
AI with Python

 i

l

AI with Python

 i

About the Tutorial

Artificial intelligence is the intelligence demonstrated by machines, in contrast to the

intelligence displayed by humans.

This tutorial covers the basic concepts of various fields of artificial intelligence like Artificial

Neural Networks, Natural Language Processing, Machine Learning, Deep Learning, Genetic

algorithms etc., and its implementation in Python.

Audience

This tutorial will be useful for graduates, post graduates, and research students who either

have an interest in this subject or have this subject as a part of their curriculum. The

reader can be a beginner or an advanced learner.

Prerequisites

We assume that the reader has basic knowledge about Artificial Intelligence and Python

programming. He/she should be aware about basic terminologies used in AI along with

some useful python packages like nltk, OpenCV, pandas, OpenAI Gym, etc.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

AI with Python

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. AI with Python – Primer Concepts ... 1

Basic Concept of Artificial Intelligence (AI) .. 1

The Necessity of Learning AI ... 1

What is Intelligence? ... 2

What is Intelligence Composed Of? .. 3

Learning − l .. 4

What’s Involved in AI ... 6

Application of AI .. 6

Cognitive Modeling: Simulating Human Thinking Procedure .. 7

Agent & Environment .. 8

2. AI with Python – Getting Started .. 9

Why Python for AI ... 9

Features of Python .. 9

Installing Python .. 10

Setting up PATH ... 11

Running Python ... 12

Script from the Command-line .. 13

Integrated Development Environment ... 13

3. AI with Python – Machine Learning .. 15

Types of Machine Learning (ML) ... 15

Most Common Machine Learning Algorithms ... 16

AI with Python

 iii

4. AI with Python – Data Preparation ... 20

Preprocessing the Data ... 20

Techniques for Data Preprocessing ... 21

Labeling the Data ... 23

5. AI with Python – Supervised Learning: Classification .. 26

Steps for Building a Classifier in Python .. 26

Building Classifier in Python .. 29

Logistic Regression .. 34

Decision Tree Classifier .. 37

Random Forest Classifier ... 39

Performance of a classifier .. 40

Class Imbalance Problem ... 42

Ensemble Techniques .. 43

6. AI with Python – Supervised Learning: Regression .. 44

Building Regressors in Python ... 44

7. AI with Python – Logic Programming .. 49

How to Solve Problems with Logic Programming.. 49

Installing Useful Packages ... 50

Examples of Logic Programming ... 50

Checking for Prime Numbers ... 51

Solving Puzzles ... 52

8. AI with Python – Unsupervised Learning: Clustering ... 55

What is Clustering? .. 55

Algorithms for Clustering the Data .. 55

Measuring the Clustering Performance .. 61

Calculating Silhouette Score .. 61

Finding Nearest Neighbors .. 63

K-Nearest Neighbors Classifier .. 65

AI with Python

 iv

9. AI with Python – Natural Language Processing ... 69

Components of NLP ... 69

Difficulties in NLU .. 69

NLP Terminology ... 70

Steps in NLP ... 70

10. AI with Python – NLTK package .. 72

Importing NLTK .. 72

Downloading NLTK’s Data ... 72

Installing Other Necessary Packages ... 73

Concept of Tokenization, Stemming, and Lemmatization ... 73

Chunking: Dividing Data into Chunks .. 75

Types of chunking .. 76

Bag of Word (BoW) Model .. 77

Concept of the Statistics .. 78

Building a Bag of Words Model in NLTK .. 79

Solving Problems ... 79

Topic Modeling: Identifying Patterns in Text Data .. 84

Algorithms for Topic Modeling .. 84

11. AI with Python – Analyzing Time Series Data .. 86

Introduction ... 86

Installing Useful Packages ... 86

Pandas: Handling, Slicing and Extracting Statistic from Time Series Data ... 87

Extracting Statistic from Time Series Data .. 91

Analyzing Sequential Data by Hidden Markov Model (HMM)... 95

Example: Analysis of Stock Market data.. 96

12. AI with Python – Speech Recognition .. 99

Building a Speech Recognizer .. 99

Visualizing Audio Signals - Reading from a File and Working on it .. 100

AI with Python

 v

Characterizing the Audio Signal: Transforming to Frequency Domain .. 102

Generating Monotone Audio Signal .. 104

Feature Extraction from Speech .. 106

Recognition of Spoken Words ... 108

13. AI with Python – Heuristic Search ... 111

Concept of Heuristic Search in AI .. 111

Difference between Uninformed and Informed Search .. 111

Real World Problem Solved by Constraint Satisfaction ... 112

14. AI with Python – Gaming .. 115

Search Algorithms ... 115

Combinational Search ... 115

Minimax Algorithm .. 115

Alpha-Beta Pruning .. 116

Negamax Algorithm ... 116

Building Bots to Play Games .. 116

A Bot to Play Last Coin Standing .. 116

A Bot to Play Tic Tac Toe ... 119

15. AI with Python – Neural Networks .. 122

What is Artificial Neural Networks (ANN) ... 122

Installing Useful Packages ... 122

Building Neural Networks .. 122

Perceptron based Classifier ... 123

Single - Layer Neural Networks ... 124

Multi-Layer Neural Networks .. 127

16. AI with Python – Reinforcement Learning ... 131

Basics of Reinforcement Learning ... 131

Building Blocks: Environment and Agent .. 131

Constructing an Environment with Python ... 133

AI with Python

 vi

Constructing a learning agent with Python ... 134

17. AI with Python – Genetic Algorithms .. 135

What are Genetic Algorithms? .. 135

How to Use GA for Optimization Problems? ... 135

Installing Necessary Packages ... 136

Implementing Solutions using Genetic Algorithms ... 136

18. AI with Python – Computer Vision .. 142

Computer Vision .. 142

Computer Vision Vs Image Processing .. 142

Installing Useful Packages ... 143

Reading, Writing and Displaying an Image .. 144

Color Space Conversion ... 145

Edge Detection .. 147

Face Detection ... 148

Eye Detection .. 149

19. AI with Python – Deep Learning .. 151

Machine Learning v/s Deep Learning .. 151

Convolutional Neural Network (CNN) ... 151

Installing Useful Python Packages ... 152

Building Linear Regressor using ANN .. 153

Image Classifier: An Application of Deep Learning .. 154

AI with Python

 1

Since the invention of computers or machines, their capability to perform various tasks

has experienced an exponential growth. Humans have developed the power of computer

systems in terms of their diverse working domains, their increasing speed, and reducing

size with respect to time.

A branch of Computer Science named Artificial Intelligence pursues creating the

computers or machines as intelligent as human beings.

Basic Concept of Artificial Intelligence (AI)

According to the father of Artificial Intelligence, John McCarthy, it is “The science and

engineering of making intelligent machines, especially intelligent computer programs”.

Artificial Intelligence is a way of making a computer, a computer-controlled robot, or a

software think intelligently, in the similar manner the intelligent humans think. AI is

accomplished by studying how human brain thinks and how humans learn, decide, and

work while trying to solve a problem, and then using the outcomes of this study as a basis

of developing intelligent software and systems.

While exploiting the power of the computer systems, the curiosity of human, lead him to

wonder, “Can a machine think and behave like humans do?”

Thus, the development of AI started with the intention of creating similar intelligence in

machines that we find and regard high in humans.

The Necessity of Learning AI

As we know that AI pursues creating the machines as intelligent as human beings. There

are numerous reasons for us to study AI. The reasons are as follows:

AI can learn through data

In our daily life, we deal with huge amount of data and human brain cannot keep track of

so much data. That is why we need to automate the things. For doing automation, we

need to study AI because it can learn from data and can do the repetitive tasks with

accuracy and without tiredness.

AI can teach itself

It is very necessary that a system should teach itself because the data itself keeps

changing and the knowledge which is derived from such data must be updated constantly.

We can use AI to fulfill this purpose because an AI enabled system can teach itself.

AI can respond in real time

Artificial intelligence with the help of neural networks can analyze the data more deeply.

Due to this capability, AI can think and respond to the situations which are based on the

conditions in real time.

1. AI with Python – Primer Concepts

AI with Python

 2

AI achieves accuracy

With the help of deep neural networks, AI can achieve tremendous accuracy. AI helps in

the field of medicine to diagnose diseases such as cancer from the MRIs of patients.

AI can organize data to get most out of it

The data is an intellectual property for the systems which are using self-learning

algorithms. We need AI to index and organize the data in a way that it always gives the

best results.

Understanding Intelligence

With AI, smart systems can be built. We need to understand the concept of intelligence so

that our brain can construct another intelligence system like itself.

What is Intelligence?

The ability of a system to calculate, reason, perceive relationships and analogies, learn

from experience, store and retrieve information from memory, solve problems,

comprehend complex ideas, use natural language fluently, classify, generalize, and adapt

new situations.

Types of Intelligence

As described by Howard Gardner, an American developmental psychologist, Intelligence

comes in multifold:

Intelligence Description Example

Linguistic intelligence

The ability to speak, recognize, and

use mechanisms of phonology

(speech sounds), syntax (grammar),

and semantics (meaning).

Narrators, Orators

Musical intelligence

The ability to create, communicate

with, and understand meanings

made of sound, understanding of

pitch, rhythm.

Musicians,

Singers,

Composers

Logical-mathematical

intelligence

The ability to use and understand

relationships in the absence of action

or objects. It is also the ability to

understand complex and abstract

ideas.

Mathematicians,

Scientists

Spatial intelligence

The ability to perceive visual or

spatial information, change it, and

re-create visual images without

reference to the objects, construct 3D

Map readers,

Astronauts,

Physicists

AI with Python

 3

images, and to move and rotate

them.

Bodily-Kinesthetic

intelligence

The ability to use complete or part of

the body to solve problems or fashion

products, control over fine and coarse

motor skills, and manipulate the

objects.

Players, Dancers

Intra-personal intelligence

The ability to distinguish among one’s

own feelings, intentions, and

motivations.

Gautam Buddhha

Interpersonal intelligence

The ability to recognize and make

distinctions among other people’s

feelings, beliefs, and intentions.

Mass

Communicators,

Interviewers

You can say a machine or a system is artificially intelligent when it is equipped with at

least one or all intelligences in it.

What is Intelligence Composed Of?

The intelligence is intangible. It is composed of −

 Reasoning

 Learning

 Problem Solving

 Perception

 Linguistic Intelligence

AI with Python

 4

Let us go through all the components briefly −

Reasoning

It is the set of processes that enable us to provide basis for judgement, making decisions,

and prediction. There are broadly two types −

Inductive Reasoning Deductive

Reasoning

It conducts specific observations to makes broad general

statements.

It starts with a general

statement and

examines the

possibilities to reach a

specific, logical

conclusion.

Even if all of the premises are true in a statement, inductive

reasoning allows for the conclusion to be false.

If something is true of

a class of things in

general, it is also true

for all members of that

class.

Example − "Nita is a teacher. Nita is studious. Therefore, All

teachers are studious."

Example − "All women

of age above 60 years

are grandmothers.

Shalini is 65 years.

Therefore, Shalini is a

grandmother."

Learning − l

The ability of learning is possessed by humans, particular species of animals, and AI-

enabled systems. Learning is categorized as follows −

Auditory Learning

It is learning by listening and hearing. For example, students listening to recorded audio

lectures.

Episodic Learning

To learn by remembering sequences of events that one has witnessed or experienced. This

is linear and orderly.

