's
current color and the new specified color.

49
String toString

Returns a String object representing this Graphics object's value.

50
abstract void translateint x, int y

Translates the origin of the graphics context to the point x, y in the current coordinate
system.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

Graphics Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 g.setColor(Color.GRAY);
 Font font = new Font("Serif", Font.PLAIN, 24);
 g.setFont(font);
 g.drawString("Welcome to TutorialsPoint", 50, 150);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT GRAPHICS2D CLASSAWT GRAPHICS2D CLASS
Introduction
The Graphics2D class extends the Graphics class to provide more sophisticated control over
geometry, coordinate transformations, color management, and text layout.

Class declaration
Following is the declaration for java.awt.Graphics2D class:

public abstract class Graphics2D
 extends Graphics

Class constructors

S.N. Constructor & Description

1
Graphics2D

Constructs a new Graphics2D object.

Class methods

S.N. Method & Description

1
abstract void addRenderingHintsMap<?,?> hints

Sets the values of an arbitrary number of preferences for the rendering algorithms.

2
abstract void clipShape s

Intersects the current Clip with the interior of the specified Shape and sets the Clip to the
resulting intersection.

3
abstract void drawShape s

Strokes the outline of a Shape using the settings of the current Graphics2D context.

4
void draw3DRectint x, int y, int width, int height, boolean raised

Draws a 3-D highlighted outline of the specified rectangle.

5
abstract void drawGlyphVectorGlyphVector g, float x, float y

Renders the text of the specified GlyphVector using the Graphics2D context's rendering
attributes.

6
abstract void drawImageBufferedImage img, BufferedImageOp op, int x, int y

Renders a BufferedImage that is filtered with a BufferedImageOp.

7
abstract boolean drawImageImage img, AffineTransform xform, ImageObserver
obs

Renders an image, applying a transform from image space into user space before
drawing.

8
abstract void drawRenderableImageRenderableImage img, AffineTransform
xform

Renders a RenderableImage, applying a transform from image space into user space
before drawing.

9
abstract void drawRenderedImageRenderedImage img, AffineTransform xform

Renders a RenderedImage, applying a transform from image space into user space
before drawing.

10
abstract void drawStringAttributedCharacterIterator iterator, float x, float y

Renders the text of the specified iterator applying its attributes in accordance with the
specification of the TextAttribute class.

11
abstract void drawStringAttributedCharacterIterator iterator, int x, int y

Renders the text of the specified iterator applying its attributes in accordance with the
specification of the TextAttribute class.

12
abstract void drawStringString str, float x, float y

Renders the text specified by the specified String, using the current text attribute state in
the Graphics2D context.

13
abstract void drawStringString str, int x, int y

Renders the text of the specified String, using the current text attribute state in the

Graphics2D context.

14
abstract void fillShape s

Fills the interior of a Shape using the settings of the Graphics2D context.

15
void fill3DRectint x, int y, int width, int height, boolean raised

Paints a 3-D highlighted rectangle filled with the current color.

16
abstract Color getBackground

Returns the background color used for clearing a region.

17
abstract Composite getComposite

Returns the current Composite in the Graphics2D context.

18
abstract GraphicsConfiguration getDeviceConfiguration

Returns the device configuration associated with this Graphics2D.

19
abstract FontRenderContext getFontRenderContext

Get the rendering context of the Font within this Graphics2D context.

20
abstract Paint getPaint

Returns the current Paint of the Graphics2D context.

21
abstract Object getRenderingHintRenderingHints.Key hintKey

Returns the value of a single preference for the rendering algorithms.

22
abstract RenderingHints getRenderingHints

Gets the preferences for the rendering algorithms.

23
abstract Stroke getStroke

Returns the current Stroke in the Graphics2D context.

24
abstract AffineTransform getTransform

Returns a copy of the current Transform in the Graphics2D context.

25
abstract boolean hitRectangle rect, Shape s, boolean onStroke

Checks whether or not the specified Shape intersects the specified Rectangle, which is in
device space.

26
abstract void rotatedouble theta

Concatenates the current Graphics2D Transform with a rotation transform.

27
abstract void rotatedouble theta, double x, double y

Concatenates the current Graphics2D Transform with a translated rotation transform.

28
abstract void scaledouble sx, double sy

Concatenates the current Graphics2D Transform with a scaling transformation
Subsequent rendering is resized according to the specified scaling factors relative to the
previous scaling.

29
abstract void setBackgroundColor color

Sets the background color for the Graphics2D context.

30
abstract void setCompositeComposite comp

Sets the Composite for the Graphics2D context.

31
abstract void setPaintPaint paint

Sets the Paint attribute for the Graphics2D context.

32
abstract void setRenderingHintRenderingHints.Key hintKey, Object hintValue

Sets the value of a single preference for the rendering algorithms.

33
abstract void setRenderingHintsMap<?,?> hints

Replaces the values of all preferences for the rendering algorithms with the specified
hints.

34
abstract void setStrokeStroke s

Sets the Stroke for the Graphics2D context.

35
abstract void setTransformAffineTransform Tx

Overwrites the Transform in the Graphics2D context.

36
abstract void sheardouble shx, double shy

Concatenates the current Graphics2D Transform with a shearing transform.

37
abstract void transformAffineTransform Tx

Composes an AffineTransform object with the Transform in this Graphics2D according to
the rule last-specified-first-applied.

38
abstract void translatedouble tx, double ty

Concatenates the current Graphics2D Transform with a translation transform.

39
abstract void translateint x, int y

Translates the origin of the Graphics2D context to the point x, y in the current coordinate
system.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

Graphics2D Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

 Font font = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(font);
 g2.drawString("Welcome to TutorialsPoint", 50, 70);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT ARC2D CLASSAWT ARC2D CLASS
Introduction
The Arc2D class is the superclass for all objects that store a 2D arc defined by a framing rectangle,
start angle, angular extent length of the arc, and a closure type OPEN, CHORD, or PIE.

Class declaration
Following is the declaration for java.awt.Arc2D class:

public abstract class Arc2D
 extends RectangularShape

Field
Following are the fields for java.awt.geom.Arc2D class:

static int CHORD -- The closure type for an arc closed by drawing a straight line segment
from the start of the arc segment to the end of the arc segment.

static int OPEN -- The closure type for an open arc with no path segments connecting the
two ends of the arc segment.

static int PIE -- The closure type for an arc closed by drawing straight line segments from
the start of the arc segment to the center of the full ellipse and from that point to the end of
the arc segment.

