
http://www.tutorialspoint.com/assembly_programming/assembly_macros.htm Copyright © tutorialspoint.com

ASSEMBLY - MACROSASSEMBLY - MACROS

Writing a macro is another way of ensuring modular programming in assembly language.

A macro is a sequence of instructions, assigned by a name and could be used anywhere in
the program.

In NASM, macros are defined with %macro and %endmacro directives.

The macro begins with the %macro directive and ends with the %endmacro directive.

The Syntax for macro definition −

%macro macro_name number_of_params
<macro body>
%endmacro

Where, number_of_params specifies the number parameters, macro_name specifies the name of
the macro.

The macro is invoked by using the macro name along with the necessary parameters. When you
need to use some sequence of instructions many times in a program, you can put those
instructions in a macro and use it instead of writing the instructions all the time.

For example, a very common need for programs is to write a string of characters in the screen. For
displaying a string of characters, you need the following sequence of instructions −

mov edx,len ;message length
mov ecx,msg ;message to write
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys_write)
int 0x80 ;call kernel

In the above example of displaying a character string, the registers EAX, EBX, ECX and EDX have
been used by the INT 80H function call. So, each time you need to display on screen, you need to
save these registers on the stack, invoke INT 80H and then restore the original value of the
registers from the stack. So, it could be useful to write two macros for saving and restoring data.

We have observed that, some instructions like IMUL, IDIV, INT, etc., need some of the information
to be stored in some particular registers and even return values in some specific registers. If the
program was already using those registers for keeping important data, then the existing data from
these registers should be saved in the stack and restored after the instruction is executed.

Example
Following example shows defining and using macros −

; A macro with two parameters
; Implements the write system call
 %macro write_string 2
 mov eax, 4
 mov ebx, 1
 mov ecx, %1
 mov edx, %2
 int 80h
 %endmacro

section .text
 global _start ;must be declared for using gcc

_start: ;tell linker entry point
 write_string msg1, len1
 write_string msg2, len2

http://www.tutorialspoint.com/assembly_programming/assembly_macros.htm

 write_string msg3, len3

 mov eax,1 ;system call number (sys_exit)
 int 0x80 ;call kernel

section .data
msg1 db 'Hello, programmers!',0xA,0xD
len1 equ $ - msg1

msg2 db 'Welcome to the world of,', 0xA,0xD
len2 equ $- msg2

msg3 db 'Linux assembly programming! '
len3 equ $- msg3

When the above code is compiled and executed, it produces the following result −

Hello, programmers!
Welcome to the world of,
Linux assembly programming!

Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