Motor Learning

It is learning by precise movement of muscles. For example, picking objects, writing, etc.

AI with Python

 5

Observational Learning

To learn by watching and imitating others. For example, child tries to learn by mimicking

her parent.

Perceptual Learning

It is learning to recognize stimuli that one has seen before. For example, identifying and

classifying objects and situations.

Relational Learning

It involves learning to differentiate among various stimuli on the basis of relational

properties, rather than absolute properties. For Example, Adding ‘little less’ salt at the

time of cooking potatoes that came up salty last time, when cooked with adding say a

tablespoon of salt.

 Spatial Learning − It is learning through visual stimuli such as images, colors,

maps, etc. For example, A person can create roadmap in mind before actually

following the road.

 Stimulus-Response Learning − It is learning to perform a particular behavior

when a certain stimulus is present. For example, a dog raises its ear on hearing

doorbell.

Problem Solving

It is the process in which one perceives and tries to arrive at a desired solution from a

present situation by taking some path, which is blocked by known or unknown hurdles.

Problem solving also includes decision making, which is the process of selecting the best

suitable alternative out of multiple alternatives to reach the desired goal.

Perception

It is the process of acquiring, interpreting, selecting, and organizing sensory information.

Perception presumes sensing. In humans, perception is aided by sensory organs. In the

domain of AI, perception mechanism puts the data acquired by the sensors together in a

meaningful manner.

Linguistic Intelligence

It is one’s ability to use, comprehend, speak, and write the verbal and written language.

It is important in interpersonal communication.

AI with Python

 6

What’s Involved in AI

Artificial intelligence is a vast area of study. This field of study helps in finding solutions to

real world problems.

Let us now see the different fields of study within AI:

Machine Learning

It is one of the most popular fields of AI. The basic concept of this filed is to make the

machine learning from data as the human beings can learn from his/her experience. It

contains learning models on the basis of which the predictions can be made on unknown

data.

Logic

It is another important field of study in which mathematical logic is used to execute the

computer programs. It contains rules and facts to perform pattern matching, semantic

analysis, etc.

Searching

This field of study is basically used in games like chess, tic-tac-toe. Search algorithms give

the optimal solution after searching the whole search space.

Artificial neural networks

This is a network of efficient computing systems the central theme of which is borrowed

from the analogy of biological neural networks. ANN can be used in robotics, speech

recognition, speech processing, etc.

Genetic Algorithm

Genetic algorithms help in solving problems with the assistance of more than one program.

The result would be based on selecting the fittest.

Knowledge Representation

It is the field of study with the help of which we can represent the facts in a way the

machine that is understandable to the machine. The more efficiently knowledge is

represented; the more system would be intelligent.

Application of AI

In this section, we will see the different fields supported by AI:

Gaming

AI plays crucial role in strategic games such as chess, poker, tic-tac-toe, etc., where

machine can think of large number of possible positions based on heuristic knowledge.

AI with Python

 7

Natural Language Processing

It is possible to interact with the computer that understands natural language spoken by

humans.

Expert Systems

There are some applications which integrate machine, software, and special information

to impart reasoning and advising. They provide explanation and advice to the users.

Vision Systems

These systems understand, interpret, and comprehend visual input on the computer. For

example,

 A spying aeroplane takes photographs, which are used to figure out spatial

information or map of the areas.

 Doctors use clinical expert system to diagnose the patient.

 Police use computer software that can recognize the face of criminal with the stored

portrait made by forensic artist.

Speech Recognition

Some intelligent systems are capable of hearing and comprehending the language in terms

of sentences and their meanings while a human talks to it. It can handle different accents,

slang words, noise in the background, change in human’s noise due to cold, etc.

Handwriting Recognition

The handwriting recognition software reads the text written on paper by a pen or on screen

by a stylus. It can recognize the shapes of the letters and convert it into editable text.

Intelligent Robots

Robots are able to perform the tasks given by a human. They have sensors to detect

physical data from the real world such as light, heat, temperature, movement, sound,

bump, and pressure. They have efficient processors, multiple sensors and huge memory,

to exhibit intelligence. In addition, they are capable of learning from their mistakes and

they can adapt to the new environment.

Cognitive Modeling: Simulating Human Thinking Procedure

Cognitive modeling is basically the field of study within computer science that deals with

the study and simulating the thinking process of human beings. The main task of AI is to

make machine think like human. The most important feature of human thinking process

is problem solving. That is why more or less cognitive modeling tries to understand how

humans can solve the problems. After that this model can be used for various AI

applications such as machine learning, robotics, natural language processing, etc.

Following is the diagram of different thinking levels of human brain:

AI with Python

 8

Agent & Environment

In this section, we will focus on the agent and environment and how these help in Artificial

Intelligence.

Agent

An agent is anything that can perceive its environment through sensors and acts upon

that environment through effectors.

 A human agent has sensory organs such as eyes, ears, nose, tongue and skin

parallel to the sensors, and other organs such as hands, legs, mouth, for effectors.

 A robotic agent replaces cameras and infrared range finders for the sensors, and

various motors and actuators for effectors.

 A software agent has encoded bit strings as its programs and actions.

Environment

Some programs operate in an entirely artificial environment confined to keyboard

input, database, computer file systems and character output on a screen.

In contrast, some software agents (software robots or softbots) exist in rich, unlimited

softbots domains. The simulator has a very detailed, complex environment. The

software agent needs to choose from a long array of actions in real time. A softbot is

designed to scan the online preferences of the customer and shows interesting items to

the customer works in the real as well as an artificial environment.

Cognitive

Behaviora

l

Physical

Kinematic

Geometri

c

AI with Python

 9

In this chapter, we will learn how to get started with Python. We will also understand how

Python helps for Artificial Intelligence.

Why Python for AI

Artificial intelligence is considered to be the trending technology of the future. Already

there are a number of applications made on it. Due to this, many companies and

researchers are taking interest in it. But the main question that arises here is that in which

programming language can these AI applications be developed? There are various

programming languages like Lisp, Prolog, C++, Java and Python, which can be used for

developing applications of AI. Among them, Python programming language gains a huge

popularity and the reasons are as follows:

Simple syntax & less coding

Python involves very less coding and simple syntax among other programming languages

which can be used for developing AI applications. Due to this feature, the testing can be

easier and we can focus more on programming.

Inbuilt libraries for AI projects

A major advantage for using Python for AI is that it comes with inbuilt libraries. Python

has libraries for almost all kinds of AI projects. For example, NumPy, SciPy, matplotlib,

nltk, SimpleAI are some the important inbuilt libraries of Python.

 Open source: Python is an open source programming language. This makes it

widely popular in the community.

 Can be used for broad range of programming: Python can be used for a broad

range of programming tasks like small shell script to enterprise web applications.

This is another reason Python is suitable for AI projects.

Features of Python

Python is a high-level, interpreted, interactive and object-oriented scripting language.

Python is designed to be highly readable. It uses English keywords frequently where as

other languages use punctuation, and it has fewer syntactical constructions than other

languages. Python's features include the following −

 Easy-to-learn − Python has few keywords, simple structure, and a clearly defined

syntax. This allows the student to pick up the language quickly.

 Easy-to-read − Python code is more clearly defined and visible to the eyes.

 Easy-to-maintain − Python's source code is fairly easy-to-maintain.

 A broad standard library − Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

2. AI with Python – Getting Started

AI with Python

 10

 Interactive Mode − Python has support for an interactive mode which allows

interactive testing and debugging of snippets of code.

 Portable − Python can run on a wide variety of hardware platforms and has the

same interface on all platforms.

 Extendable − We can add low-level modules to the Python interpreter. These

modules enable programmers to add to or customize their tools to be more

efficient.

 Databases − Python provides interfaces to all major commercial databases.

 GUI Programming − Python supports GUI applications that can be created and

ported to many system calls, libraries and windows systems, such as Windows MFC,

Macintosh, and the X Window system of Unix.

 Scalable − Python provides a better structure and support for large programs than

shell scripting.

Important features of Python

Let us now consider the following important features of Python:

 It supports functional and structured programming methods as well as OOP.

 It can be used as a scripting language or can be compiled to byte-code for building

large applications.

 It provides very high-level dynamic data types and supports dynamic type

checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Installing Python

Python distribution is available for a large number of platforms. You need to download only

the binary code applicable for your platform and install Python.

If the binary code for your platform is not available, you need a C compiler to compile the

source code manually. Compiling the source code offers more flexibility in terms of choice

of features that you require in your installation.

Here is a quick overview of installing Python on various platforms −

Unix and Linux Installation

Follow these steps to install Python on Unix/Linux machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link to download zipped source code available for Unix/Linux.

 Download and extract files.

 Editing the Modules/Setup file if you want to customize some options.

 run ./configure script

https://www.python.org/downloads/

AI with Python

 11

 make

 make install

This installs Python at the standard location /usr/local/bin and its libraries

at /usr/local/lib/pythonXX where XX is the version of Python.

Windows Installation

Follow these steps to install Python on Windows machine.

 Open a Web browser and go to https://www.python.org/downloads/.

 Follow the link for the Windows installer python-XYZ.msi file where XYZ is the

version you need to install.

 To use this installer python-XYZ.msi, the Windows system must support Microsoft

Installer 2.0. Save the installer file to your local machine and then run it to find out

if your machine supports MSI.

 Run the downloaded file. This brings up the Python install wizard, which is really

easy to use. Just accept the default settings and wait until the install is finished.

Macintosh Installation

If you are on Mac OS X, it is recommended that you use Homebrew to install Python 3. It

is a great package installer for Mac OS X and it is really easy to use. If you don't have

Homebrew, you can install it using the following command:

$ ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"

We can update the package manager with the command below:

$ brew update

Now run the following command to install Python3 on your system:

$ brew install python3

Setting up PATH

Programs and other executable files can be in many directories, so operating systems

provide a search path that lists the directories that the OS searches for executables.

The path is stored in an environment variable, which is a named string maintained by the

operating system. This variable contains information available to the command shell and

other programs.

The path variable is named as PATH in Unix or Path in Windows (Unix is case-sensitive;

Windows is not).

In Mac OS, the installer handles the path details. To invoke the Python interpreter from

any particular directory, you must add the Python directory to your path.

https://www.python.org/downloads/

AI with Python

 12

Setting Path at Unix/Linux

To add the Python directory to the path for a particular session in Unix −

 In the csh shell − type setenv PATH "$PATH:/usr/local/bin/python" and

press Enter.

 In the bash shell (Linux) − type export

ATH="$PATH:/usr/local/bin/python" and press Enter.

 In the sh or ksh shell − type PATH="$PATH:/usr/local/bin/python" and press

Enter.

Note − /usr/local/bin/python is the path of the Python directory.

Setting Path at Windows

To add the Python directory to the path for a particular session in Windows −

 At the command prompt − type path %path%;C:\Python and press Enter.

Note − C:\Python is the path of the Python directory.

Running Python

Let us now see the different ways to run Python. The ways are described below:

Interactive Interpreter

We can start Python from Unix, DOS, or any other system that provides you a command-

line interpreter or shell window.

 Enter python at the command line.

 Start coding right away in the interactive interpreter.

$python # Unix/Linux

or

python% # Unix/Linux

or

C:> python # Windows/DOS

Here is the list of all the available command line options −

S.No. Option & Description

1 -d

It provides debug output.