Class constructors

S.N. Constructor & Description

1
protected Arc2Dint type

This is an abstract class that cannot be instantiated directly.

Class methods

S.N. Method & Description

1
boolean containsdouble x, double y

Determines whether or not the specified point is inside the boundary of the arc.

2
boolean containsdouble x, double y, double w, double h

Determines whether or not the interior of the arc entirely contains the specified
rectangle.

3
boolean containsRectangle2D r

Determines whether or not the interior of the arc entirely contains the specified
rectangle.

4
boolean containsAngledouble angle

Determines whether or not the specified angle is within the angular extents of the arc.

5
boolean equalsObject obj

Determines whether or not the specified Object is equal to this Arc2D.

6
abstract double getAngleExtent

Returns the angular extent of the arc.

7
abstract double getAngleStart

Returns the starting angle of the arc.

8
int getArcType

Returns the arc closure type of the arc: OPEN, CHORD, or PIE.

9
Rectangle2D getBounds2D

Returns the high-precision framing rectangle of the arc.

10
Point2D getEndPoint

Returns the ending point of the arc.

11
PathIterator getPathIteratorAffineTransform at

Returns an iteration object that defines the boundary of the arc.

12
Point2D getStartPoint

Returns the starting point of the arc.

13
int hashCode

Returns the hashcode for this Arc2D.

14
boolean intersectsdouble x, double y, double w, double h

Determines whether or not the interior of the arc intersects the interior of the specified
rectangle.

15
protected abstract Rectangle2D makeBoundsdouble x, double y, double w,
double h

Constructs a Rectangle2D of the appropriate precision to hold the parameters calculated
to be the framing rectangle of this arc.

16
abstract void setAngleExtentdouble angExt

Sets the angular extent of this arc to the specified double value.

17
void setAnglesdouble x1, double y1, double x2, double y2

Sets the starting angle and angular extent of this arc using two sets of coordinates.

18
void setAnglesPoint2D p1, Point2D p2

Sets the starting angle and angular extent of this arc using two points.

19
abstract void setAngleStartdouble angSt

Sets the starting angle of this arc to the specified double value.

20
void setAngleStartPoint2D p

Sets the starting angle of this arc to the angle that the specified point defines relative to
the center of this arc.

21
void setArcArc2D a

Sets this arc to be the same as the specified arc.

22
abstract void setArcdouble x, double y, double w, double h, double angSt,
double angExt, int closure

Sets the location, size, angular extents, and closure type of this arc to the specified
double values.

23
void setArcPoint2D loc, Dimension2D size, double angSt, double angExt, int
closure

Sets the location, size, angular extents, and closure type of this arc to the specified
values.

24
void setArcRectangle2D rect, double angSt, double angExt, int closure

Sets the location, size, angular extents, and closure type of this arc to the specified
values.

25
void setArcByCenterdouble x, double y, double radius, double angSt, double
angExt, int closure

Sets the position, bounds, angular extents, and closure type of this arc to the specified
values.

26
void setArcByTangentPoint2D p1, Point2D p2, Point2D p3, double radius

Sets the position, bounds, and angular extents of this arc to the specified value.

27
void setArcTypeint type

Sets the closure type of this arc to the specified value: OPEN, CHORD, or PIE.

28
void setFramedouble x, double y, double w, double h

Sets the location and size of the framing rectangle of this Shape to the specified
rectangular values.

Methods inherited

This class inherits methods from the following classes:

java.awt.geom.RectangularShape

java.lang.Object

Arc2D Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Arc2D.Float arc = new Arc2D.Float(Arc2D.PIE);
 arc.setFrame(70, 200, 150, 150);
 arc.setAngleStart(0);
 arc.setAngleExtent(145);
 Graphics2D g2 = (Graphics2D) g;
 g2.setColor(Color.gray);
 g2.draw(arc);
 g2.setColor(Color.red);
 g2.fill(arc);
 g2.setColor(Color.black);
 Font font = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(font);
 g.drawString("Welcome to TutorialsPoint", 50, 70);
 g2.drawString("Arc2D.PIE", 100, 120);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtGraphicsDemo

Verify the following output

AWT CUBICCURVE2D CLASSAWT CUBICCURVE2D CLASS
Introduction
The CubicCurve2D class states a cubic parametric curve segment in x,y coordinate space.

Class declaration
Following is the declaration for java.awt.geom.CubicCurve2D class:

public abstract class CubicCurve2D
 extends Object
 implements Shape, Cloneable

Class constructors

S.N. Constructor & Description

1
protected CubicCurve2D

This is an abstract class that cannot be instantiated directly.

Class methods

S.N. Method & Description

1
Object clone

Creates a new object of the same class as this object.

2
boolean containsdouble x, double y

Tests if the specified coordinates are inside the boundary of the Shape.

3
boolean containsdouble x, double y, double w, double h

Tests if the interior of the Shape entirely contains the specified rectangular area.

4
boolean containsPoint2D p

Tests if a specified Point2D is inside the boundary of the Shape.

5
boolean containsRectangle2D r

Tests if the interior of the Shape entirely contains the specified Rectangle2D.

6
Rectangle getBounds

Returns an integer Rectangle that completely encloses the Shape.

7
abstract Point2D getCtrlP1

Returns the first control point.

8
abstract Point2D getCtrlP2

Returns the second control point.

9
abstract double getCtrlX1

Returns the X coordinate of the first control point in double precision.

10
abstract double getCtrlX2

Returns the X coordinate of the second control point in double precision.

11
abstract double getCtrlY1

Returns the Y coordinate of the first control point in double precision.

12
abstract double getCtrlY2

Returns the Y coordinate of the second control point in double precision.

13
double getFlatness

Returns the flatness of this curve.

14
static double getFlatnessdouble[] coords, int offset

Returns the flatness of the cubic curve specified by the control points stored in the
indicated array at the indicated index.

15
static double getFlatnessdouble x1, double y1, double ctrlx1, double ctrly1,
double ctrlx2, double ctrly2, double x2, double y2

Returns the flatness of the cubic curve specified by the indicated control points.

16
double getFlatnessSq

Returns the square of the flatness of this curve.

17
static double getFlatnessSqdouble[] coords, int offset

Returns the square of the flatness of the cubic curve specified by the control points
stored in the indicated array at the indicated index.

