ASSEMBLY - SYSTEM CALLS

System calls are APIs for the interface between the user space and the kernel space. We have
already used the system calls. sys_write and sys_exit, for writing into the screen and exiting from
the program, respectively.

Linux System Calls

You can make use of Linux system calls in your assembly programs. You need to take the following
steps for using Linux system calls in your program —

e Put the system call number in the EAX register.
e Store the arguments to the system call in the registers EBX, ECX, etc.
e Call the relevant interrupt 80h.

e The resultis usually returned in the EAX register.

There are six registers that store the arguments of the system call used. These are the EBX, ECX,
EDX, ESI, EDI, and EBP. These registers take the consecutive arguments, starting with the EBX
register. If there are more than six arguments, then the memory location of the firstargumentis
stored in the EBX register.

The following code snippet shows the use of the system call sys_exit —

mov eax,1l ; system call number (sys_exit)
int Ox80 ; call kernel

The following code snippet shows the use of the system call sys write —

mov edx,4 ; message length

mov ecx,msg ; message to write

mov ebx,1 ; file descriptor (stdout)

mov eax,4 ; system call number (sys_write)

int @x80 ; call kernel

All the syscalls are listed in /usr/include/asm/unistd.h, together with their numbers
thevaluetoputinEAXbeforeyoucallint80h.

The following table shows some of the system calls used in this tutorial —

%eax Name %ebx %ecx %edx %esx %edi
1 sys_exit int - - - -
2 sys fork struct pt regs - - - -
3 sys read unsignedint char* size t - -
4 sys write unsignedint constchar* size t - -
5 sys_open constchar* int int - -
6 sys close unsignedint - - - -

Example

The following example reads a number from the keyboard and displays it on the screen —

section .data ;Data segment


http://www.tutorialspoint.com/assembly_programming/assembly_system_calls.htm

userMsg db 'Please enter a number: ' ;Ask the user to enter a number
lenUserMsg equ $-userMsg ;The length of the message
dispMsg db 'You have entered: '

lenDispMsg equ $-dispMsg

section .bss ;Uninitialized data
num resb 5

section .text ;Code Segment
global _start

_start: ;User prompt
mov eax, 4
mov ebx, 1
mov ecx, userMsg
mov edx, lenUserMsg
int 80h

;Read and store the user input

mov eax, 3

mov ebx, 2

mov ecx, num

mov edx, 5 ;5 bytes (numeric, 1 for sign) of that information
int 80h

;O0utput the message 'The entered number is: '
mov eax, 4

mov ebx, 1

mov ecx, dispMsg

mov edx, lenDispMsg

int 80h

;Output the number entered
mov eax, 4

mov ebx, 1

mov ecx, num

mov edx, 5

int 80h

; Exit code
mov eax, 1
mov ebx, 0
int 80h

When the above code is compiled and executed, it produces the following result —

Please enter a number:
1234

Vo1 _have ontorad: 1224
Loading [MathjJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js