AI with Python

 13

2 -O

It generates optimized bytecode (resulting in .pyo files).

3 -S

Do not run import site to look for Python paths on startup.

4 -v

Verbose output (detailed trace on import statements).

5 -X

Disables class-based built-in exceptions (just use strings); obsolete starting with

version 1.6.

6 -c cmd

Runs Python script sent in as cmd string.

7 File

Run Python script from given file.

Script from the Command-line

A Python script can be executed at the command line by invoking the interpreter on your

application, as in the following −

$python script.py # Unix/Linux

or,

python% script.py # Unix/Linux

or,

C: >python script.py # Windows/DOS

Note − Be sure the file permission mode allows execution.

Integrated Development Environment

You can run Python from a Graphical User Interface (GUI) environment as well, if you have

a GUI application on your system that supports Python.

 Unix − IDLE is the very first Unix IDE for Python.

AI with Python

 14

 Windows − PythonWin is the first Windows interface for Python and is an IDE with

a GUI.

 Macintosh − The Macintosh version of Python along with the IDLE IDE is available

from the main website, downloadable as either MacBinary or BinHex'd files.

If you are not able to set up the environment properly, then you can take help from your

system admin. Make sure the Python environment is properly set up and working perfectly

fine.

We can also use another Python platform called Anaconda. It includes hundreds of popular

data science packages and the conda package and virtual environment manager for

Windows, Linux and MacOS. You can download it as per your operating system from the

link https://www.anaconda.com/download/.

For this tutorial we are using Python 3.6.3 version on MS Windows.

AI with Python

 15

Learning means the acquisition of knowledge or skills through study or experience. Based

on this, we can define machine learning (ML) as follows:

It may be defined as the field of computer science, more specifically an application of

artificial intelligence, which provides computer systems the ability to learn with data and

improve from experience without being explicitly programmed.

Basically, the main focus of machine learning is to allow the computers learn automatically

without human intervention. Now the question arises that how such learning can be started

and done? It can be started with the observations of data. The data can be some examples,

instruction or some direct experiences too. Then on the basis of this input, machine makes

better decision by looking for some patterns in data.

Types of Machine Learning (ML)

Machine Learning Algorithms helps computer system learn without being explicitly

programmed. These algorithms are categorized into supervised or unsupervised. Let us

now see a few algorithms:

Supervised machine learning algorithms

This is the most commonly used machine learning algorithm. It is called supervised

because the process of algorithm learning from the training dataset can be thought of as

a teacher supervising the learning process. In this kind of ML algorithm, the possible

outcomes are already known and training data is also labeled with correct answers. It can

be understood as follows:

Suppose we have input variables x and an output variable y and we applied an algorithm

to learn the mapping function from the input to output such as:

Y=f(x)

Now, the main goal is to approximate the mapping function so well that when we have

new input data (x), we can predict the output variable (Y) for that data.

Mainly supervised leaning problems can be divided into the following two kinds of

problems:

 Classification: A problem is called classification problem when we have the

categorized output such as “black”, “teaching”, “non-teaching”, etc.

 Regression: A problem is called regression problem when we have the real value

output such as “distance”, “kilogram”, etc.

Decision tree, random forest, knn, logistic regression are the examples of supervised

machine learning algorithms.

3. AI with Python – Machine Learning

AI with Python

 16

Unsupervised machine learning algorithms

As the name suggests, these kinds of machine learning algorithms do not have any

supervisor to provide any sort of guidance. That is why unsupervised machine learning

algorithms are closely aligned with what some call true artificial intelligence. It can be

understood as follows:

Suppose we have input variable x, then there will be no corresponding output variables as

there is in supervised learning algorithms.

In simple words, we can say that in unsupervised learning there will be no correct answer

and no teacher for the guidance. Algorithms help to discover interesting patterns in data.

Unsupervised learning problems can be divided into the following two kinds of problem:

Clustering: In clustering problems, we need to discover the inherent groupings in

the data. For example, grouping customers by their purchasing behavior.

 Association: A problem is called association problem because such kinds of

problem require discovering the rules that describe large portions of our data. For

example, finding the customers who buy both x and y.

K-means for clustering, Apriori algorithm for association are the examples of unsupervised

machine learning algorithms.

Reinforcement machine learning algorithms

These kinds of machine learning algorithms are used very less. These algorithms train the

systems to make specific decisions. Basically, the machine is exposed to an environment

where it trains itself continually using the trial and error method. These algorithms learn

from past experience and tries to capture the best possible knowledge to make accurate

decisions. Markov Decision Process is an example of reinforcement machine learning

algorithms.

Most Common Machine Learning Algorithms

In this section, we will learn about the most common machine learning algorithms. The

algorithms are described below:

Linear Regression

It is one of the most well-known algorithms in statistics and machine learning.

Basic concept: Mainly linear regression is a linear model that assumes a linear relationship

between the input variables say x and the single output variable say y. In other words, we

can say that y can be calculated from a linear combination of the input variables x. The

relationship between variables can be established by fitting a best line.

Types of Linear Regression

Linear regression is of the following two types:

 Simple linear regression: A linear regression algorithm is called simple linear

regression if it is having only one independent variable.

AI with Python

 17

 Multiple linear regression: A linear regression algorithm is called multiple linear

regression if it is having more than one independent variable.

Linear regression is mainly used to estimate the real values based on continuous

variable(s). For example, the total sale of a shop in a day, based on real values, can be

estimated by linear regression.

Logistic Regression

It is a classification algorithm and also known as logit regression.

Mainly logistic regression is a classification algorithm that is used to estimate the discrete

values like 0 or 1, true or false, yes or no based on a given set of independent variable.

Basically, it predicts the probability hence its output lies in between 0 and 1.

Decision Tree

Decision tree is a supervised learning algorithm that is mostly used for classification

problems.

Basically it is a classifier expressed as recursive partition based on the independent

variables. Decision tree has nodes which form the rooted tree. Rooted tree is a directed

tree with a node called “root”. Root does not have any incoming edges and all the other

nodes have one incoming edge. These nodes are called leaves or decision nodes. For

example, consider the following decision tree to see whether a person is fit or not.

Support Vector Machine (SVM)

It is used for both classification and regression problems. But mainly it is used for

classification problems. The main concept of SVM is to plot each data item as a point in n-

dimensional space with the value of each feature being the value of a particular coordinate.

Here n would be the features we would have. Following is a simple graphical representation

to understand the concept of SVM:

No

Age<30 yrs

Eat lots of fast

food

Exercise in the

morning daily

Ye

s

No

Unfit Fit Unfit Fit

Ye

s

Ye

s
No

AI with Python

 18

In the above diagram, we have two features hence we first need to plot these two variables

in two dimensional space where each point has two co-ordinates, called support vectors.

The line splits the data into two different classified groups. This line would be the classifier.

Naïve Bayes

It is also a classification technique. The logic behind this classification technique is to use

Bayes theorem for building classifiers. The assumption is that the predictors are

independent. In simple words, it assumes that the presence of a particular feature in a

class is unrelated to the presence of any other feature. Below is the equation for Bayes

theorem:

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)

The Naïve Bayes model is easy to build and particularly useful for large data sets.

K-Nearest Neighbors (KNN)

It is used for both classification and regression of the problems. It is widely used to solve

classification problems. The main concept of this algorithm is that it used to store all the

available cases and classifies new cases by majority votes of its k neighbors. The case

being then assigned to the class which is the most common amongst its K-nearest

neighbors, measured by a distance function. The distance function can be Euclidean,

Minkowski and Hamming distance. Consider the following to use KNN:

 Computationally KNN are expensive than other algorithms used for classification

problems.

 The normalization of variables needed otherwise higher range variables can bias it.

 In KNN, we need to work on pre-processing stage like noise removal.

K-Means Clustering

As the name suggests, it is used to solve the clustering problems. It is basically a type of

unsupervised learning. The main logic of K-Means clustering algorithm is to classify the

data set through a number of clusters. Follow these steps to form clusters by K-means:

 K-means picks k number of points for each cluster known as centroids.

 Now each data point forms a cluster with the closest centroids, i.e., k clusters.

AI with Python

 19

 Now, it will find the centroids of each cluster based on the existing cluster members.

 We need to repeat these steps until convergence occurs.

Random Forest

It is a supervised classification algorithm. The advantage of random forest algorithm is

that it can be used for both classification and regression kind of problems. Basically it is

the collection of decision trees (i.e., forest) or you can say ensemble of the decision trees.

The basic concept of random forest is that each tree gives a classification and the forest

chooses the best classifications from them. Followings are the advantages of Random

Forest algorithm:

 Random forest classifier can be used for both classification and regression tasks.

 They can handle the missing values.

 It won’t over fit the model even if we have more number of trees in the forest.

AI with Python

 20

We have already studied supervised as well as unsupervised machine learning algorithms.

These algorithms require formatted data to start the training process. We must prepare

or format data in a certain way so that it can be supplied as an input to ML algorithms.

This chapter focuses on data preparation for machine learning algorithms.

Preprocessing the Data

In our daily life, we deal with lots of data but this data is in raw form. To provide the data

as the input of machine learning algorithms, we need to convert it into a meaningful data.

That is where data preprocessing comes into picture. In other simple words, we can say

that before providing the data to the machine learning algorithms we need to preprocess

the data.

Data preprocessing steps

Follow these steps to preprocess the data in Python:

Step 1: Importing the useful packages: If we are using Python then this would be the

first step for converting the data into a certain format, i.e., preprocessing. It can be done

as follows:

 import numpy as np

 from sklearn import preprocessing

Here we have used the following two packages:

 NumPy: Basically NumPy is a general purpose array-processing package designed

to efficiently manipulate large multi-dimensional arrays of arbitrary records without

sacrificing too much speed for small multi-dimensional arrays.

 Sklearn.preprocessing: This package provides many common utility functions

and transformer classes to change raw feature vectors into a representation that is

more suitable for machine learning algorithms.

Step 2: Defining sample data: After importing the packages, we need to define some

sample data so that we can apply preprocessing techniques on that data. We will now

define the following sample data:

 Input_data = np.array([2.1, -1.9, 5.5],

 [-1.5, 2.4, 3.5],

 [0.5, -7.9, 5.6],

 [5.9, 2.3, -5.8]])

4. AI with Python – Data Preparation

AI with Python

 21

Step3: Applying preprocessing technique: In this step, we need to apply any of the

preprocessing techniques.

The following section describes the data preprocessing techniques.

Techniques for Data Preprocessing

The techniques for data preprocessing are described below:

Binarization

This is the preprocessing technique which is used when we need to convert our numerical

values into Boolean values. We can use an inbuilt method to binarize the input data say

by using 0.5 as the threshold value in the following way:

data_binarized = preprocessing.Binarizer(threshold=0.5).transform(input_data

)

print("\nBinarized data:\n", data_binarized)

Now, after running the above code we will get the following output, all the values above

0.5(threshold value) would be converted to 1 and all the values below 0.5 would be

converted to 0.

Binarized data

 [[1. 0. 1.]

 [0. 1. 1.]

 [0. 0. 1.]

 [1. 1. 0.]]

Mean Removal

It is another very common preprocessing technique that is used in machine learning.

Basically it is used to eliminate the mean from feature vector so that every feature is

centered on zero. We can also remove the bias from the features in the feature vector.