18
static double getFlatnessSqdouble x1, double y1, double ctrlx1, double ctrly1,
double ctrlx2, double ctrly2, double x2, double y2

Returns the square of the flatness of the cubic curve specified by the indicated control
points.

19
abstract Point2D getP1

Returns the start point.

20
abstract Point2D getP2

Returns the end point.

21
PathIterator getPathIteratorAffineTransform at

Returns an iteration object that defines the boundary of the shape.

22
PathIterator getPathIteratorAffineTransform at, double flatness

Return an iteration object that defines the boundary of the flattened shape.

23
abstract double getX1

Returns the X coordinate of the start point in double precision.

24
abstract double getX2

Returns the X coordinate of the end point in double precision.

25
abstract double getY1

Returns the Y coordinate of the start point in double precision.

26
abstract double getY2

Returns the Y coordinate of the end point in double precision.

27
boolean intersectsdouble x, double y, double w, double h

Tests if the interior of the Shape intersects the interior of a specified rectangular area.

28
boolean intersectsRectangle2D r

Tests if the interior of the Shape intersects the interior of a specified Rectangle2D.

29
void setCurveCubicCurve2D c

Sets the location of the end points and control points of this curve to the same as those in
the specified CubicCurve2D.

30
void setCurvedouble[] coords, int offset

Sets the location of the end points and control points of this curve to the double
coordinates at the specified offset in the specified array.

31
abstract void setCurvedouble x1, double y1, double ctrlx1, double ctrly1,
double ctrlx2, double ctrly2, double x2, double y2

Sets the location of the end points and control points of this curve to the specified double
coordinates.

32
void setCurvePoint2D[] pts, int offset

Sets the location of the end points and control points of this curve to the coordinates of
the Point2D objects at the specified offset in the specified array.

33
void setCurvePoint2D p1, Point2D cp1, Point2D cp2, Point2D p2

Sets the location of the end points and control points of this curve to the specified
Point2D coordinates.

34
static int solveCubicdouble[] eqn

Solves the cubic whose coefficients are in the eqn array and places the non-complex
roots back into the same array, returning the number of roots.

35
static int solveCubicdouble[] eqn, double[] res

Solve the cubic whose coefficients are in the eqn array and place the non-complex roots
into the res array, returning the number of roots.

36
void subdivideCubicCurve2D left, CubicCurve2D right

Subdivides this cubic curve and stores the resulting two subdivided curves into the left
and right curve parameters.

37
static void subdivideCubicCurve2D src, CubicCurve2D left, CubicCurve2D right

Subdivides the cubic curve specified by the src parameter and stores the resulting two
subdivided curves into the left and right curve parameters.

38
static void subdividedouble[] src, int srcoff, double[] left, int leftoff, double[]
right, int rightoff

Subdivides the cubic curve specified by the coordinates stored in the src array at indices
srcoff through srcoff + 7 and stores the resulting two subdivided curves into the two
result arrays at the corresponding indices.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

CubicCurve2D Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override

 public void paint(Graphics g) {
 CubicCurve2D shape = new CubicCurve2D.Float();
 shape.setCurve(250F,250F,20F,90F,140F,100F,350F,330F);
 Graphics2D g2 = (Graphics2D) g;
 g2.draw (shape);
 Font font = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(font);
 g.drawString("Welcome to TutorialsPoint", 50, 70);
 g2.drawString("CubicCurve2D.Curve", 100, 120);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT ELLIPSE2D CLASSAWT ELLIPSE2D CLASS
Introduction
The Ellipse2D class states an ellipse that is defined by a framing rectangle.

Class declaration
Following is the declaration for java.awt.geom.Ellipse2D class:

public abstract class Ellipse2D
 extends RectangularShape

Class constructors

S.N. Constructor & Description

1
protected Ellipse2D

This is an abstract class that cannot be instantiated directly.

Class methods

S.N. Method & Description

1
boolean containsdouble x, double y

Tests if the specified coordinates are inside the boundary of the Shape.

2
boolean containsdouble x, double y, double w, double h

Tests if the interior of the Shape entirely contains the specified rectangular area.

3
boolean equalsObject obj

Determines whether or not the specified Object is equal to this Ellipse2D.

4
PathIterator getPathIteratorAffineTransform at

Returns an iteration object that defines the boundary of this Ellipse2D.

5
int hashCode

Returns the hashcode for this Ellipse2D.

6
boolean intersectsdouble x, double y, double w, double h

Tests if the interior of the Shape intersects the interior of a specified rectangular area.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

Ellipse2D Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;

import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Ellipse2D shape = new Ellipse2D.Float();
 shape.setFrame(100, 150, 200,100);
 Graphics2D g2 = (Graphics2D) g;
 g2.draw (shape);
 Font font = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(font);
 g.drawString("Welcome to TutorialsPoint", 50, 70);
 g2.drawString("Ellipse2D.Oval", 100, 120);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT RECTANGLE2D CLASSAWT RECTANGLE2D CLASS
Introduction
The Rectangle2D class states a rectangle defined by a location x,y and dimension w x h.

Class declaration
Following is the declaration for java.awt.geom.Rectangle2D class:

public abstract class Rectangle2D
 extends RectangularShape

Field
Following are the fields for java.awt.geom.Arc2D class:

static int OUT_BOTTOM -- The bitmask that indicates that a point lies below this
Rectangle2D.

static int OUT_LEFT -- The bitmask that indicates that a point lies to the left of this
Rectangle2D.

static int OUT_RIGHT -- The bitmask that indicates that a point lies to the right of this
Rectangle2D.

static int OUT_TOP -- The bitmask that indicates that a point lies above this Rectangle2D.

Class constructors

S.N. Constructor & Description

1
protected Rectangle2D

This is an abstract class that cannot be instantiated directly.

Class methods

S.N. Method & Description

1
void adddouble newx, double newy

Adds a point, specified by the double precision arguments newx and newy, to this
Rectangle2D.

2
void addPoint2D pt

Adds the Point2D object pt to this Rectangle2D.

3
void addRectangle2D r

Adds a Rectangle2D object to this Rectangle2D.

4
boolean containsdouble x, double y

Tests if the specified coordinates are inside the boundary of the Shape.

5
boolean containsdouble x, double y, double w, double h

Tests if the interior of the Shape entirely contains the specified rectangular area.

6
abstract Rectangle2D createIntersectionRectangle2D r

Returns a new Rectangle2D object representing the intersection of this Rectangle2D with
the specified Rectangle2D.

