ASP.NET - SERVER SIDE

We have studied the page life cycle and how a page contains various controls. The page itself is
instantiated as a control object. All web forms are basically instances of the ASP.NET Page class.
The page class has the following extremely useful properties that correspond to intrinsic objects:

e Session

e Application
e Cache

e Request

e Response
e Server

e User

e Trace

We will discuss each of these objects in due time. In this tutorial we will explore the Server object,
the Request object, and the Response object.

Server Object

The Server object in Asp.NET is an instance of the System.Web.HttpServerUtility class. The
HttpServerUtility class provides numerous properties and methods to perform various jobs.

Properties and Methods of the Server object

The methods and properties of the HttpServerUtility class are exposed through the intrinsic Server
object provided by ASP.NET.

The following table provides a list of the properties:

Property Description
MachineName Name of server computer
ScriptTimeOut Gets and sets the request time-out value in seconds.

The following table provides a list of some important methods:

Method Description

CreateObjectString Creates an instance of the COM object identified by its ProgID
ProgrammaticlD.

CreateObjectType Creates an instance of the COM object identified by its Type.

EqualsObject Determines whether the specified Object is equal to the

current Object.

ExecuteString Executes the handler for the specified virtual path in the
context of the current request.

ExecuteString, Boolean Executes the handler for the specified virtual path in the
context of the current request and specifies whether to clear
the QueryString and Form collections.

http://www.tutorialspoint.com/asp.net/asp.net_server_side.htm

GetLastError
GetType

HtmIEncode

HtmIDecode
ToString

TransferString

UrlDecode

UrlEncodeToken

UrIDecodeToken

MapPath

Transfer

Returns the previous exception.
Gets the Type of the currentinstance.

Changes an ordinary string into a string with legal HTML
characters.

Converts an Html string into an ordinary string.
Returns a String that represents the current Object.

For the current request, terminates execution of the current
page and starts execution of a new page by using the
specified URL path of the page.

Converts an URL string into an ordinary string.

Works same as UrlEncode, but on a byte array that contains
Base64-encoded data.

Works same as UrlIDecode, but on a byte array that contains
Base64-encoded data.

Return the physical path that corresponds to a specified
virtual file path on the server.

Transfers execution to another web page in the current
application.

Request Object

The request objectis an instance of the System.Web.HttpRequest class. It represents the values
and properties of the HTTP request that makes the page loading into the browser.

The information presented by this object is wrapped by the higher level abstractions

thewebcontrolmodel. However, this object helps in checking some information such as the client
browser and cookies.

Properties and Methods of the Request Object

The following table provides some noteworthy properties of the Request object:

Property Description

AcceptTypes Gets a string array of client-supported MIME accept types.

ApplicationPath Gets the ASP.NET application's virtual application root path on
the server.

Browser Gets or sets information about the requesting client's browser
capabilities.

ContentEncoding Gets or sets the character set of the entity-body.

ContentLength Specifies the length, in bytes, of content sent by the client.

ContentType Gets or sets the MIME content type of the incoming request.

Cookies Gets a collection of cookies sent by the client.

FilePath Gets the virtual path of the current request.

Files Gets the collection of files uploaded by the client, in multipart

MIME format.

Form
Headers

HttpMethod

InputStream

IsSecureConnection

QueryString
RawuUrl

RequestType

ServerVariables
TotalBytes
Url

UrlReferrer

UserAgent
UserHostAddress
UserHostName

UserLanguages

Gets a collection of form variables.
Gets a collection of HTTP headers.

Gets the HTTP data transfer method suchasGET, POST, orHEAD
used by the client.

Gets the contents of the incoming HTTP entity body.

Gets a value indicating whether the HTTP connection uses
secure sockets thatis, HTTPS.

Gets the collection of HTTP query string variables.
Gets the raw URL of the current request.

Gets or sets the HTTP data transfer method GETorPOST used
by the client.

Gets a collection of Web server variables.
Gets the number of bytes in the current input stream.
Gets information about the URL of the current request.

Gets information about the URL of the client's previous
request that is linked to the current URL.

Gets the raw user agent string of the client browser.
Gets the IP host address of the remote client.
Gets the DNS name of the remote client.

Gets a sorted string array of client language preferences.

The following table provides a list of some important methods:

Method

BinaryRead

EqualsObject

GetType

MaplmageCoordinates

MapPathString
SaveAs
ToString

Validatelnput

Response Object

Description

Performs a binary read of a specified number of bytes from
the current input stream.

Determines whether the specified object is equal to the
current object. Inheritedfromobject.

Gets the Type of the currentinstance.

Maps an incoming image-field form parameter to appropriate
x-coordinate and y-coordinate values.

Maps the specified virtual path to a physical path.
Saves an HTTP request to disk.
Returns a String that represents the current object.

Causes validation to occur for the collections accessed
through the Cookies, Form, and QueryString properties.

