ASSEMBLY - LOGICAL INSTRUCTIONS

The processor instruction set provides the instructions AND, OR, XOR, TEST, and NOT Boolean
logic, which tests, sets, and clears the bits according to the need of the program.

The format for these instructions —

SN Instruction Format

1 AND AND operandl, operand?
2 OR OR operandl, operand2

3 XOR XOR operandl, operand?2
4 TEST TEST operandl, operand?
5 NOT NOT operandl

The first operand in all the cases could be either in register or in memory. The second operand
could be either in register/memory or an immediate constant value. However, memory-to-memory
operations are not possible. These instructions compare or match bits of the operands and set the
CF, OF, PF, SF and ZF flags.

The AND Instruction

The AND instruction is used for supporting logical expressions by performing bitwise AND
operation. The bitwise AND operation returns 1, if the matching bits from both the operands are 1,
otherwise it returns 0. For example —

Operandl: 0101
Operand2: 0011

After AND -> Operandl: 0001

The AND operation can be used for clearing one or more bits. For example, say the BL register
contains 0011 1010. If you need to clear the high-order bits to zero, you AND it with OFH.

AND BL, OFH ; This sets BL to 0000 1010

Let's take up another example. If you want to check whether a given number is odd or even, a
simple test would be to check the least significant bit of the number. If this is 1, the number is odd,
else the number is even.

Assuming the number is in AL register, we can write —

AND AL, O1H ; ANDing with 0000 0001
JZ EVEN_NUMBER

The following program illustrates this —

Example
section .text

global _start ;must be declared for using gcc
_start: ;tell linker entry point

mov ax, 8h ;getting 8 in the ax


http://www.tutorialspoint.com/assembly_programming/assembly_logical_instructions.htm

and ax, 1 ;and ax with 1

jz evnn

mov eax, 4 ;system call number (sys_write)
mov ebx, 1 ;file descriptor (stdout)

mov ecx, odd_msg ;message to write

mov edx, len2 ;length of message

int Ox80 ;call kernel

jmp outprog
evnn:

mov ah, 09h

mov eax, 4 ;system call number (sys_write)
mov ebx, 1 ;file descriptor (stdout)
mov ecx, even_msg ;message to write
mov edx, leni ;length of message
int Ox80 ;call kernel
outprog:
mov eax, 1 ;system call number (sys_exit)
int Ox80 ;call kernel
section .data

even_msg db 'Even Number!' ;message showing even number
lenl equ $ - even_msg

odd_msg db 'Odd Number!' ;message showing odd number
len2 equ $ - odd_msg

When the above code is compiled and executed, it produces the following result —

Even Number!!

Change the value in the ax register with an odd digit, like —

mov ax, 9h ; getting 9 in the ax

The program would display:

0dd Number!

Similarly to clear the entire register you can AND it with O0H.
The OR Instruction

The OR instruction is used for supporting logical expression by performing bitwise OR operation.
The bitwise OR operator returns 1, if the matching bits from either or both operands are one. It
returns 0, if both the bits are zero.

For example,

Operandl: 0101
Operand2: 0011
After OR -> Operandil: 0111

The OR operation can be used for setting one or more bits. For example, let us assume the AL
register contains 0011 1010, you need to set the four low-order bits, you can OR it with a value
0000 1111, i.e., FH.

OR BL, OFH ; This sets BL to 0011 1111

Example



The following example demonstrates the OR instruction. Let us store the value 5 and 3 in the AL
and the BL registers, respectively, then the instruction,

OR AL, BL

should store 7 in the AL register —

section

.text

global _start

;must be declared for using gcc

_start: ;tell linker entry point
mov al, 5 ;getting 5 in the al
mov bl, 3 ;getting 3 in the bl
or al, bl ;or al and bl registers, result should be 7
add al, byte '0' ;converting decimal to ascii
mov [result], al
mov eax, 4
mov ebx, 1
mov ecx, result
mov edx, 1
int 0x80
outprog:
mov eax, 1 ;system call number (sys_exit)
int Ox80 ;call kernel
section .bss

result resb 1

When the above code is compiled and executed, it produces the following result —

7

The XOR Instruction

The XOR instruction implements the bitwise XOR operation. The XOR operation sets the resultant
bitto 1, if and only if the bits from the operands are different. If the bits from the operands are
same bothOorboth1, the resultant bit is cleared to 0.

For example,

Operandl: 0101
Operand2: 0011
After XOR -> Operandl: 0110

XORing an operand with itself changes the operand to 0. This is used to clear a
register.

XOR EAX, EAX

The TEST Instruction

The TEST instruction works same as the AND operation, but unlike AND instruction, it does not
change the first operand. So, if we need to check whether a number in a register is even or odd,
we can also do this using the TEST instruction without changing the original number.

TEST AL, O1H
JZ EVEN_NUMBER



The NOT Instruction

The NOT instruction implements the bitwise NOT operation. NOT operation reverses the bitsin an
operand. The operand could be either in a register or in the memory.

For example,

Operandl: 0101 0011

Aftoar NNT _> Nnorandi: 1010 1100
Loading [Math)ax]/jax/output/HTML-CSS/jax.js



