
http://www.tutorialspoint.com/asp.net/asp.net_security.htm Copyright © tutorialspoint.com

ASP.NET - SECURITYASP.NET - SECURITY

Implementing security in a site has the following aspects:

Authentication : It is the process of ensuring the user's identity and authenticity. ASP.NET
allows four types of authentications:

Windows Authentication
Forms Authentication
Passport Authentication
Custom Authentication

Authorization : It is the process of defining and allotting specific roles to specific users.

Confidentiality : It involves encrypting the channel between the client browser and the web
server.

Integrity : It involves maintaining the integrity of data. For example, implementing digital
signature.

Forms-Based Authentication
Traditionally, forms-based authentication involves editing the web.config file and adding a login
page with appropriate authentication code.

The web.config file could be edited and the following codes written on it:

<configuration>

<system.web>
 <authentication mode="Forms">
 <forms loginUrl ="login.aspx"/>
 </authentication>

 <authorization>
 <deny users="?"/>
 </authorization>
</system.web>
...
...
</configuration>

The login.aspx page mentioned in the above code snippet could have the following code behind
file with the usernames and passwords for authentication hard coded into it.

protected bool authenticate(String uname, String pass)
{
 if(uname == "Tom")
 {
 if(pass == "tom123")
 return true;
 }

 if(uname == "Dick")
 {
 if(pass == "dick123")
 return true;
 }

 if(uname == "Harry")
 {
 if(pass == "har123")

http://www.tutorialspoint.com/asp.net/asp.net_security.htm

 return true;
 }

 return false;
}

public void OnLogin(Object src, EventArgs e)
{
 if (authenticate(txtuser.Text, txtpwd.Text))
 {
 FormsAuthentication.RedirectFromLoginPage(txtuser.Text, chkrem.Checked);
 }
 else
 {
 Response.Write("Invalid user name or password");
 }
}

Observe that the FormsAuthentication class is responsible for the process of authentication.

However, Visual Studio allows you to implement user creation, authentication, and authorization
with seamless ease without writing any code, through the Web Site Administration tool. This tool
allows creating users and roles.

Apart from this, ASP.NET comes with readymade login controls set, which has controls performing
all the jobs for you.

Implementing Forms-Based Security
To set up forms-based authentication, you need the following:

A database of users to support the authentication process
A website that uses the database
User accounts
Roles
Restriction of users and group activities
A default page, to display the login status of the users and other information.
A login page, to allow users to log in, retrieve password, or change password

To create users, take the following steps:

Step 1 : Choose Website -> ASP.NET Configuration to open the Web Application Administration
Tool.

Step 2 : Click on the Security tab.

Step 3 : Select the authentication type to 'Forms based authentication' by selecting the 'From the
Internet' radio button.

Step 4 : Click on 'Create Users' link to create some users. If you already had created roles, you
could assign roles to the user, right at this stage.

Step 5 : Create a web site and add the following pages:

Welcome.aspx
Login.aspx
CreateAccount.aspx
PasswordRecovery.aspx
ChangePassword.aspx

Step 6 : Place a LoginStatus control on the Welcome.aspx from the login section of the toolbox. It
has two templates: LoggedIn and LoggedOut.

In LoggedOut template, there is a login link and in the LoggedIn template, there is a logout link on
the control. You can change the login and logout text properties of the control from the Properties
window.

Step 7 : Place a LoginView control from the toolbox below the LoginStatus control. Here, you can

put texts and other controls hyperlinks, buttonsetc. , which are displayed based on whether the user is
logged in or not.

This control has two view templates: Anonymous template and LoggedIn template. Select each
view and write some text for the users to be displayed for each template. The text should be
placed on the area marked red.

Step 8 : The users for the application are created by the developer. You might want to allow a
visitor to create a user account. For this, add a link beneath the LoginView control, which should
link to the CreateAccount.aspx page.

Step 9 : Place a CreateUserWizard control on the create account page. Set the
ContinueDestinationPageUrl property of this control to Welcome.aspx.

Step 10 : Create the Login page. Place a Login control on the page. The LoginStatus control
automatically links to the Login.aspx. To change this default, make the following changes in the
web.config file.

For example, if you want to name your log in page as signup.aspx, add the following lines to the
<authentication> section of the web.config:

<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms loginUrl ="signup.aspx" defaultUrl = â€œWelcome.aspxâ€ ​ />
 </authentication>
 </system.web>
</configuration>

Step 11 : Users often forget passwords. The PasswordRecovery control helps the user gain access
to the account. Select the Login control. Open its smart tag and click 'Convert to Template'.

Customize the UI of the control to place a hyperlink control under the login button, which should
link to the PassWordRecovery.aspx.

Step 12 : Place a PasswordRecovery control on the password recovery page. This control needs an
email server to send the passwords to the users.

Step 13 : Create a link to the ChangePassword.aspx page in the LoggedIn template of the
LoginView control in Welcome.aspx.

Step 14 : Place a ChangePassword control on the change password page. This control also has two
views.

Now run the application and observe different security operations.

To create roles, go back to the Web Application Administration Tools and click on the Security tab.
Click on 'Create Roles' and create some roles for the application.

Click on the 'Manage Users' link and assign roles to the users.

IIS Authentication: SSL
The Secure Socket Layer or SSL is the protocol used to ensure a secure connection. With SSL
enabled, the browser encrypts all data sent to the server and decrypts all data coming from the
server. At the same time, the server encrypts and decrypts all data to and from browser.

The URL for a secure connection starts with HTTPS instead of HTTP. A small lock is displayed by a
browser using a secure connection. When a browser makes an initial attempt to communicate with
a server over a secure connection using SSL, the server authenticates itself by sending its digital
certificate.

To use the SSL, you need to buy a digital secure certificate from a trusted Certification Authority
CA and install it in the web server. Following are some of the trusted and reputed certification
authorities:

www.verisign.com
www.geotrust.com
www.thawte.com

SSL is built into all major browsers and servers. To enable SSL, you need to install the digital
certificate. The strength of various digital certificates varies depending upon the length of the key
generated during encryption. More the length, more secure is the certificate, hence the
connection.

Strength Description

40 bit Supported by most browsers but easy to break.

56 bit Stronger than 40-bit.

128 bit Extremely difficult to break but all the browsers do not support it.

Loading [MathJax]/jax/output/HTML-CSS/jax.js