For applying mean removal preprocessing technique on the sample data, we can write the

Python code shown below. The code will display the Mean and Standard deviation of the

input data:

print("Mean =", input_data.mean(axis=0))

print("Std deviation = ", input_data.std(axis=0))

We will get the following output after running the above lines of code:

Mean = [1.75 -1.275 2.2]

Std deviation = [2.71431391 4.20022321 4.69414529]

AI with Python

 22

Now, the code below will remove the Mean and Standard deviation of the input data:

data_scaled = preprocessing.scale(input_data)

print("Mean =", data_scaled.mean(axis=0))

print("Std deviation =", data_scaled.std(axis=0))

We will get the following output after running the above lines of code:

Mean = [1.11022302e-16 0.00000000e+00 0.00000000e+00]

Std deviation = [1. 1. 1.]

Scaling

It is another data preprocessing technique that is used to scale the feature vectors. Scaling

of feature vectors is needed because the values of every feature can vary between many

random values. In other words we can say that scaling is important because we do not

want any feature to be synthetically large or small. With the help of the following Python

code, we can do the scaling of our input data, i.e., feature vector:

Min max scaling

data_scaler_minmax = preprocessing.MinMaxScaler(feature_range=(0,1))

data_scaled_minmax = data_scaler_minmax.fit_transform(input_data)

print ("\nMin max scaled data:\n", data_scaled_minmax)

We will get the following output after running the above lines of code:

Min max scaled data

 [[0.48648649 0.58252427 0.99122807]

 [0. 1. 0.81578947]

 [0.27027027 0. 1.]

 [1. 0.99029126 0.]]

Normalization

It is another data preprocessing technique that is used to modify the feature vectors. Such

kind of modification is necessary to measure the feature vectors on a common scale.

Followings are two types of normalization which can be used in machine learning:

L1 Normalization

It is also referred to as Least Absolute Deviations. This kind of normalization modifies

the values so that the sum of the absolute values is always up to 1 in each row. It can be

implemented on the input data with the help of the following Python code:

 # Normalize data

 data_normalized_l1 = preprocessing.normalize(input_data, norm='l1')

AI with Python

 23

 print("\nL1 normalized data:\n", data_normalized_l1)

The above line of code generates the following output:

 L1 normalized data:

 [[0.22105263 -0.2 0.57894737]

 [-0.2027027 0.32432432 0.47297297]

 [0.03571429 -0.56428571 0.4]

 [0.42142857 0.16428571 -0.41428571]]

L2 Normalization

It is also referred to as least squares. This kind of normalization modifies the values so

that the sum of the squares is always up to 1 in each row. It can be implemented on the

input data with the help of the following Python code:

Normalize data

data_normalized_l2 = preprocessing.normalize(input_data, norm='l2')

print("\nL2 normalized data:\n", data_normalized_l2)

The above line of code will generate the following output:

L2 normalized data:

 [[0.33946114 -0.30713151 0.88906489]

 [-0.33325106 0.53320169 0.7775858]

 [0.05156558 -0.81473612 0.57753446]

 [0.68706914 0.26784051 -0.6754239]]

Labeling the Data

We already know that data in a certain format is necessary for machine learning

algorithms. Another important requirement is that the data must be labelled properly

before sending it as the input of machine learning algorithms. For example, if we talk

about classification, there are lot of labels on the data. Those labels are in the form of

words, numbers, etc. Functions related to machine learning in sklearn expect that the

data must have number labels. Hence, if the data is in other form then it must be converted

to numbers. This process of transforming the word labels into numerical form is called

label encoding.

Label encoding steps

Follow these steps for encoding the data labels in Python:

Step1: Importing the useful packages

If we are using Python then this would be first step for converting the data into certain

format, i.e., preprocessing. It can be done as follows:

AI with Python

 24

 import numpy as np

 from sklearn import preprocessing

Step 2: Defining sample labels

After importing the packages, we need to define some sample labels so that we can create

and train the label encoder. We will now define the following sample labels:

Sample input labels

input_labels = ['red','black','red','green','black','yellow','white']

Step 3: Creating & training of label encoder object

In this step, we need to create the label encoder and train it. The following Python code

will help in doing this:

Creating the label encoder

encoder = preprocessing.LabelEncoder()

encoder.fit(input_labels)

Following would be the output after running the above Python code:

LabelEncoder()

Step4: Checking the performance by encoding random ordered list

This step can be used to check the performance by encoding the random ordered list.

Following Python code can be written to do the same:

encoding a set of labels

test_labels = ['green','red','black']

encoded_values = encoder.transform(test_labels)

print("\nLabels =", test_labels)

The labels would get printed as follows:

Labels = ['green', 'red', 'black']

Now, we can get the list of encoded values i.e. word labels converted to numbers as

follows:

print("Encoded values =", list(encoded_values))

The encoded values would get printed as follows:

Encoded values = [1, 2, 0]

AI with Python

 25

Step 5: Checking the performance by decoding a random set of numbers:

This step can be used to check the performance by decoding the random set of numbers.

Following Python code can be written to do the same:

decoding a set of values

encoded_values = [3,0,4,1]

decoded_list = encoder.inverse_transform(encoded_values)

print("\nEncoded values =", encoded_values)

Now, Encoded values would get printed as follows:

Encoded values = [3, 0, 4, 1]

print("\nDecoded labels =", list(decoded_list))

Now, decoded values would get printed as follows:

Decoded labels = ['white', 'black', 'yellow', 'green']

Labeled v/s Unlabeled Data

Unlabeled data mainly consists of the samples of natural or human-created object that can

easily be obtained from the world. They include, audio, video, photos, news articles, etc.

On the other hand, labeled data takes a set of unlabeled data and augments each piece of

that unlabeled data with some tag or label or class that is meaningful. For example, if we

have a photo then the label can be put based on the content of the photo, i.e., it is photo

of a boy or girl or animal or anything else. Labeling the data needs human expertise or

judgment about a given piece of unlabeled data.

There are many scenarios where unlabeled data is plentiful and easily obtained but labeled

data often requires a human/expert to annotate. Semi-supervised learning attempts to

combine labeled and unlabeled data to build better models.

AI with Python

 26

In this chapter, we will focus on implementing supervised learning - classification.

The classification technique or model attempts to get some conclusion from observed

values. In classification problem, we have the categorized output such as “Black” or “white”

or “Teaching” and “Non-Teaching”. While building the classification model, we need to

have training dataset that contains data points and the corresponding labels. For example,

if we want to check whether the image is of a car or not. For checking this, we will build a

training dataset having the two classes related to “car” and “no car”. Then we need to

train the model by using the training samples. The classification models are mainly used

in face recognition, spam identification, etc.

Steps for Building a Classifier in Python

For building a classifier in Python, we are going to use Python 3 and Scikit-learn which is

a tool for machine learning. Follow these steps to build a classifier in Python:

Step 1: Import Scikit-learn

This would be very first step for building a classifier in Python. In this step, we will install

a Python package called Scikit-learn which is one of the best machine learning modules in

Python. The following command will help us import the package:

Import Sklearn

Step 2: Import Scikit-learn’s dataset

In this step, we can begin working with the dataset for our machine learning model. Here,

we are going to use the Breast Cancer Wisconsin Diagnostic Database. The dataset

includes various information about breast cancer tumors, as well as classification labels

of malignant or benign. The dataset has 569 instances, or data, on 569 tumors and

includes information on 30 attributes, or features, such as the radius of the tumor, texture,

smoothness, and area. With the help of the following command, we can import the Scikit-

learn’s breast cancer dataset:

from sklearn.datasets import load_breast_cancer

Now, the following command will load the dataset.

data = load_breast_cancer()

Following is a list of important dictionary keys:

 Classification label names(target_names)

 The actual labels(target)

 The attribute/feature names(feature_names)

5. AI with Python – Supervised Learning: Classification

http://scikit-learn.org/stable/datasets/index.html#breast-cancer-wisconsin-diagnostic-database

AI with Python

 27

 The attribute (data)

Now, with the help of the following command, we can create new variables for each

important set of information and assign the data. In other words, we can organize the

data with the following commands:

 label_names = data['target_names']

 labels = data['target']

 feature_names = data['feature_names']

 features = data['data']

Now, to make it clearer we can print the class labels, the first data instance’s label, our

feature names and the feature’s value with the help of the following commands:

 print(label_names)

The above command will print the class names which are malignant and benign

respectively. It is shown as the output below:

 ['malignant' 'benign']

Now, the command below will show that they are mapped to binary values 0 and 1. Here

0 represents malignant cancer and 1 represents benign cancer. You will receive the

following output:

 print(labels[0])

 0

The two commands given below will produce the feature names and feature values.

 print(feature_names[0])

 mean radius

 print(features[0])

 [1.79900000e+01 1.03800000e+01 1.22800000e+02 1.00100000e+03

 1.18400000e-01 2.77600000e-01 3.00100000e-01 1.47100000e-01

 2.41900000e-01 7.87100000e-02 1.09500000e+00 9.05300000e-01

 8.58900000e+00 1.53400000e+02 6.39900000e-03 4.90400000e-02

 5.37300000e-02 1.58700000e-02 3.00300000e-02 6.19300000e-03

 2.53800000e+01 1.73300000e+01 1.84600000e+02 2.01900000e+03

 1.62200000e-01 6.65600000e-01 7.11900000e-01 2.65400000e-01

 4.60100000e-01 1.18900000e-01]

AI with Python

 28

From the above output, we can see that the first data instance is a malignant tumor the

radius of which is 1.7990000e+01.

Step 3: Organizing data into sets

In this step, we will divide our data into two parts namely a training set and a test set.

Splitting the data into these sets is very important because we have to test our model on

the unseen data. To split the data into sets, sklearn has a function called the

train_test_split() function. With the help of the following commands, we can split the

data in these sets:

 from sklearn.model_selection import train_test_split

The above command will import the train_test_split function from sklearn and the

command below will split the data into training and test data. In the example given below,

we are using 40 % of the data for testing and the remaining data would be used for training

the model.

 train, test, train_labels, test_labels =

 train_test_split(features,labels,test_size = 0.40, random_state = 42)

Step 4: Building the model

In this step, we will be building our model. We are going to use Naïve Bayes algorithm for

building the model. Following commands can be used to build the model:

 from sklearn.naive_bayes import GaussianNB

The above command will import the GaussianNB module. Now, the following command will

help you initialize the model.

 gnb = GaussianNB()

We will train the model by fitting it to the data by using gnb.fit().

 model = gnb.fit(train, train_labels)

Step 5: Evaluating the model and its accuracy

In this step, we are going to evaluate the model by making predictions on our test data.

Then we will find out its accuracy also. For making predictions, we will use the predict()

function. The following command will help you do this:

 preds = gnb.predict(test)

 print(preds)

 [1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1

AI with Python

 29

1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1

0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1

1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0

1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1]

The above series of 0s and 1s are the predicted values for the tumor classes – malignant

and benign.

Now, by comparing the two arrays namely test_labels and preds, we can find out the

accuracy of our model. We are going to use the accuracy_score() function to determine

the accuracy. Consider the following command for this:

 from sklearn.metrics import accuracy_score

 print(accuracy_score(test_labels,preds))

 0.951754385965

The result shows that the NaïveBayes classifier is 95.17% accurate.

In this way, with the help of

 the above steps we can build our classifier in Python.

Building Classifier in Python

In this section, we will learn how to build a classifier in Python.

Naïve Bayes Classifier

Naïve Bayes is a classification technique used to build classifier using the Bayes theorem.