7
abstract Rectangle2D createUnionRectangle2D r

Returns a new Rectangle2D object representing the union of this Rectangle2D with the
specified Rectangle2D.

8
boolean equalsObject obj

Determines whether or not the specified Object is equal to this Rectangle2D.

9
Rectangle2D getBounds2D

Returns a high precision and more accurate bounding box of the Shape than the
getBounds method.

10
PathIterator getPathIteratorAffineTransform at

Returns an iteration object that defines the boundary of this Rectangle2D.

11
PathIterator getPathIteratorAffineTransform at, double flatness

Returns an iteration object that defines the boundary of the flattened Rectangle2D.

12
int hashCode

Returns the hashcode for this Rectangle2D.

13
static void intersectRectangle2D src1, Rectangle2D src2, Rectangle2D dest

Intersects the pair of specified source Rectangle2D objects and puts the result into the
specified destination Rectangle2D object.

14
boolean intersectsdouble x, double y, double w, double h

Tests if the interior of the Shape intersects the interior of a specified rectangular area.

15
boolean intersectsLinedouble x1, double y1, double x2, double y2

Tests if the specified line segment intersects the interior of this Rectangle2D.

16
boolean intersectsLineLine2D l

Tests if the specified line segment intersects the interior of this Rectangle2D.

17
abstract int outcodedouble x, double y

Determines where the specified coordinates lie with respect to this Rectangle2D.

18
int outcodePoint2D p

Determines where the specified Point2D lies with respect to this Rectangle2D.

19
void setFramedouble x, double y, double w, double h

Sets the location and size of the outer bounds of this Rectangle2D to the specified
rectangular values.

20
abstract void setRectdouble x, double y, double w, double h

Sets the location and size of this Rectangle2D to the specified double values.

21
void setRectRectangle2D r

Sets this Rectangle2D to be the same as the specified Rectangle2D.

22
static void unionRectangle2D src1, Rectangle2D src2, Rectangle2D dest

Unions the pair of source Rectangle2D objects and puts the result into the specified
destination Rectangle2D object.

Methods inherited
This class inherits methods from the following classes:

java.awt.geom.RectangularShape

java.lang.Object

Ellipse2D Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Rectangle2D shape = new Rectangle2D.Float();
 shape.setFrame(100, 150, 200,100);
 Graphics2D g2 = (Graphics2D) g;
 g2.draw (shape);
 Font font = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(font);
 g.drawString("Welcome to TutorialsPoint", 50, 70);
 g2.drawString("Rectangle2D.Rectangle", 100, 120);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT QUADCURVE2D CLASSAWT QUADCURVE2D CLASS
Introduction
The QuadCurve2D class states a quadratic parametric curve segment in x,y coordinate space.

Class declaration
Following is the declaration for java.awt.geom.QuadCurve2D class:

public abstract class QuadCurve2D
 extends Object
 implements Shape, Cloneable

Class constructors

S.N. Constructor & Description

1
protected QuadCurve2D

This is an abstract class that cannot be instantiated directly.

Class methods

S.N. Method & Description

1
Object clone

Creates a new object of the same class and with the same contents as this object.

2
boolean containsdouble x, double y

Tests if the specified coordinates are inside the boundary of the Shape.

3
boolean containsdouble x, double y, double w, double h

Tests if the interior of the Shape entirely contains the specified rectangular area.

4
boolean containsPoint2D p

Tests if a specified Point2D is inside the boundary of the Shape.

5
boolean containsRectangle2D r

Tests if the interior of the Shape entirely contains the specified Rectangle2D.

6
Rectangle getBounds

Returns an integer Rectangle that completely encloses the Shape.

7
abstract Point2D getCtrlPt

Returns the control point.

8
abstract double getCtrlX

Returns the X coordinate of the control point in double precision.

9
abstract double getCtrlY

Returns the Y coordinate of the control point in double precision.

10
doublegetFlatness

Returns the flatness, or maximum distance of a control point from the line connecting the
end points, of this QuadCurve2D.

11
static double getFlatnessdouble[] coords, int offset

Returns the flatness, or maximum distance of a control point from the line connecting the
end points, of the quadratic curve specified by the control points stored in the indicated
array at the indicated index.

12
static double getFlatnessdouble x1, double y1, double ctrlx, double ctrly,
double x2, double y2

Returns the flatness, or maximum distance of a control point from the line connecting the
end points, of the quadratic curve specified by the indicated control points.

13
double getFlatnessSq

Returns the square of the flatness, or maximum distance of a control point from the line
connecting the end points, of this QuadCurve2D.

14
static double getFlatnessSqdouble[] coords, int offset

Returns the square of the flatness, or maximum distance of a control point from the line
connecting the end points, of the quadratic curve specified by the control points stored in
the indicated array at the indicated index.

15
static double getFlatnessSqdouble x1, double y1, double ctrlx, double ctrly,
double x2, double y2

Returns the square of the flatness, or maximum distance of a control point from the line

connecting the end points, of the quadratic curve specified by the indicated control
points.

16
abstract Point2D getP1

Returns the start point.

17
abstract Point2D getP2

Returns the end point.

18
PathIterator getPathIteratorAffineTransform at

Returns an iteration object that defines the boundary of the shape of this QuadCurve2D.

19
PathIterator getPathIteratorAffineTransform at, double flatness

Returns an iteration object that defines the boundary of the flattened shape of this
QuadCurve2D.

20
abstract double getX1

Returns the X coordinate of the start point in double in precision.

21
abstract double getX2

Returns the X coordinate of the end point in double precision.

22
abstract double getY1

Returns the Y coordinate of the start point in double precision.

23
abstract double getY2

Returns the Y coordinate of the end point in double precision.

24
boolean intersectsdouble x, double y, double w, double h

Tests if the interior of the Shape intersects the interior of a specified rectangular area.

25
boolean intersectsRectangle2D r

Tests if the interior of the Shape intersects the interior of a specified Rectangle2D.

26
void setCurvedouble[] coords, int offset

Sets the location of the end points and control points of this QuadCurve2D to the double
coordinates at the specified offset in the specified array.

27
abstract void setCurvedouble x1, double y1, double ctrlx, double ctrly, double
x2, double y2

Sets the location of the end points and control point of this curve to the specified double
coordinates.

