ASSEMBLY - FILE MANAGEMENT

The system considers any input or output data as stream of bytes. There are three standard file
streams —

e Standard input stdin,
¢ Standard output stdout, and

e Standard error stderr.
File Descriptor

A file descriptor is a 16-bit integer assigned to a file as a file id. When a new file is created or an
existing file is opened, the file descriptor is used for accessing the file.

File descriptor of the standard file streams - stdin, stdout and stderr are 0, 1 and 2, respectively.
File Pointer

A file pointer specifies the location for a subsequent read/write operation in the file in terms of
bytes. Each file is considered as a sequence of bytes. Each open file is associated with a file
pointer that specifies an offset in bytes, relative to the beginning of the file. When a file is opened,
the file pointer is set to zero.

File Handling System Calls

The following table briefly describes the system calls related to file handling —

%eax Name %ebx %ecx %edx

2 sys fork structpt regs - -

3 sys read unsignedint char* size_t

4 sys write unsigned int constchar * size t

5 sys open constchar* int int

6 sys close wunsignedint - -

8 sys_creat constchar* int -

19 sys Iseek unsignedint off t unsigned int

The steps required for using the system calls are same, as we discussed earlier —

e Put the system call number in the EAX register.
¢ Store the arguments to the system call in the registers EBX, ECX, etc.
e Call the relevant interrupt 80h.

e The resultis usually returned in the EAX register.
Creating and Opening a File
For creating and opening a file, perform the following tasks —

e Putthe system call sys creat number 8, in the EAX register.

e Put the filename in the EBX register.

http://www.tutorialspoint.com/assembly_programming/assembly_file_management.htm

e Put the file permissions in the ECX register.

The system call returns the file descriptor of the created file in the EAX register, in case of error,
the error code is in the EAX register.

Opening an Existing File
For opening an existing file, perform the following tasks —

e Putthe system call sys open number 5, in the EAX register.
e Put the filename in the EBX register.
e Put the file access mode in the ECX register.

¢ Put the file permissions in the EDX register.

The system call returns the file descriptor of the created file in the EAX register, in case of error,
the error code is in the EAX register.

Among the file access modes, most commonly used are: read-only 0, write-only 1, and read-write 2.
Reading from a File
For reading from a file, perform the following tasks —

e Putthe system call sys read number 3, in the EAX register.

e Put the file descriptor in the EBX register.

e Put the pointer to the input buffer in the ECX register.

e Put the buffer size, i.e., the number of bytes to read, in the EDX register.

The system call returns the number of bytes read in the EAX register, in case of error, the error
code is in the EAX register.

Writing to a File
For writing to a file, perform the following tasks —
e Putthe system call sys_write number 4, in the EAX register.
e Put the file descriptor in the EBX register.
e Put the pointer to the output buffer in the ECX register.
e Put the buffer size, i.e., the number of bytes to write, in the EDX register.

The system call returns the actual number of bytes written in the EAX register, in case of error, the
error code is in the EAX register.

Closing a File

For closing a file, perform the following tasks —

e Putthe system call sys_close number 6, in the EAX register.

e Put the file descriptor in the EBX register.
The system call returns, in case of error, the error code in the EAX register.
Updating a File
For updating a file, perform the following tasks —

e Put the system call sys Iseek number 19, in the EAX register.

e Put the file descriptor in the EBX register.

e Put the offset value in the ECX register.

e Put the reference position for the offset in the EDX register.
The reference position could be:

e Beginning of file - value 0

e Current position - value 1

e End of file - value 2

The system call returns, in case of error, the error code in the EAX register.
Example

The following program creates and opens a file named myfile.txt, and writes a text 'Welcome to
Tutorials Point' in this file. Next, the program reads from the file and stores the data into a buffer
named info. Lastly, it displays the text as stored in info.

section .text
global _start ;must be declared for using gcc

_start: ;tell linker entry point
;create the file
mov eax, 8
mov ebx, file_name
mov ecx, 0777 ;read, write and execute by all
int 0Ox80 ;call kernel

mov [fd_out], eax

; write into the file

mov edx, len ;number of bytes

mov ecx, msg ;message to write

mov ebx, [fd_out] ;file descriptor

mov eax, 4 ;system call number (sys_write)
int Ox80 ;call kernel

; close the file
mov eax, 6
mov ebx, [fd_out]

; write the message indicating end of file write
mov eax, 4

mov ebx, 1

mov ecx, msg_done

mov edx, len_done

int 0x80

;open the file for reading
mov eax, 5
mov ebx, file_name

mov ecx, 0 ;for read only access
mov edx, 0777 ;read, write and execute by all
int 0x80

mov [fd_in], eax

;read from file
mov eax, 3

mov ebx, [fd_in]
mov ecx, info
mov edx, 26

int Ox80

; close the file
mov eax, 6
mov ebx, [fd_in]

; print the info
mov eax, 4

mov ebx, 1

mov ecx, info
mov edx, 26

int Ox80
mov eax, 1 ;system call number (sys_exit)
int Ox80 ;call kernel

section .data

file_name db 'myfile.txt'

msg db 'Welcome to Tutorials Point'
len equ $-msg

msg_done db 'Written to file', Oxa
len_done equ $-msg_done

section .bss

fd_out resb 1
fd_in resb 1
info resb 26

When the above code is compiled and executed, it produces the following result —

Written to file

Walrame tn Tutnriale Dnint

Loading [Mathjax]/jax/output/HTML-CSS/jax.js