The assumption is that the predictors are independent. In simple words, it assumes that

the presence of a particular feature in a class is unrelated to the presence of any other

feature. For building Naïve Bayes classifier we need to use the python library called scikit

learn. There are three types of Naïve Bayes models named Gaussian, Multinomial and

Bernoulli under scikit learn package.

To build a Naïve Bayes machine learning classifier model, we need the following:

Dataset

We are going to use the dataset named Breast Cancer Wisconsin Diagnostic Database. The

dataset includes various information about breast cancer tumors, as well as classification

labels of malignant or benign. The dataset has 569 instances, or data, on 569 tumors

and includes information on 30 attributes, or features, such as the radius of the tumor,

texture, smoothness, and area. We can import this dataset from sklearn package.

Naïve Bayes Model

For building Naïve Bayes classifier, we need a Naïve Bayes model. As told earlier, there

are three types of Naïve Bayes models named Gaussian, Multinomial and Bernoulli

under scikit learn package. Here, in the following example we are going to use the

Gaussian Naïve Bayes model.

http://scikit-learn.org/stable/datasets/index.html#breast-cancer-wisconsin-diagnostic-database

AI with Python

 30

By using the above, we are going to build a Naïve Bayes machine learning model to use

the tumor information to predict whether or not a tumor is malignant or benign.

To begin with, we need to install the sklearn module. It can be done with the help of the

following command:

Import Sklearn

Now, we need to import the dataset named Breast Cancer Wisconsin Diagnostic Database.

from sklearn.datasets import load_breast_cancer

Now, the following command will load the dataset.

data = load_breast_cancer()

The data can be organized as follows:

label_names = data['target_names']

labels = data['target']

feature_names = data['feature_names']

features = data['data']

Now, to make it clearer we can print the class labels, the first data instance’s label, our

feature names and the feature’s value with the help of following commands:

print(label_names)

The above command will print the class names which are malignant and benign

respectively. It is shown as the output below:

['malignant' 'benign']

Now, the command given below will show that they are mapped to binary values 0 and 1.

Here 0 represents malignant cancer and 1 represents benign cancer. It is shown as the

output below:

print(labels[0])

0

The following two commands will produce the feature names and feature values.

 print(feature_names[0])

 mean radius

 print(features[0])

 [1.79900000e+01 1.03800000e+01 1.22800000e+02 1.00100000e+03

AI with Python

 31

 1.18400000e-01 2.77600000e-01 3.00100000e-01 1.47100000e-01

 2.41900000e-01 7.87100000e-02 1.09500000e+00 9.05300000e-01

 8.58900000e+00 1.53400000e+02 6.39900000e-03 4.90400000e-02

 5.37300000e-02 1.58700000e-02 3.00300000e-02 6.19300000e-03

 2.53800000e+01 1.73300000e+01 1.84600000e+02 2.01900000e+03

 1.62200000e-01 6.65600000e-01 7.11900000e-01 2.65400000e-01

 4.60100000e-01 1.18900000e-01]

From the above output, we can see that the first data instance is a malignant tumor the

main radius of which is 1.7990000e+01.

For testing our model on unseen data, we need to split our data into training and testing

data. It can be done with the help of the following code:

from sklearn.model_selection import train_test_split

The above command will import the train_test_split function from sklearn and the

command below will split the data into training and test data. In the below example, we

are using 40 % of the data for testing and the remining data would be used for training

the model.

train, test, train_labels, test_labels =

train_test_split(features,labels,test_size = 0.40, random_state = 42)

Now, we are building the model with the following commands:

 from sklearn.naive_bayes import GaussianNB

The above command will import the GaussianNB module. Now, with the command given

below, we need to initialize the model.

 gnb = GaussianNB()

We will train the model by fitting it to the data by using gnb.fit().

 model = gnb.fit(train, train_labels)

Now, evaluate the model by making prediction on the test data and it can be done as

follows:

 preds = gnb.predict(test)

 print(preds)

 [1 0 0 1 1 0 0 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1

0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1

1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1 1

0 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1

AI with Python

 32

1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 1 0

1 1 1 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1]

The above series of 0s and 1s are the predicted values for the tumor classes i.e. malignant

and benign.

Now, by comparing the two arrays namely test_labels and preds, we can find out the

accuracy of our model. We are going to use the accuracy_score() function to determine

the accuracy. Consider the following command:

 from sklearn.metrics import accuracy_score

 print(accuracy_score(test_labels,preds))

 0.951754385965

The result shows that NaïveBayes classifier is 95.17% accurate.

That was machine learning classifier based on the Naïve Bayse Gaussian model.

Support Vector Machines (SVM)

Basically, Support vector machine (SVM) is a supervised machine learning algorithm that

can be used for both regression and classification. The main concept of SVM is to plot each

data item as a point in n-dimensional space with the value of each feature being the value

of a particular coordinate. Here n would be the features we would have. Following is a

simple graphical representation to understand the concept of SVM:

In the above diagram, we have two features. Hence, we first need to plot these two

variables in two dimensional space where each point has two co-ordinates, called support

vectors. The line splits the data into two different classified groups. This line would be the

classifier.

Here, we are going to build an SVM classifier by using scikit-learn and iris dataset. Scikit-

learn library has the sklearn.svm module and provides sklearn.svm.svc for classification.

The SVM classifier to predict the class of the iris plant based on 4 features are shown

below.

AI with Python

 33

Dataset

We will use the iris dataset which contains 3 classes of 50 instances each, where each

class refers to a type of iris plant. Each instance has the four features namely sepal length,

sepal width, petal length and petal width. The SVM classifier to predict the class of the iris

plant based on 4 features is shown below.

Kernel

It is a technique used by SVM. Basically these are the functions which take low-dimensional

input space and transform it to a higher dimensional space. It converts non-separable

problem to separable problem. The kernel function can be any one among linear,

polynomial, rbf and sigmoid. In this example, we will use the linear kernel.

Let us now import the following packages:

import pandas as pd

import numpy as np

from sklearn import svm, datasets

import matplotlib.pyplot as plt

Now, load the input data:

iris = datasets.load_iris()

We are taking first two features:

X = iris.data[:, :2]

y = iris.target

We will plot the support vector machine boundaries with original data. We are creating a

mesh to plot.

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1

y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

h = (x_max / x_min)/100

xx, yy = np.meshgrid(np.arange(x_min, x_max, h),

 np.arange(y_min, y_max, h))

X_plot = np.c_[xx.ravel(), yy.ravel()]

We need to give the value of regularization parameter.

C = 1.0

AI with Python

 34

We need to create the SVM classifier object.

Svc_classifier = svm_classifier.SVC(kernel='linear', C=C,

decision_function_shape='ovr').fit(X, y)

Z = svc_classifier.predict(X_plot)

Z = Z.reshape(xx.shape)

plt.figure(figsize=(15, 5))

plt.subplot(121)

plt.contourf(xx, yy, Z, cmap=plt.cm.tab10, alpha=0.3)

plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1)

plt.xlabel('Sepal length')

plt.ylabel('Sepal width')

plt.xlim(xx.min(), xx.max())

plt.title('SVC with linear kernel')

Logistic Regression

Basically, logistic regression model is one of the members of supervised classification

algorithm family. Logistic regression measures the relationship between dependent

variables and independent variables by estimating the probabilities using a logistic

function.

Here, if we talk about dependent and independent variables then dependent variable is

the target class variable we are going to predict and on the other side the independent

variables are the features we are going to use to predict the target class.

In logistic regression, estimating the probabilities means to predict the likelihood

occurrence of the event. For example, the shop owner would like to predict the customer

who entered into the shop will buy the play station (for example) or not. There would be

many features of customer – gender, age, etc. which would be observed by the shop

AI with Python

 35

keeper to predict the likelihood occurrence, i.e., buying a play station or not. The logistic

function is the sigmoid curve that is used to build the function with various parameters.

Prerequisites

Before building the classifier using logistic regression, we need to install the Tkinter

package on our system. It can be installed from

https://docs.python.org/2/library/tkinter.html.

Now, with the help of the code given below, we can create a classifier using logistic

regression:

First, we will import some packages:

import numpy as np

from sklearn import linear_model

import matplotlib.pyplot as plt

Now, we need to define the sample data which can be done as follows:

X = np.array([[2, 4.8], [2.9, 4.7], [2.5, 5], [3.2, 5.5], [6, 5], [7.6, 4],

[3.2, 0.9], [2.9, 1.9], [2.4, 3.5], [0.5, 3.4], [1, 4], [0.9, 5.9]])

y = np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3])

Next, we need to create the logistic regression classifier, which can be done as follows:

Classifier_LR = linear_model.LogisticRegression(solver='liblinear', C=75)

Last but not the least, we need to train this classifier:

Classifier_LR.fit(X, y)

Now, how we can visualize the output? It can be done by creating a function named

Logistic_visualize():

Def Logistic_visualize(Classifier_LR, X, y):

 min_x, max_x = X[:, 0].min() - 1.0, X[:, 0].max() + 1.0

 min_y, max_y = X[:, 1].min() - 1.0, X[:, 1].max() + 1.0

In the above line, we defined the minimum and maximum values X and Y to be used in

mesh grid. In addition, we will define the step size for plotting the mesh grid.

 mesh_step_size = 0.02

Let us define the mesh grid of X and Y values as follows:

 x_vals, y_vals = np.meshgrid(np.arange(min_x, max_x, mesh_step_size),

np.arange(min_y, max_y, mesh_step_size))

https://docs.python.org/2/library/tkinter.html

AI with Python

 36

With the help of following code, we can run the classifier on the mesh grid:

 output = classifier.predict(np.c_[x_vals.ravel(), y_vals.ravel()])

 output = output.reshape(x_vals.shape)

 plt.figure()

 plt.pcolormesh(x_vals, y_vals, output, cmap=plt.cm.gray)

plt.scatter(X[:, 0], X[:, 1], c=y, s=75, edgecolors='black', linewidth=1,

cmap=plt.cm.Paired)

The following line of code will specify the boundaries of the plot

 plt.xlim(x_vals.min(), x_vals.max())

 plt.ylim(y_vals.min(), y_vals.max())

 plt.xticks((np.arange(int(X[:, 0].min() - 1), int(X[:, 0].max() + 1),

1.0)))

 plt.yticks((np.arange(int(X[:, 1].min() - 1), int(X[:, 1].max() + 1),

1.0)))

 plt.show()

Now, after running the code we will get the following output, logistic regression classifier:

AI with Python

 37

Decision Tree Classifier

A decision tree is basically a binary tree flowchart where each node splits a group of

observations according to some feature variable.

Here, we are building a Decision Tree classifier for predicting male or female. We will take

a very small data set having 19 samples. These samples would consist of two features –

‘height’ and ‘length of hair’.

Prerequisite

For building the following classifier, we need to install pydotplus and graphviz. Basically,

graphviz is a tool for drawing graphics using dot files and pydotplus is a module to

Graphviz’s Dot language. It can be installed with the package manager or pip.

