ASSEMBLY - STRINGS

We have already used variable length strings in our previous examples. The variable length strings
can have as many characters as required. Generally, we specify the length of the string by either
of the two ways —

e Explicitly storing string length
e Using a sentinel character

We can store the string length explicitly by using the $ location counter symbol that represents the
current value of the location counter. In the following example —

msg db 'Hello, world!',6 Oxa ;our dear string
len equ $ - msg ;length of our dear string

$ points to the byte after the last character of the string variable msg. Therefore, $-msg gives the
length of the string. We can also write

msg db 'Hello, world!',6 Oxa ;our dear string
len equ 13 ;length of our dear string

Alternatively, you can store strings with a trailing sentinel character to delimit a string instead of
storing the string length explicitly. The sentinel character should be a special character that does
not appear within a string.

For example —

message DB 'I am loving it!', ©

String Instructions

Each string instruction may require a source operand, a destination operand or both. For 32-bit
segments, string instructions use ESI and EDI registers to point to the source and destination
operands, respectively.

For 16-bit segments, however, the Sl and the DI registers are used to point to the source and
destination, respectively.

There are five basic instructions for processing strings. They are —

¢ MOVS — This instruction moves 1 Byte, Word or Doubleword of data from memory location
to another.

e LODS — This instruction loads from memory. If the operand is of one byte, itis loaded into
the AL register, if the operand is one word, it is loaded into the AX register and a doubleword
is loaded into the EAX register.

e STOS — This instruction stores data from register AL, AX, orEAX to memory.

¢ CMPS — This instruction compares two data items in memory. Data could be of a byte size,
word or doubleword.

e SCAS — This instruction compares the contents of a register AL, AXorEAX with the contents of
an item in memory.

Each of the above instruction has a byte, word, and doubleword version, and string instructions can
be repeated by using a repetition prefix.

These instructions use the ES:DI and DS:SI pair of registers, where DI and Sl registers contain valid
offset addresses that refers to bytes stored in memory. Sl is normally associated with DS datasegment
and Dl is always associated with ES extrasegment.

http://www.tutorialspoint.com/assembly_programming/assembly_strings.htm

The DS:Sl orESI and ES:DI orEDI registers point to the source and destination operands,
respectively. The source operand is assumed to be at DS:Sl orESI and the destination operand at
ES:Dl orEDI in memory.

For 16-bit addresses, the Sl and DI registers are used, and for 32-bit addresses, the ESIl and EDI
registers are used.

The following table provides various versions of string instructions and the assumed space of the
operands.

Basic Instruction Operands at Byte Operation Word Operation Double
word
Operation
ES:DI, DS:EI MOVSB MOVSW MOVSD
MOVS
AX, DS:SI LODSB LODSW LODSD
LODS
ES:DI, AX STOSB STOSW STOSD
STOS
DS:SI, ES: DI CMPSB CMPSW CMPSD
CMPS
ES:DI, AX SCASB SCASW SCASD
SCAS

Repetition Prefixes

The REP prefix, when set before a string instruction, for example - REP MOVSB, causes repetition of
the instruction based on a counter placed at the CX register. REP executes the instruction,
decreases CX by 1, and checks whether CX is zero. It repeats the instruction processing until CX is
zero.

The Direction Flag DF determines the direction of the operation.
e Use CLD ClearDirectionFlag, DF = 0 to make the operation left to right.
e Use STD SetDirectionFlag, DF = 1 to make the operation right to left.
The REP prefix also has the following variations:
e REP: Itis the unconditional repeat. It repeats the operation until CX is zero.

e REPE or REPZ: It is conditional repeat. It repeats the operation while the zero flag indicates
equal/zero. It stops when the ZF indicates not equal/zero or when CX is zero.

e REPNE or REPNZ: It is also conditional repeat. It repeats the operation while the zero flag
indicates not equal/zero. It stops when the ZF indicates equal/zero or when CX is

Aorramaontad ta zoarn

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

/assembly_programming/assembly_movs_instruction.htm
/assembly_programming/assembly_lods_instruction.htm
/assembly_programming/assembly_stos_instruction.htm
/assembly_programming/assembly_cmps_instruction.htm
/assembly_programming/assembly_scas_instruction.htm

