ASSEMBLY - PROCEDURES

Procedures or subroutines are very important in assembly language, as the assembly language
programs tend to be large in size. Procedures are identified by a name. Following this name, the
body of the procedure is described which performs a well-defined job. End of the procedure is
indicated by a return statement.

Syntax

Following is the syntax to define a procedure —

proc_name:
procedure body

ret
The procedure is called from another function by using the CALL instruction. The CALL instruction

should have the name of the called procedure as an argument as shown below —

CALL proc_name

The called procedure returns the control to the calling procedure by using the RET instruction.

Example

Let us write a very simple procedure named sum that adds the variables stored in the ECX and
EDX register and returns the sum in the EAX register —

section .text

global _start ;must be declared for using gcc
_start: ;tell linker entry point

mov ecx, '4’

sub ecx, '0'

mov edx, '5'
sub edx, '0'

call sum ;call sum procedure
mov [res], eax

mov ecx, msg

mov edx, len

mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys_write)
int Ox80 ;call kernel

mov ecx, res
mov edx, 1

mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys_write)
int Ox80 ;call kernel
mov eax, 1 ;system call number (sys_exit)
int Ox80 ;call kernel
sum :
mov eax, ecx
add eax, edx
add eax, '0O'
ret

section .data
msg db "The sum is:", OXxA, OxD
len equ $- msg

http://www.tutorialspoint.com/assembly_programming/assembly_procedures.htm

segment .bss
res resb 1

When the above code is compiled and executed, it produces the following result —

The sum is:
9

Stacks Data Structure

A stack is an array-like data structure in the memory in which data can be stored and removed
from a location called the 'top' of the stack. The data that needs to be stored is 'pushed' into the
stack and data to be retrieved is 'popped' out from the stack. Stack is a LIFO data structure, i.e., the
data stored first is retrieved last.

Assembly language provides two instructions for stack operations: PUSH and POP. These
instructions have syntaxes like —

PUSH operand
POP address/register

The memory space reserved in the stack segment is used for implementing stack. The registers SS
and ESP orSP are used for implementing the stack. The top of the stack, which points to the last
data item inserted into the stack is pointed to by the SS:ESP register, where the SS register points
to the beginning of the stack segment and the SP orESP gives the offset into the stack segment.

The stack implementation has the following characteristics —
e Only words or doublewords could be saved into the stack, not a byte.
e The stack grows in the reverse direction, i.e., toward the lower memory address

e The top of the stack points to the last item inserted in the stack; it points to the lower byte of
the last word inserted.

As we discussed about storing the values of the registers in the stack before using them for some
use; it can be done in following way —

; Save the AX and BX registers in the stack
PUSH AX
PUSH BX

; Use the registers for other purpose
MOV AX, VALUE1
MOV BX, VALUE2

MOV VALUE1, AX
MOV VALUE2, BX

; Restore the original values
POP AX
POP BX

Example

The following program displays the entire ASCII character set. The main program calls a
procedure named display, which displays the ASCII character set.

section .text
global _start ;must be declared for using gcc

_start: ;tell linker entry point
call display
mov eax,1 ;system call number (sys_exit)

int Ox80 ;call kernel

display:
mov ecx, 256
next:
push ecx
mov eax, 4
mov ebx, 1
mov ecx, achar
mov edx, 1
int 80h
pop ecx

mov dx, [achar]

cmp byte [achar], 0dh
inc byte [achar]

loop next

ret

section .data
achar db 'Q'

When the above code is compiled and executed, it produces the following result —

0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A_"abcdefghijklmnopqgrstuvwxyz{|}

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