28
void setCurvePoint2D[] pts, int offset

Sets the location of the end points and control points of this QuadCurve2D to the
coordinates of the Point2D objects at the specified offset in the specified array.

29
void setCurvePoint2D p1, Point2D cp, Point2D p2

Sets the location of the end points and control point of this QuadCurve2D to the specified
Point2D coordinates.

30
void setCurveQuadCurve2D c

Sets the location of the end points and control point of this QuadCurve2D to the same as
those in the specified QuadCurve2D.

31
static int solveQuadraticdouble[] eqn

Solves the quadratic whose coefficients are in the eqn array and places the non-complex
roots back into the same array, returning the number of roots.

32
static int solveQuadraticdouble[] eqn, double[] res

Solves the quadratic whose coefficients are in the eqn array and places the non-complex
roots into the res array, returning the number of roots.

33
static void subdividedouble[] src, int srcoff, double[] left, int leftoff, double[]
right, int rightoff

Subdivides the quadratic curve specified by the coordinates stored in the src array at
indices srcoff through srcoff + 5 and stores the resulting two subdivided curves into the
two result arrays at the corresponding indices.

34
void subdivideQuadCurve2D left, QuadCurve2D right

Subdivides this QuadCurve2D and stores the resulting two subdivided curves into the left
and right curve parameters.

35
static void subdivideQuadCurve2D src, QuadCurve2D left, QuadCurve2D right

Subdivides the quadratic curve specified by the src parameter and stores the resulting
two subdivided curves into the left and right curve parameters.

Methods inherited

This class inherits methods from the following classes:

java.lang.Object

QuadCurve2D Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 QuadCurve2D shape = new QuadCurve2D.Double();
 shape.setCurve(250D,250D,100D,100D,200D,150D);
 Graphics2D g2 = (Graphics2D) g;
 g2.draw (shape);
 Font font = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(font);
 g.drawString("Welcome to TutorialsPoint", 50, 70);
 g2.drawString("QuadCurve2D.Curve", 100, 120);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT LINE2D CLASSAWT LINE2D CLASS
Introduction
The Line2D class states a line segment in x,y coordinate space.

Class declaration
Following is the declaration for java.awt.geom.Line2D class:

public abstract class Line2D
 extends Object
 implements Shape, Cloneable

Class constructors

S.N. Constructor & Description

1
protected Line2D

This is an abstract class that cannot be instantiated directly.

Class methods

S.N. Method & Description

1
Object clone

Creates a new object of the same class as this object.

2
boolean containsdouble x, double y

Tests if a specified coordinate is inside the boundary of this Line2D.

3
boolean containsdouble x, double y, double w, double h

Tests if the interior of this Line2D entirely contains the specified set of rectangular
coordinates.

4
boolean containsPoint2D p

Tests if a given Point2D is inside the boundary of this Line2D.

5
boolean containsRectangle2D r

Tests if the interior of this Line2D entirely contains the specified Rectangle2D.

6
Rectangle getBounds

Returns an integer Rectangle that completely encloses the Shape.

7
abstract Point2D getP1

Returns the start Point2D of this Line2D.

8
abstract Point2D getP2

Returns the end Point2D of this Line2D.

9
PathIterator getPathIteratorAffineTransform at

Returns an iteration object that defines the boundary of this Line2D.

10
PathIterator getPathIteratorAffineTransform at, double flatness

Returns an iteration object that defines the boundary of this flattened Line2D.

11
abstract double getX1

Returns the X coordinate of the start point in double precision.

12
abstract double getX2

Returns the X coordinate of the end point in double precision.

13
abstract double getY1

Returns the Y coordinate of the start point in double precision.

14
abstract double getY2

Returns the Y coordinate of the end point in double precision.

15
boolean intersectsdouble x, double y, double w, double h

Tests if the interior of the Shape intersects the interior of a specified rectangular area.

16
boolean intersectsRectangle2D r

Tests if the interior of the Shape intersects the interior of a specified Rectangle2D.

17
boolean intersectsLinedouble x1, double y1, double x2, double y2

Tests if the line segment from x1,y1 to x2,y2 intersects this line segment.

18
boolean intersectsLineLine2D l

Tests if the specified line segment intersects this line segment.

19
static boolean linesIntersectdouble x1, double y1, double x2, double y2, double
x3, double y3, double x4, double y4

Tests if the line segment from x1,y1 to x2,y2 intersects the line segment from x3,y3 to
x4,y4.

20
double ptLineDistdouble px, double py

Returns the distance from a point to this line.

21
static double ptLineDistdouble x1, double y1, double x2, double y2, double px,
double py

Returns the distance from a point to a line.

22
double ptLineDistPoint2D pt

Returns the distance from a Point2D to this line.

23
double ptLineDistSqdouble px, double py

Returns the square of the distance from a point to this line.

24
static double ptLineDistSqdouble x1, double y1, double x2, double y2, double
px, double py

Returns the square of the distance from a point to a line.

25
double ptLineDistSqPoint2D pt

Returns the square of the distance from a specified Point2D to this line.

26

26
double ptSegDistdouble px, double py

Returns the distance from a point to this line segment.

27
static double ptSegDistdouble x1, double y1, double x2, double y2, double px,
double py

Returns the distance from a point to a line segment.

28
double ptSegDistPoint2D pt

Returns the distance from a Point2D to this line segment.

29
double ptSegDistSqdouble px, double py

Returns the square of the distance from a point to this line segment.

30
static double ptSegDistSqdouble x1, double y1, double x2, double y2, double
px, double py

Returns the square of the distance from a point to a line segment.

31
double ptSegDistSqPoint2D pt

Returns the square of the distance from a Point2D to this line segment.

32
int relativeCCWdouble px, double py

Returns an indicator of where the specified point px,py lies with respect to this line
segment.

33
static int relativeCCWdouble x1, double y1, double x2, double y2, double px,
double py

Returns an indicator of where the specified point px,py lies with respect to the line
segment from x1,y1 to x2,y2.

34
int relativeCCWPoint2D p

Returns an indicator of where the specified Point2D lies with respect to this line segment.

35
abstract void setLinedouble x1, double y1, double x2, double y2

Sets the location of the end points of this Line2D to the specified double coordinates.

36
void setLineLine2D l

Sets the location of the end points of this Line2D to the same as those end points of the
specified Line2D.