Now, we can build the decision tree classifier with the help of the following Python code:

To begin with, let us import some important libraries as follows:

import pydotplus

from sklearn import tree

from sklearn.datasets import load_iris

from sklearn.metrics import classification_report

from sklearn import cross_validation

import collections

Now, we need to provide the dataset as follows:

X=[[165,19],[175,32],[136,35],[174,65],[141,28],[176,15],[131,32],[166,6],[128,

32],[179,10],[136,34],[186,2],[126,25],[176,28],[112,38],[169,9],[171,36],[116,

25],[196,25]]

Y =

['Man','Woman','Woman','Man','Woman','Man','Woman','Man','Woman','Man','Woman',

'Man','Woman','Woman','Woman','Man','Woman','Woman','Man']

data_feature_names = ['height','length of hair']

X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y,

test_size=0.40, random_state=5)

After providing the dataset, we need to fit the model which can be done as follows:

clf = tree.DecisionTreeClassifier()

clf = clf.fit(X,Y)

Prediction can be made with the help of the following Python code:

prediction = clf.predict([[133,37]])

print(prediction)

AI with Python

 38

We can visualize the decision tree with the help of the following Python code:

dot_data =

tree.export_graphviz(clf,feature_names=data_feature_names,out_file=None,filled=

True,rounded=True)

graph = pydotplus.graph_from_dot_data(dot_data)

colors = ('orange', 'yellow')

edges = collections.defaultdict(list)

for edge in

graph.get_edge_list():edges[edge.get_source()].append(int(edge.get_destination(

)))

for edge in edges: edges[edge].sort()

for i in range(2):dest = graph.get_node(str(edges[edge][i]))[0]

dest.set_fillcolor(colors[i])

graph.write_png('Decisiontree16.png')

It will give the prediction for the above code as [‘Woman’] and create the following

decision tree:

AI with Python

 39

We can change the values of features in prediction to test it.

Random Forest Classifier

As we know that ensemble methods are the methods which combine machine learning

models into a more powerful machine learning model. Random Forest, a collection of

decision trees, is one of them. It is better than single decision tree because while retaining

the predictive powers it can reduce over-fitting by averaging the results. Here, we are

going to implement the random forest model on scikit learn cancer dataset.

Import the necessary packages:

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

import matplotlib.pyplot as plt

import numpy as np

Now, we need to provide the dataset which can be done as follows:

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target,

random_state=0)

After providing the dataset, we need to fit the model which can be done as follows:

forest = RandomForestClassifier(n_estimators=50, random_state=0)

forest.fit(X_train,y_train)

Now, get the accuracy on training as well as testing subset: if we will increase the number

of estimators then, the accuracy of testing subset would also be increased.

print('Accuracy on the training

subset:(:.3f)',format(forest.score(X_train,y_train)))

print('Accuracy on the training

subset:(:.3f)',format(forest.score(X_test,y_test)))

Output

Accuracy on the training subset:(:.3f) 1.0

Accuracy on the training subset:(:.3f) 0.965034965034965

Now, like the decision tree, random forest has the feature_importance module which

will provide a better view of feature weight than decision tree. It can be plot and visualize

as follows:

AI with Python

 40

n_features = cancer.data.shape[1]

plt.barh(range(n_features),forest.feature_importances_, align='center')

plt.yticks(np.arange(n_features),cancer.feature_names)

plt.xlabel('Feature Importance')

plt.ylabel('Feature')

plt.show()

Performance of a classifier

After implementing a machine learning algorithm, we need to find out how effective the

model is. The criteria for measuring the effectiveness may be based upon datasets and

metric. For evaluating different machine learning algorithms, we can use different

performance metrics. For example, suppose if a classifier is used to distinguish between

images of different objects, we can use the classification performance metrics such as

average accuracy, AUC, etc. In one or other sense, the metric we choose to evaluate our

machine learning model is very important because the choice of metrics influences how

the performance of a machine learning algorithm is measured and compared. Following

are some of the metrics:

Confusion Matrix

Basically it is used for classification problem where the output can be of two or more types

of classes. It is the easiest way to measure the performance of a classifier. A confusion

matrix is basically a table with two dimensions namely “Actual” and “Predicted”. Both the

dimensions have “True Positives (TP)”, “True Negatives (TN)”, “False Positives (FP)”,

“False Negatives (FN)”.

AI with Python

 41

True Positives (TP)

False Positives (FP)

False Negatives (FN) True Negatives (TN)

In the confusion matrix above, 1 is for positive class and 0 is for negative class.

Following are the terms associated with Confusion matrix:

 True Positives: TPs are the cases when the actual class of data point was 1 and

the predicted is also 1.

 True Negatives: TNs are the cases when the actual class of the data point was 0

and the predicted is also 0.

 False Positives: FPs are the cases when the actual class of data point was 0 and

the predicted is also 1.

 False Negatives: FNs are the cases when the actual class of the data point was 1

and the predicted is also 0.

Accuracy

The confusion matrix itself is not a performance measure as such but almost all the

performance matrices are based on the confusion matrix. One of them is accuracy. In

classification problems, it may be defined as the number of correct predictions made by

the model over all kinds of predictions made. The formula for calculating the accuracy is

as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Precision

It is mostly used in document retrievals. It may be defined as how many of the returned

documents are correct. Following is the formula for calculating the precision:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall or Sensitivity

It may be defined as how many of the positives do the model return. Following is the

formula for calculating the recall/sensitivity of the model:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Actual

Predicted

Confusion Matrix

1

 1

0

0

AI with Python

 42

Specificity

It may be defined as how many of the negatives do the model return. It is exactly opposite

to recall. Following is the formula for calculating the specificity of the model:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Class Imbalance Problem

Class imbalance is the scenario where the number of observations belonging to one class

is significantly lower than those belonging to the other classes. For example, this problem

is prominent in the scenario where we need to identify the rare diseases, fraudulent

transactions in bank etc.

Example of imbalanced classes

Let us consider an example of fraud detection data set to understand the concept of

imbalanced class:

 Total observations = 5000

 Fraudulent Observations = 50

 Non-Fraudulent Observations = 4950

 Event Rate = 1%

Solution

Balancing the classes’ acts as a solution to imbalanced classes. The main objective of

balancing the classes is to either increase the frequency of the minority class or decrease

the frequency of the majority class. Following are the approaches to solve the issue of

imbalances classes:

Re-Sampling

Re-sampling is a series of methods used to reconstruct the sample data sets - both training

sets and testing sets. Re-sampling is done to improve the accuracy of model. Following

are some re-sampling techniques:

 Random Under-Sampling: This technique aims to balance class distribution by

randomly eliminating majority class examples. This is done until the majority and

minority class instances are balanced out.

 Total observations = 5000

 Fraudulent Observations = 50

 Non-Fraudulent Observations = 4950

 Event Rate = 1%

AI with Python

 43

In this case, we are taking 10% samples without replacement from non-fraud instances

and then combine them with the fraud instances:

Non-fraudulent observations after random under sampling = 10% of 4950 = 495

Total observations after combining them with fraudulent observations = 50+495 = 545

Hence now, the event rate for new dataset after under sampling = 9%

The main advantage of this technique is that it can reduce run time and improve storage.

But on the other side, it can discard useful information while reducing the number of

training data samples.

 Random Over-Sampling: This technique aims to balance class distribution by

increasing the number of instances in the minority class by replicating them.

 Total observations = 5000

 Fraudulent Observations = 50

 Non-Fraudulent Observations = 4950

 Event Rate = 1%

In case we are replicating 50 fraudulent observations 30 times then fraudulent

observations after replicating the minority class observations would be 1500. And then

total observations in the new data after oversampling would be 4950+1500 = 6450. Hence

the event rate for the new data set would be 1500/6450 = 23%.

The main advantage of this method is that there would be no loss of useful information.

But on the other hand, it has the increased chances of over-fitting because it replicates

the minority class events.

Ensemble Techniques

This methodology basically is used to modify existing classification algorithms to make

them appropriate for imbalanced data sets. In this approach we construct several two

stage classifier from the original data and then aggregate their predictions. Random forest

classifier is an example of ensemble based classifier.

Data

C1

C2

Cn

Total Votes

Fresh Sample of

Data

Fresh Sample of

Data

Classifiers

Ensemble based Methodology

AI with Python

 44

Regression is one of the most important statistical and machine learning tools. We would

not be wrong to say that the journey of machine learning starts from regression. It may

be defined as the parametric technique that allows us to make decisions based upon data

or in other words allows us to make predictions based upon data by learning the

relationship between input and output variables. Here, the output variables dependent on

the input variables, are continuous-valued real numbers. In regression, the relationship

between input and output variables matters and it helps us in understanding how the value

of the output variable changes with the change of input variable. Regression is frequently

used for prediction of prices, economics, variations, and so on.

Building Regressors in Python

In this section, we will learn how to build single as well as multivariable regressor.

Linear Regressor/Single Variable Regressor

Let us important a few required packages:

import numpy as np

from sklearn import linear_model

import sklearn.metrics as sm

import matplotlib.pyplot as plt

Now, we need to provide the input data and we have saved our data in the file named

linear.txt.

input = 'D:/ProgramData/linear.txt'

We need to load this data by using the np.loadtxt function.

input_data = np.loadtxt(input, delimiter=',')

X, y = input_data[:, :-1], input_data[:, -1]

The next step would be to train the model. Let us give training and testing samples.

training_samples = int(0.6 * len(X))

testing_samples = len(X) - num_training

X_train, y_train = X[:training_samples], y[:training_samples]

X_test, y_test = X[training_samples:], y[training_samples:]

6. AI with Python – Supervised Learning: Regression

AI with Python

 45

Now, we need to create a linear regressor object.

reg_linear= linear_model.LinearRegression()

Train the object with the training samples.

reg_linear.fit(X_train, y_train)

We need to do the prediction with the testing data.

y_test_pred = reg_linear.predict(X_test)

Now plot and visualize the data.

plt.scatter(X_test, y_test, color='red')

plt.plot(X_test, y_test_pred, color='black', linewidth=2)

plt.xticks(())

plt.yticks(())

plt.show()

Output

Now, we can compute the performance of our linear regression as follows:

print("Performance of Linear regressor:")

print("Mean absolute error =", round(sm.mean_absolute_error(y_test,

y_test_pred), 2))

print("Mean squared error =", round(sm.mean_squared_error(y_test, y_test_pred),

2))

print("Median absolute error =", round(sm.median_absolute_error(y_test,

y_test_pred), 2))

AI with Python

 46

print("Explain variance score =", round(sm.explained_variance_score(y_test,

y_test_pred), 2))

print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))

Output

Performance of Linear Regressor:

Mean absolute error = 1.78

Mean squared error = 3.89

Median absolute error = 2.01

Explain variance score = -0.09

R2 score = -0.09

In the above code, we have used this small data. If you want some big dataset then you

can use sklearn.dataset to import bigger dataset.