The Response object represents the server's response to the client request. It is an instance of the

System.Web.HttpResponse class.

In ASP.NET, the response object does not play any vital role in sending HTML text to the client,
because the server-side controls have nested, object oriented methods for rendering themselves.

However, the HttpResponse object still provides some important functionalities, like the cookie

feature and the Redirect method. The Response.Redirect method allows transferring the user to
another page, inside as well as outside the application. It requires a round trip.

Properties and Methods of the Response Object

The following table provides some noteworthy properties of the Response object:

Property
Buffer

BufferOutput

Charset
ContentEncoding
ContentType
Cookies

Expires

ExpiresAbsolute

HeaderEncoding

Headers

IsClientConnected

Output
OutputStream
RedirectLocation
Status

StatusCode

StatusDescription

SubStatusCode

SuppressContent

Description

Gets or sets a value indicating whether to buffer the output
and send it after the complete response is finished
processing.

Gets or sets a value indicating whether to buffer the output
and send it after the complete page is finished processing.

Gets or sets the HTTP character set of the output stream.
Gets or sets the HTTP character set of the output stream.
Gets or sets the HTTP MIME type of the output stream.
Gets the response cookie collection.

Gets or sets the number of minutes before a page cached on
a browser expires.

Gets or sets the absolute date and time at which to remove
cached information from the cache.

Gets or sets an encoding object that represents the encoding
for the current header output stream.

Gets the collection of response headers.

Gets a value indicating whether the client is still connected to
the server.

Enables output of text to the outgoing HTTP response stream.
Enables binary output to the outgoing HTTP content body.
Gets or sets the value of the Http Location header.

Sets the status line that is returned to the client.

Gets or sets the HTTP status code of the output returned to
the client.

Gets or sets the HTTP status string of the output returned to
the client.

Gets or sets a value qualifying the status code of the
response.

Gets or sets a value indicating whether to send HTTP content
to the client.

The following table provides a list of some important methods:

Method
AddHeader

AppendCookie

AppendHeader
AppendTolog

BinaryWrite

ClearContent
Close

End

EqualsObject

Flush
GetType
Pics

RedirectString

RedirectString, Boolean

SetCookie

ToString

TransmitFileString

WriteChar
WriteObject
WriteString

WriteFileString

WriteFileString, Boolean

Example

Description

Adds an HTTP header to the output stream. AddHeader is
provided for compatibility with earlier versions of ASP.

Infrastructure adds an HTTP cookie to the intrinsic cookie
collection.

Adds an HTTP header to the output stream.

Adds custom log information to the InterNET Information
Services IIS log file.

Writes a string of binary characters to the HTTP output
stream.

Clears all content output from the buffer stream.
Closes the socket connection to a client.

Sends all currently buffered output to the client, stops
execution of the page, and raises the EndRequest event.

Determines whether the specified object is equal to the
current object.

Sends all currently buffered output to the client.

Gets the Type of the currentinstance.

Appends a HTTP PICS-Label header to the output stream.
Redirects a request to a new URL and specifies the new URL.

Redirects a client to a new URL. Specifies the new URL and
whether execution of the current page should terminate.

Updates an existing cookie in the cookie collection.
Returns a String that represents the current Object.

Writes the specified file directly to an HTTP response output
stream, without buffering itin memory.

Writes a character to an HTTP response output stream.
Writes an objectto an HTTP response stream.
Writes a string to an HTTP response output stream.

Writes the contents of the specified file directly to an HTTP
response output stream as a file block.

Writes the contents of the specified file directly to an HTTP
response output stream as a memory block.

The following simple example has a text box control where the user can enter name, a button to
send the information to the server, and a label control to display the URL of the client computer.

The content file:

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"
Inherits="server_side._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head runat="server'">
<title>Untitled Page</title>

</head>
<body>
<form >
<div>
Enter your name:

<asp:TextBox ID="TextBox1" runat="server'"></asp:TextBox>
<asp:Button ID="Buttonl" runat="server" OnClick="Buttonl_Click" Text="Submit"
/>

<asp:Label ID="Labell" runat="server"/>
</div>
</form>
</body>
</htm1>

The code behind Buttonl_Click:

protected void Buttonl Click(object sender, EventArgs e) {
if (!String.IsNullOrEmpty(TextBox1l.Text)) {

// Access the HttpServerUtility methods through

// the intrinsic Server object.
Labell.Text = "Welcome, " + Server.HtmlEncode(TextBox1.Text) + ".
 The url is

" + Server.UrlEncode(Request.Url.ToString())

}
}

Run the page to see the following result

. € Untitled Page

Er_lter_ your name:

Steve

Welcome, Steve.
The utl is hitp%o3a%e2f%2flocalhost?e3al 47 8% HDefault aspx

Loading [Mathjax]/jax/output/HTML-CSS/jax.js |