37
void setLinePoint2D p1, Point2D p2

Sets the location of the end points of this Line2D to the specified Point2D coordinates.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

Line2D Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Line2D shape = new Line2D.Double();
 shape.setLine(250D,250D,150D,150D);
 Graphics2D g2 = (Graphics2D) g;
 g2.draw (shape);
 Font font = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(font);
 g.drawString("Welcome to TutorialsPoint", 50, 70);
 g2.drawString("Line2D.Line", 100, 120);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT FONT CLASSAWT FONT CLASS
Introduction
The Font class states fonts, which are used to render text in a visible way.

Class declaration
Following is the declaration for java.awt.Font class:

public class Font
 extends Object
 implements Serializable

Field
Following are the fields for java.awt.geom.Arc2D class:

static int BOLD -- The bold style constant.

static int CENTER_BASELINE --The baseline used in ideographic scripts like Chinese,
Japanese, and Korean when laying out text.

static String DIALOG --A String constant for the canonical family name of the logical font
"Dialog".

static String DIALOG_INPUT --A String constant for the canonical family name of the
logical font "DialogInput".

static int HANGING_BASELINE -- The baseline used in Devanigiri and similar scripts when
laying out text.

static int ITALIC -- The italicized style constant.

static int LAYOUT_LEFT_TO_RIGHT -- A flag to layoutGlyphVector indicating that text is
left-to-right as determined by Bidi analysis.

static int LAYOUT_NO_LIMIT_CONTEXT -- A flag to layoutGlyphVector indicating that text
in the char array after the indicated limit should not be examined.

static int LAYOUT_NO_START_CONTEXT -- A flag to layoutGlyphVector indicating that
text in the char array before the indicated start should not be examined.

static int LAYOUT_RIGHT_TO_LEFT -- A flag to layoutGlyphVector indicating that text is
right-to-left as determined by Bidi analysis.

static String MONOSPACED -- A String constant for the canonical family name of the
logical font "Monospaced".

protected String name -- The logical name of this Font, as passed to the constructor.

static int PLAIN --The plain style constant.

protected float pointSize -- The point size of this Font in float.

static int ROMAN_BASELINE --The baseline used in most Roman scripts when laying out
text.

static String SANS_SERIF -- A String constant for the canonical family name of the logical
font "SansSerif".

static String SERIF -- A String constant for the canonical family name of the logical font
"Serif".

protected int size --The point size of this Font, rounded to integer.

protected int style -- The style of this Font, as passed to the constructor.

static int TRUETYPE_FONT -- Identify a font resource of type TRUETYPE.

static int TYPE1_FONT -- Identify a font resource of type TYPE1.

Class constructors

S.N. Constructor & Description

1
protected Font

Creates a new Font from the specified font.

2
FontMap<? extends AttributedCharacterIterator.Attribute,?> attributes

Creates a new Font from the specified font.

3
FontString name, int style, int size

Creates a new Font from the specified font.

Class methods

S.N. Method & Description

1
boolean canDisplaychar c

Checks if this Font has a glyph for the specified character.

2
boolean canDisplayint codePoint

Checks if this Font has a glyph for the specified character.

3
int canDisplayUpTochar[] text, int start, int limit

Indicates whether or not this Font can display the characters in the specified text starting
at start and ending at limit.

4
int canDisplayUpToCharacterIterator iter, int start, int limit

Indicates whether or not this Font can display the text specified by the iter starting at start
and ending at limit.

5
int canDisplayUpToString str

Indicates whether or not this Font can display a specified String.

6
static Font createFontint fontFormat, File fontFile

Returns a new Font using the specified font type and the specified font file.

7
static Font createFontint fontFormat, InputStream fontStream

Returns a new Font using the specified font type and input data.

8
GlyphVector createGlyphVectorFontRenderContext frc, char[] chars

Creates a GlyphVector by mapping characters to glyphs one-to-one based on the
Unicode cmap in this Font.

9
GlyphVector createGlyphVectorFontRenderContext frc, CharacterIterator ci

Creates a GlyphVector by mapping the specified characters to glyphs one-to-one based
on the Unicode cmap in this Font.

10
GlyphVector createGlyphVectorFontRenderContext frc, int[] glyphCodes

Creates a GlyphVector by mapping characters to glyphs one-to-one based on the
Unicode cmap in this Font.

11
GlyphVector createGlyphVectorFontRenderContext frc, String str

Creates a GlyphVector by mapping characters to glyphs one-to-one based on the
Unicode cmap in this Font.

12

12
static Font decodeString str

Returns the Font that the str argument describes.

13
Font deriveFontAffineTransform trans

Creates a new Font object by replicating the current Font object and applying a new
transform to it.

14
Font deriveFontfloat size

Creates a new Font object by replicating the current Font object and applying a new size
to it.

15
Font deriveFontint style

Creates a new Font object by replicating the current Font object and applying a new style
to it.

16
Font deriveFontint style, AffineTransform trans

Creates a new Font object by replicating this Font object and applying a new style and
transform.

17
Font deriveFontint style, float size

Creates a new Font object by replicating this Font object and applying a new style and
size.

18
Font deriveFontMap<? extends AttributedCharacterIterator.Attribute,?>
attributes

Creates a new Font object by replicating the current Font object and applying a new set
of font attributes to it.

19
boolean equalsObject obj

Compares this Font object to the specified Object.

20
protected void finalize

Disposes the native Font object.

21
Map<TextAttribute,?> getAttributes

Returns a map of font attributes available in this Font.

22
AttributedCharacterIterator.Attribute[] getAvailableAttributes

Returns the keys of all the attributes supported by this Font.

23
byte getBaselineForchar c

Returns the baseline appropriate for displaying this character.

24
String getFamily

Returns the family name of this Font.

25
String getFamilyLocale l

Returns the family name of this Font, localized for the specified locale.

26
static Font getFontMap<? extends AttributedCharacterIterator.Attribute,?>
attributes

Returns a Font appropriate to the attributes.

27
static Font getFontString nm

Returns a Font object fom the system properties list.

28
static Font getFontString nm, Font font

Gets the specified Font from the system properties list.

29
String getFontName

Returns the font face name of this Font.

30
String getFontNameLocale l

Returns the font face name of the Font, localized for the specified locale.

31
float getItalicAngle

Returns the italic angle of this Font.

32
LineMetrics getLineMetricschar[] chars, int beginIndex, int limit,
FontRenderContext frc

Returns a LineMetrics object created with the specified arguments.