2,4.82.9,4.72.5,53.2,5.56,57.6,43.2,0.92.9,1.92.4,3.50.5,3.41,40.9,5.91.2,2.583

.2,5.65.1,1.54.5,1.22.3,6.32.1,2.8

Multivariable Regressor

First, let us import a few required packages:

import numpy as np

from sklearn import linear_model

import sklearn.metrics as sm

import matplotlib.pyplot as plt

from sklearn.preprocessing import PolynomialFeatures

Now, we need to provide the input data and we have saved our data in the file named

linear.txt.

input = 'D:/ProgramData/Mul_linear.txt'

We will load this data by using the np.loadtxt function.

input_data = np.loadtxt(input, delimiter=',')

X, y = input_data[:, :-1], input_data[:, -1]

The next step would be to train the model; we will give training and testing samples.

training_samples = int(0.6 * len(X))

testing_samples = len(X) - num_training

AI with Python

 47

X_train, y_train = X[:training_samples], y[:training_samples]

X_test, y_test = X[training_samples:], y[training_samples:]

Now, we need to create a linear regressor object.

reg_linear_mul= linear_model.LinearRegression()

Train the object with the training samples.

reg_linear_mul.fit(X_train, y_train)

Now, at last we need to do the prediction with the testing data.

y_test_pred = reg_linear_mul.predict(X_test)

print("Performance of Linear regressor:")

print("Mean absolute error =", round(sm.mean_absolute_error(y_test,

y_test_pred), 2))

print("Mean squared error =", round(sm.mean_squared_error(y_test, y_test_pred),

2))

print("Median absolute error =", round(sm.median_absolute_error(y_test,

y_test_pred), 2))

print("Explain variance score =", round(sm.explained_variance_score(y_test,

y_test_pred), 2))

print("R2 score =", round(sm.r2_score(y_test, y_test_pred), 2))

Output

Performance of Linear Regressor:

Mean absolute error = 0.6

Mean squared error = 0.65

Median absolute error = 0.41

Explain variance score = 0.34

R2 score = 0.33

Now, we will create a polynomial of degree 10 and train the regressor. We will provide the

sample data point.

polynomial = PolynomialFeatures(degree=10)

X_train_transformed = polynomial.fit_transform(X_train)

AI with Python

 48

datapoint = [[2.23, 1.35, 1.12]]

poly_datapoint = polynomial.fit_transform(datapoint)

poly_linear_model = linear_model.LinearRegression()

poly_linear_model.fit(X_train_transformed, y_train)

print("\nLinear regression:\n", reg_linear_mul.predict(datapoint))

print("\nPolynomial regression:\n", poly_linear_model.predict(poly_datapoint))

Output

Linear regression:

 [2.40170462]

Polynomial regression:

 [1.8697225]

In the above code, we have used this small data. If you want a big dataset then, you can

use sklearn.dataset to import a bigger dataset.

2,4.8,1.2,3.22.9,4.7,1.5,3.62.5,5,2.8,23.2,5.5,3.5,2.16,5,2,3.27.6,4,1.2,3.23.2

,0.9,2.3,1.42.9,1.9,2.3,1.22.4,3.5,2.8,3.60.5,3.4,1.8,2.91,4,3,2.50.9,5.9,5.6,0

.81.2,2.58,3.45,1.233.2,5.6,2,3.25.1,1.5,1.2,1.34.5,1.2,4.1,2.32.3,6.3,2.5,3.22

.1,2.8,1.2,3.6

AI with Python

 49

In this chapter, we will focus logic programming and how it helps in Artificial Intelligence.

We already know that logic is the study of principles of correct reasoning or in simple

words it is the study of what comes after what. For example, if two statements are true

then we can infer any third statement from it.

Concept

Logic Programming is the combination of two words, logic and programming. Logic

Programming is a programming paradigm in which the problems are expressed as facts

and rules by program statements but within a system of formal logic. Just like other

programming paradigms like object oriented, functional, declarative, and procedural, etc.,

it is also a particular way to approach programming.

How to Solve Problems with Logic Programming

Logic Programming uses facts and rules for solving the problem. That is why they are

called the building blocks of Logic Programming. A goal needs to be specified for every

program in logic programming. To understand how a problem can be solved in logic

programming, we need to know about the building blocks – Facts and Rules:

Facts

Actually, every logic program needs facts to work with so that it can achieve the given

goal. Facts basically are true statements about the program and data. For example, Delhi

is the capital of India.

Rules

Actually, rules are the constraints which allow us to make conclusions about the problem

domain. Rules basically written as logical clauses to express various facts. For example, if

we are building any game then all the rules must be defined.

Rules are very important to solve any problem in Logic Programming. Rules are basically

logical conclusion which can express the facts. Following is the syntax of rule:

𝐴 ∶ − 𝐵1, 𝐵2, . . . , 𝐵𝑛.

Here, A is the head and B1, B2, ... Bn is the body.

For example: ancestor(X,Y) :- father(X,Y).

ancestor(X,Z) :- father(X,Y), ancestor(Y,Z).

This can be read as, for every X and Y, if X is the father of Y and Y is an ancestor of Z, X

is the ancestor of Z. For every X and Y, X is the ancestor of Z, if X is the father of Y and Y

is an ancestor of Z.

7. AI with Python – Logic Programming

AI with Python

 50

Installing Useful Packages

For starting logic programming in Python, we need to install the following two packages:

Kanren

It provides us a way to simplify the way we made code for business logic. It lets us express

the logic in terms of rules and facts. The following command will help you install kanren:

 pip install kanren

SymPy

SymPy is a Python library for symbolic mathematics. It aims to become a full-featured

computer algebra system (CAS) while keeping the code as simple as possible in order to

be comprehensible and easily extensible. The following command will help you install

SymPy:

 pip install sympy

Examples of Logic Programming

Followings are some examples which can be solved by logic programming:

Matching mathematical expressions

Actually we can find the unknown values by using logic programming in a very effective

way. The following Python code will help you match a mathematical expression:

Consider importing the following packages first:

 from kanren import run, var, fact

 from kanren.assoccomm import eq_assoccomm as eq

 from kanren.assoccomm import commutative, associative

We need to define the mathematical operations which we are going to use:

 add = 'add'

 mul = 'mul'

Both addition and multiplication are communicative processes. Hence, we need to specify

it and this can be done as follows:

 fact(commutative, mul)

 fact(commutative, add)

 fact(associative, mul)

 fact(associative, add)

AI with Python

 51

It is compulsory to define variables; this can be done as follows:

 a, b = var('a'), var('b')

We need to match the expression with the original pattern. We have the following original

pattern, which is basically (5+a)*b:

 Original_pattern = (mul, (add, 5, a), b)

We have the following two expressions to match with the original pattern:

 exp1 = (mul, 2, (add, 3, 1))

 exp2 = (add,5,(mul,8,1))

Output can be printed with the following command:

print(run(0, (a,b), eq(original_pattern, exp1)))

print(run(0, (a,b), eq(original_pattern, exp2)))

After running this code, we will get the following output:

((3,2))

()

The first output represents the values for a and b. The first expression matched the original

pattern and returned the values for a and b but the second expression did not match the

original pattern hence nothing has been returned.

Checking for Prime Numbers

With the help of logic programming, we can find the prime numbers from a list of numbers

and can also generate prime numbers. The Python code given below will find the prime

number from a list of numbers and will also generate the first 10 prime numbers.

Let us first consider importing the following packages:

from kanren import isvar, run, membero

from kanren.core import success, fail, goaleval, condeseq, eq, var

from sympy.ntheory.generate import prime, isprime

import itertools as it

Now, we will define a function called prime_check which will check the prime numbers

based on the given numbers as data.

 def prime_check(x):

 if isvar(x):

AI with Python

 52

 return condeseq([(eq,x,p)] for p in map(prime, it.count(1)))

 else:

 return success if isprime(x) else fail

Now, we need to declare a variable which will be used:

x = var()

print((set(run(0,x,(membero,x,(12,14,15,19,20,21,22,23,29,30,41,44,52,62,65,85)

),(prime_check,x)))))

print((run(10,x,prime_check(x))))

The output of the above code will be as follows:

{19, 23, 29, 41}

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)

Solving Puzzles

Logic programming can be used to solve many problems like 8-puzzles, Zebra puzzle,

Sudoku, N-queen, etc. Here we are taking an example of a variant of Zebra puzzle which

is as follows:

There are five houses.

The English man lives in the red house.

The Swede has a dog.

The Dane drinks tea.

The green house is immediately to the left of the white house.

They drink coffee in the green house.

The man who smokes Pall Mall has birds.

In the yellow house they smoke Dunhill.

In the middle house they drink milk.

The Norwegian lives in the first house.

The man who smokes Blend lives in the house next to the house with cats.

In a house next to the house where they have a horse, they smoke Dunhill.

The man who smokes Blue Master drinks beer.

The German smokes Prince.

The Norwegian lives next to the blue house.

They drink water in a house next to the house where they smoke Blend.

AI with Python

 53

We are solving it for the question who owns zebra with the help of Python.

Let us import the necessary packages:

from kanren import *

from kanren.core import lall

import time

Now, we need to define two functions – left() and next() to check whose house is left or

next to who’s house:

def left(q, p, list):

 return membero((q,p), zip(list, list[1:]))

def next(q, p, list):

 return conde([left(q, p, list)], [left(p, q, list)])

Now, we will declare a variable house as follows:

houses = var()

We need to define the rules with the help of lall package as follows.

There are 5 houses:

rules_zebraproblem = lall(

 (eq, (var(), var(), var(), var(), var()), houses),

 (membero,('Englishman', var(), var(), var(), 'red'), houses),

 (membero,('Swede', var(), var(), 'dog', var()), houses),

 (membero,('Dane', var(), 'tea', var(), var()), houses),

 (left,(var(), var(), var(), var(), 'green'),

 (var(), var(), var(), var(), 'white'), houses),

 (membero,(var(), var(), 'coffee', var(), 'green'), houses),

 (membero,(var(), 'Pall Mall', var(), 'birds', var()), houses),

 (membero,(var(), 'Dunhill', var(), var(), 'yellow'), houses),

 (eq,(var(), var(), (var(), var(), 'milk', var(), var()), var(), var()),

houses),

 (eq,(('Norwegian', var(), var(), var(), var()), var(), var(), var(),

var()), houses),

 (next,(var(), 'Blend', var(), var(), var()),

AI with Python

 54

 (var(), var(), var(), 'cats', var()), houses),

 (next,(var(), 'Dunhill', var(), var(), var()),

 (var(), var(), var(), 'horse', var()), houses),

 (membero,(var(), 'Blue Master', 'beer', var(), var()), houses),

 (membero,('German', 'Prince', var(), var(), var()), houses),

 (next,('Norwegian', var(), var(), var(), var()),

 (var(), var(), var(), var(), 'blue'), houses),

 (next,(var(), 'Blend', var(), var(), var()),

 (var(), var(), 'water', var(), var()), houses),

 (membero,(var(), var(), var(), 'zebra', var()), houses)

)

Now, run the solver with the preceding constraints:

solutions = run(0, houses, rules_zebraproblem)

With the help of the following code, we can extract the output from the solver:

output_zebra = [house for house in solutions[0] if 'zebra' in house][0][0]

The following code will help print the solution:

print ('\n'+ output_zebra + 'owns zebra.')

The output of the above code would be as follows:

German owns zebra.

AI with Python

 55

Unsupervised machine learning algorithms do not have any supervisor to provide any sort

of guidance. That is why they are closely aligned with what some call true artificial

intelligence.

In unsupervised learning, there would be no correct answer and no teacher for the

guidance. Algorithms need to discover the interesting pattern in data for learning.

What is Clustering?

Basically, it is a type of unsupervised learning method and a common technique for

statistical data analysis used in many fields. Clustering mainly is a task of dividing the set

of observations into subsets, called clusters, in such a way that observations in the same

cluster are similar in one sense and they are dissimilar to the observations in other

clusters. In simple words, we can say that the main goal of clustering is to group the data

on the basis of similarity and dissimilarity.

For example, the following diagram shows similar kind of data in different clusters:

Algorithms for Clustering the Data

Following are a few common algorithms for clustering the data:

K-Means algorithm

K-means clustering algorithm is one of the well-known algorithms for clustering the data.

