ASSEMBLY - MEMORY SEGMENTS

We have already discussed the three sections of an assembly program. These sections represent
various memory segments as well.

Interestingly, if you replace the section keyword with segment, you will get the same result. Try the
following code —

segment .text ;code segment
global_start ;must be declared for linker
_start: ;tell linker entry point
mov edx, len ;message length
mov ecx,msg ;message to write
mov ebx, 1 ;file descriptor (stdout)
mov eax, 4 ;system call number (sys_write)
int Ox80 ;call kernel
mov eax, 1 ;system call number (sys_exit)
int Ox80 ;call kernel
segment .data ;data segment
msg db 'Hello, world!',6 Oxa ;our dear string
len equ $ - msg ;length of our dear string

When the above code is compiled and executed, it produces the following result —

Hello, world!

Memory Segments

A segmented memory model divides the system memory into groups of independent segments
referenced by pointers located in the segment registers. Each segment is used to contain a
specific type of data. One segment is used to contain instruction codes, another segment stores
the data elements, and a third segment keeps the program stack.

In the light of the above discussion, we can specify various memory segments as —

¢ Data segment — Itis represented by .data section and the .bss. The .data section is used to
declare the memory region, where data elements are stored for the program. This section
cannot be expanded after the data elements are declared, and it remains static throughout
the program.

The .bss section is also a static memory section that contains buffers for data to be declared
later in the program. This buffer memory is zero-filled.

e Code segment — Itis represented by .text section. This defines an area in memory that
stores the instruction codes. This is also a fixed area.

e Stack — This segment contains data values passed to functions and procedures within the
program.


http://www.tutorialspoint.com/assembly_programming/assembly_memory_segments.htm