33
LineMetrics getLineMetricsCharacterIterator ci, int beginIndex, int limit,
FontRenderContext frc

Returns a LineMetrics object created with the specified arguments.

34
LineMetrics getLineMetricsString str, FontRenderContext frc

Returns a LineMetrics object created with the specified String and FontRenderContext.

35
LineMetrics getLineMetricsString str, int beginIndex, int limit,
FontRenderContext frc

Returns a LineMetrics object created with the specified arguments.

36
Rectangle2D getMaxCharBoundsFontRenderContext frc

Returns the bounds for the character with the maximum bounds as defined in the
specified FontRenderContext.

37
int getMissingGlyphCode

Returns the glyphCode which is used when this Font does not have a glyph for a specified
unicode code point.

38
String getName

Returns the logical name of this Font.

39
int getNumGlyphs

Returns the number of glyphs in this Font.

40
java.awt.peer.FontPeer getPeer

Deprecated. Font rendering is now platform independent.

41
String getPSName

Returns the postscript name of this Font.

42
int getSize

Returns the point size of this Font, rounded to an integer.

43
float getSize2D

Returns the point size of this Font in float value.

44
Rectangle2D getStringBoundschar[] chars, int beginIndex, int limit,
FontRenderContext frc

Returns the logical bounds of the specified array of characters in the specified
FontRenderContext.

45
Rectangle2D getStringBoundsCharacterIterator ci, int beginIndex, int limit,
FontRenderContext frc

Returns the logical bounds of the characters indexed in the specified CharacterIterator in
the specified FontRenderContext.

46
Rectangle2D getStringBoundsString str, FontRenderContext frc

Returns the logical bounds of the specified String in the specified FontRenderContext.

47
Rectangle2D getStringBoundsString str, int beginIndex, int limit,
FontRenderContext frc

Returns the logical bounds of the specified String in the specified FontRenderContext.

48
int getStyle

Returns the style of this Font.

49
AffineTransform getTransform

Returns a copy of the transform associated with this Font.

50
int hashCode

Returns a hashcode for this Font.

51
boolean hasLayoutAttributes

Return true if this Font contains attributes that require extra layout processing.

52
boolean hasUniformLineMetrics

Checks whether or not this Font has uniform line metrics.

53
boolean isBold

Indicates whether or not this Font object's style is BOLD.

54
boolean isItalic

Indicates whether or not this Font object's style is ITALIC.

55
boolean isPlain

Indicates whether or not this Font object's style is PLAIN.

56
boolean isTransformed

Indicates whether or not this Font object has a transform that affects its size in addition to
the Size attribute.

57
GlyphVector layoutGlyphVectorFontRenderContext frc, char[] text, int start, int
limit, int flags

Returns a new GlyphVector object, performing full layout of the text if possible.

58
String toString

Converts this Font object to a String representation.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

Font Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 Font plainFont = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(plainFont);
 g2.drawString("Welcome to TutorialsPoint", 50, 70);
 Font italicFont = new Font("Serif", Font.ITALIC, 24);
 g2.setFont(italicFont);
 g2.drawString("Welcome to TutorialsPoint", 50, 120);
 Font boldFont = new Font("Serif", Font.BOLD, 24);

 g2.setFont(boldFont);
 g2.drawString("Welcome to TutorialsPoint", 50, 170);
 Font boldItalicFont = new Font("Serif", Font.BOLD+Font.ITALIC, 24);
 g2.setFont(boldItalicFont);
 g2.drawString("Welcome to TutorialsPoint", 50, 220);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT COLOR CLASSAWT COLOR CLASS
Introduction
The Color class states colors in the default sRGB color space or colors in arbitrary color spaces
identified by a ColorSpace.

Class declaration
Following is the declaration for java.awt.Color class:

public class Color
 extends Object
 implements Paint, Serializable

Field
Following are the fields for java.awt.geom.Arc2D class:

static Color black -- The color black.

static Color BLACK -- The color black.

static Color blue -- The color blue.

static Color BLUE -- The color blue.

static Color cyan -- The color cyan.

static Color CYAN -- The color cyan.

static Color DARK_GRAY -- The color dark gray.

static Color darkGray -- The color dark gray.

static Color gray -- The color gray.

static Color GRAY -- The color gray.

static Color green -- The color green.

static Color GREEN -- The color green.

static Color LIGHT_GRAY -- The color light gray.

static Color lightGray -- The color light gray.

static Color magenta -- The color magenta.

static Color MAGENTA -- The color magenta.

static Color orange -- The color orange.

static Color ORANGE -- The color orange.

static Color pink -- The color pink.

static Color PINK -- The color pink.

static Color red -- The color red.

static Color RED -- The color red.

static Color white -- The color white.

static Color WHITE -- The color white.

static Color yellow -- The color yellow.

static Color YELLOW -- The color yellow.

Class constructors

S.N. Constructor & Description

1
ColorColorSpace cspace, float[] components, float alpha

Creates a color in the specified ColorSpace with the color components specified in the
float array and the specified alpha.

2
Colorfloat r, float g, float b

Creates an opaque sRGB color with the specified red, green, and blue values in the range
0.0 - 1.0.

3
Colorfloat r, float g, float b, float a

Creates an sRGB color with the specified red, green, blue, and alpha values in the range
0.0 - 1.0.

4
Colorint rgb

Creates an opaque sRGB color with the specified combined RGB value consisting of the
red component in bits 16-23, the green component in bits 8-15, and the blue component
in bits 0-7.

5
Colorint rgba, boolean hasalpha

Creates an sRGB color with the specified combined RGBA value consisting of the alpha
component in bits 24-31, the red component in bits 16-23, the green component in bits 8-
15, and the blue component in bits 0-7.

6
Colorint r, int g, int b

Creates an opaque sRGB color with the specified red, green, and blue values in the range
0 - 255.

7
Colorint r, int g, int b, int a

Creates an sRGB color with the specified red, green, blue, and alpha values in the range
0 - 255.

Class methods

S.N. Method & Description

1
Color brighter

Creates a new Color that is a brighter version of this Color.

2
PaintContext createContextColorModel cm, Rectangle r, Rectangle2D r2d,
AffineTransform xform, RenderingHints hints

Creates and returns a PaintContext used to generate a solid color pattern.

3
Color darker

Creates a new Color that is a darker version of this Color.

4
static Color decodeString nm

Converts a String to an integer and returns the specified opaque Color.

5
boolean equalsObject obj

Determines whether another object is equal to this Color.

6
int getAlpha

Returns the alpha component in the range 0-255.

7
int getBlue

Returns the blue component in the range 0-255 in the default sRGB space.

8
static Color getColorString nm

Finds a color in the system properties.

9
static Color getColorString nm, Color v

Finds a color in the system properties.

10
static Color getColorString nm, int v

Finds a color in the system properties.

11
float[] getColorComponentsColorSpace cspace, float[] compArray

Returns a float array containing only the color components of the Color in the ColorSpace
specified by the cspace parameter.

12
float[] getColorComponentsfloat[] compArray

Returns a float array containing only the color components of the Color, in the
ColorSpace of the Color.

13
ColorSpace getColorSpace

Returns the ColorSpace of this Color.

14
float[] getComponentsColorSpace cspace, float[] compArray

Returns a float array containing the color and alpha components of the Color, in the
ColorSpace specified by the cspace parameter.

15
float[] getComponentsfloat[] compArray

Returns a float array containing the color and alpha components of the Color, in the
ColorSpace of the Color.

16
int getGreen

Returns the green component in the range 0-255 in the default sRGB space.

17
static Color getHSBColorfloat h, float s, float b

Creates a Color object based on the specified values for the HSB color model.

18
int getRed

Returns the red component in the range 0-255 in the default sRGB space.

19
int getRGB

Returns the RGB value representing the color in the default sRGB ColorModel.

20
float[] getRGBColorComponentsfloat[] compArray

Returns a float array containing only the color components of the Color, in the default
sRGB color space.

21
float[] getRGBComponentsfloat[] compArray

Returns a float array containing the color and alpha components of the Color, as
represented in the default sRGB color space.

22
int getTransparency

Returns the transparency mode for this Color.

23
int hashCode

Computes the hash code for this Color.

24
static int HSBtoRGBfloat hue, float saturation, float brightness

Converts the components of a color, as specified by the HSB model, to an equivalent set
of values for the default RGB model.

25
static float[] RGBtoHSBint r, int g, int b, float[] hsbvals

Converts the components of a color, as specified by the default RGB model, to an
equivalent set of values for hue, saturation, and brightness that are the three
components of the HSB model.

26
String toString

Returns a string representation of this Color.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

Color Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 Font plainFont = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(plainFont);
 g2.setColor(Color.red);
 g2.drawString("Welcome to TutorialsPoint", 50, 70);
 g2.setColor(Color.GRAY);
 g2.drawString("Welcome to TutorialsPoint", 50, 120);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AWTGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AWTGraphicsDemo

Verify the following output

AWT BASICSTROKE CLASSAWT BASICSTROKE CLASS
Introduction
The BasicStroke class states colors in the default sRGB color space or colors in arbitrary color
spaces identified by a ColorSpace.

Class declaration
Following is the declaration for java.awt.BasicStroke class:

public class BasicStroke
 extends Object
 implements Stroke

Field
Following are the fields for java.awt.geom.Arc2D class:

static int CAP_BUTT -- Ends unclosed subpaths and dash segments with no added
decoration.

static int CAP_ROUND -- Ends unclosed subpaths and dash segments with a round
decoration that has a radius equal to half of the width of the pen.

static int CAP_SQUARE -- Ends unclosed subpaths and dash segments with a square
projection that extends beyond the end of the segment to a distance equal to half of the line
width.

static int JOIN_BEVEL -- Joins path segments by connecting the outer corners of their wide
outlines with a straight segment.

static int JOIN_MITER -- Joins path segments by extending their outside edges until they
meet.

static int JOIN_ROUND -- Joins path segments by rounding off the corner at a radius of half
the line width.

Class constructors

S.N. Constructor & Description

1
BasicStroke

Constructs a new BasicStroke with defaults for all attributes.

2
BasicStrokefloat width

Constructs a solid BasicStroke with the specified line width and with default values for the
cap and join styles.

3
BasicStrokefloat width, int cap, int join

Constructs a solid BasicStroke with the specified attributes.

4
BasicStrokefloat width, int cap, int join, float miterlimit

Constructs a solid BasicStroke with the specified attributes.

5
BasicStrokefloat width, int cap, int join, float miterlimit, float[] dash, float
dash_phase

Constructs a new BasicStroke with the specified attributes.

Class methods

S.N. Method & Description

1
Shape createStrokedShapeShape s

Returns a Shape whose interior defines the stroked outline of a specified Shape.

2
boolean equalsObject obj

Tests if a specified object is equal to this BasicStroke by first testing if it is a BasicStroke
and then comparing its width, join, cap, miter limit, dash, and dash phase attributes with
those of this BasicStroke.

3
float[] getDashArray

Returns the array representing the lengths of the dash segments.

4
float getDashPhase

Returns the current dash phase.

5
int getEndCap

Returns the end cap style.

6
int getLineJoin

Returns the line join style.

7
float getLineWidth

Returns the line width.

8
float getMiterLimit

Returns the limit of miter joins.

9
int hashCode

Returns the hashcode for this stroke.

Methods inherited
This class inherits methods from the following classes:

java.lang.Object

BasicStroke Example
Create the following java program using any editor of your choice in say D:/ > AWT > com >
tutorialspoint > gui >

AWTGraphicsDemo.java
package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;

public class AWTGraphicsDemo extends Frame {

 public AWTGraphicsDemo(){
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args){
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI(){
 setSize(400,400);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }

 @Override
 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setStroke(new BasicStroke(3.0f));

 g2.setPaint(Color.blue);

 Rectangle2D shape = new Rectangle2D.Float();
 shape.setFrame(100, 150, 200,100);
 g2.draw(shape);

 Rectangle2D shape1 = new Rectangle2D.Float();
 shape1.setFrame(110, 160, 180,80);
 g2.setStroke(new BasicStroke(1.0f));

 g2.draw(shape1);
 Font plainFont = new Font("Serif", Font.PLAIN, 24);
 g2.setFont(plainFont);
 g2.setColor(Color.DARK_GRAY);
 g2.drawString("TutorialsPoint", 130, 200);
 }
}

Compile the program using command prompt. Go to D:/ > AWT and type the following command.

D:\AWT>javac com\tutorialspoint\gui\AwtGraphicsDemo.java

If no error comes that means compilation is successful. Run the program using following
command.

D:\AWT>java com.tutorialspoint.gui.AwtGraphicsDemo

Verify the following output

Processing math: 23%