We need to assume that the numbers of clusters are already known. This is also called flat

clustering. It is an iterative clustering algorithm. The steps given below need to be followed

for this algorithm:

8. AI with Python – Unsupervised Learning: Clustering

AI with Python

 56

Step 1: We need to specify the desired number of K subgroups.

Step 2: Fix the number of clusters and randomly assign each data point to a cluster. Or

in other words we need to classify our data based on the number of clusters.

In this step, cluster centroids should be computed.

As this is an iterative algorithm, we need to update the locations of K centroids with every

iteration until we find the global optima or in other words the centroids reach at their

optimal locations.

The following code will help in implementing K-means clustering algorithm in Python. We

are going to use the Scikit-learn module.

Let us import the necessary packages:

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

The following line of code will help in generating the two-dimensional dataset, containing

four blobs, by using make_blob from the sklearn.dataset package.

from sklearn.datasets.samples_generator import make_blobs

X, y_true = make_blobs(n_samples=500, centers=4,

 cluster_std=0.40, random_state=0)

We can visualize the dataset by using the following code:

plt.scatter(X[:, 0], X[:, 1], s=50);

plt.show()

AI with Python

 57

Here, we are initializing kmeans to be the KMeans algorithm, with the required parameter

of how many clusters (n_clusters).

kmeans = KMeans(n_clusters=4)

We need to train the K-means model with the input data.

kmeans.fit(X)

y_kmeans = kmeans.predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')

centers = kmeans.cluster_centers_

The code given below will help us plot and visualize the machine's findings based on our

data, and the fitment according to the number of clusters that are to be found.

plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);

plt.show()

AI with Python

 58

Mean Shift Algorithm

It is another popular and powerful clustering algorithm used in unsupervised learning. It

does not make any assumptions hence it is a non-parametric algorithm. It is also called

hierarchical clustering or mean shift cluster analysis. Followings would be the basic steps

of this algorithm:

 First of all, we need to start with the data points assigned to a cluster of their own.

 Now, it computes the centroids and update the location of new centroids.

 By repeating this process, we move closer the peak of cluster i.e. towards the

region of higher density.

 This algorithm stops at the stage where centroids do not move anymore.

With the help of following code we are implementing Mean Shift clustering algorithm in

Python. We are going to use Scikit-learn module.

Let us import the necessary packages:

import numpy as np

from sklearn.cluster import MeanShift

import matplotlib.pyplot as plt

from matplotlib import style

style.use("ggplot")

The following code will help in generating the two-dimensional dataset, containing four

blobs, by using make_blob from the sklearn.dataset package.

AI with Python

 59

from sklearn.datasets.samples_generator import make_blobs

We can visualize the dataset with the following code:

centers = [[2,2],[4,5],[3,10]]

X, _ = make_blobs(n_samples = 500, centers = centers, cluster_std = 1)

plt.scatter(X[:,0],X[:,1])

plt.show()

Now, we need to train the Mean Shift cluster model with the input data.

ms = MeanShift()

ms.fit(X)

labels = ms.labels_

cluster_centers = ms.cluster_centers_

The following code will print the cluster centers and the expected number of cluster as per

the input data:

print(cluster_centers)

n_clusters_ = len(np.unique(labels))

print("Estimated clusters:", n_clusters_)

AI with Python

 60

[[3.23005036 3.84771893]

[3.02057451 9.88928991]]

Estimated clusters: 2

The code given below will help plot and visualize the machine's findings based on our data,

and the fitment according to the number of clusters that are to be found.

colors = 10*['r.','g.','b.','c.','k.','y.','m.']

for i in range(len(X)):

 plt.plot(X[i][0], X[i][1], colors[labels[i]], markersize = 10)

plt.scatter(cluster_centers[:,0],cluster_centers[:,1],

 marker="x",color='k', s=150, linewidths = 5, zorder=10)

plt.show()

AI with Python

 61

Measuring the Clustering Performance

The real world data is not naturally organized into number of distinctive clusters. Due to

this reason, it is not easy to visualize and draw inferences. That is why we need to measure

the clustering performance as well as its quality. It can be done with the help of silhouette

analysis.

Silhouette Analysis

This method can be used to check the quality of clustering by measuring the distance

between the clusters. Basically, it provides a way to assess the parameters like number of

clusters by giving a silhouette score. This score is a metric that measures how close each

point in one cluster is to the points in the neighboring clusters.

Analysis of silhouette score

The score has a range of [-1, 1]. Following is the analysis of this score:

 Score of +1: Score near +1 indicates that the sample is far away from the

neighboring cluster.

 Score of 0: Score 0 indicates that the sample is on or very close to the decision

boundary between two neighboring clusters.

 Score of -1: Negative score indicates that the samples have been assigned to the

wrong clusters.

Calculating Silhouette Score

In this section, we will learn how to calculate the silhouette score.

Silhouette score can be calculated by using the following formula:

𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑠𝑐𝑜𝑟𝑒 = (𝑝 − 𝑞)/max (𝑝, 𝑞)

Here, 𝑝 is the mean distance to the points in the nearest cluster that the data point is not

a part of. And, 𝑞 is the mean intra-cluster distance to all the points in its own cluster.

For finding the optimal number of clusters, we need to run the clustering algorithm again

by importing the metrics module from the sklearn package. In the following example,

we will run the K-means clustering algorithm to find the optimal number of clusters:

Import the necessary packages as shown:

import matplotlib.pyplot as plt

import seaborn as sns; sns.set()

import numpy as np

from sklearn.cluster import KMeans

With the help of the following code, we will generate the two-dimensional dataset,

containing four blobs, by using make_blob from the sklearn.dataset package.

AI with Python

 62

from sklearn.datasets.samples_generator import make_blobs

X, y_true = make_blobs(n_samples=500, centers=4,

 cluster_std=0.40, random_state=0)

Initialize the variables as shown:

scores = []

values = np.arange(2, 10)

We need to iterate the K-means model through all the values and also need to train it with

the input data.

 for num_clusters in values:

 kmeans = KMeans(init='k-means++', n_clusters=num_clusters, n_init=10)

 kmeans.fit(X)

Now, estimate the silhouette score for the current clustering model using the Euclidean

distance metric:

score = metrics.silhouette_score(X, kmeans.labels_,

 metric='euclidean', sample_size=len(X))

The following line of code will help in displaying the number of clusters as well as Silhouette

score.

print("\nNumber of clusters =", num_clusters)

print("Silhouette score =", score)

scores.append(score)

You will receive the following output:

Number of clusters = 9

Silhouette score = 0.340391138371

num_clusters = np.argmax(scores) + values[0]

print('\nOptimal number of clusters =', num_clusters)

Now, the output for optimal number of clusters would be as follows:

Optimal number of clusters = 2

AI with Python

 63

Finding Nearest Neighbors

If we want to build recommender systems such as a movie recommender system then we

need to understand the concept of finding the nearest neighbors. It is because the

recommender system utilizes the concept of nearest neighbors.

The concept of finding nearest neighbors may be defined as the process of finding the

closest point to the input point from the given dataset. The main use of this KNN)K-nearest

neighbors) algorithm is to build classification systems that classify a data point on the

proximity of the input data point to various classes.

The Python code given below helps in finding the K-nearest neighbors of a given data set:

Import the necessary packages as shown below. Here, we are using the

NearestNeighbors module from the sklearn package:

 import numpy as np

 import matplotlib.pyplot as plt

 from sklearn.neighbors import NearestNeighbors

Let us now define the input data:

A = np.array([[3.1, 2.3], [2.3, 4.2], [3.9, 3.5], [3.7, 6.4], [4.8, 1.9],[8.3,

3.1], [5.2, 7.5], [4.8, 4.7], [3.5, 5.1], [4.4, 2.9],])

Now, we need to define the nearest neighbors:

 k = 3

We also need to give the test data from which the nearest neighbors is to be found:

 test_data = [3.3, 2.9]

The following code can visualize and plot the input data defined by us:

 plt.figure()

 plt.title('Input data')

 plt.scatter(A[:,0], A[:,1], marker='o', s=100, color='black')

AI with Python

 64

Now, we need to build the K Nearest Neighbor. The object also needs to be trained:

 knn_model = NearestNeighbors(n_neighbors=k, algorithm='auto').fit(X)

 distances, indices = knn_model.kneighbors([test_data])

Now, we can print the K nearest neighbors as follows:

 print("\nK Nearest Neighbors:")

 for rank, index in enumerate(indices[0][:k], start=1):

 print(str(rank) + " is", A[index])

We can visualize the nearest neighbors along with the test data point:

 plt.figure()

 plt.title('Nearest neighbors')

 plt.scatter(A[:, 0], X[:, 1], marker='o', s=100, color='k')

 plt.scatter(A[indices][0][:][:, 0], A[indices][0][:][:, 1],

 marker='o', s=250, color='k', facecolors='none')

 plt.scatter(test_data[0], test_data[1],

 marker='x', s=100, color='k')

 plt.show()

AI with Python

 65

Output

K Nearest Neighbors

1 is [3.1 2.3]

2 is [3.9 3.5]

3 is [4.4 2.9]

K-Nearest Neighbors Classifier

A K-Nearest Neighbors (KNN) classifier is a classification model that uses the nearest

neighbors algorithm to classify a given data point. We have implemented the KNN

algorithm in the last section, now we are going to build a KNN classifier using that

algorithm.

Concept of KNN Classifier

The basic concept of K-nearest neighbor classification is to find a predefined number, i.e.,

the 'k' - of training samples closest in distance to a new sample, which has to be classified.

New samples will get their label from the neighbors itself. The KNN classifiers have a fixed

user defined constant for the number of neighbors which have to be determined. For the

distance, standard Euclidean distance is the most common choice. The KNN Classifier

works directly on the learned samples rather than creating the rules for learning. The KNN

algorithm is among the simplest of all machine learning algorithms. It has been quite

successful in a large number of classification and regression problems, for example,

character recognition or image analysis.

AI with Python

 66

Example

We are building a KNN classifier to recognize digits. For this, we will use the MNIST dataset.

We will write this code in the Jupyter Notebook.

Import the necessary packages as shown below.

Here we are using the KNeighborsClassifier module from the sklearn.neighbors

package:

from sklearn.datasets import *

import pandas as pd

%matplotlib inline

from sklearn.neighbors import KNeighborsClassifier

import matplotlib.pyplot as plt

import numpy as np

The following code will display the image of digit to verify what image we have to test:

def Image_display(i):

 plt.imshow(digit['images'][i],cmap='Greys_r')

 plt.show()

Now, we need to load the MNIST dataset. Actually there are total 1797 images but we are

using the first 1600 images as training sample and the remaining 197 would be kept for

testing purpose.

digit = load_digits()

digit_d = pd.DataFrame(digit['data'][0:1600])

Now, on displaying the images we can see the output as follows:

Image_display(0)

Image_display(0)

Image of 0 is displayed as follows:

AI with Python

 67

Image_display(9)

Image of 9 is displayed as follows:

digit.keys()

Now, we need to create the training and testing data set and supply testing data set to

the KNN classifiers.

train_x= digit['data'][:1600]

train_y = digit['target'][:1600]

KNN = KNeighborsClassifier(20)

KNN.fit(train_x,train_y)

The following output will create the K nearest neighbor classifier constructor:

KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',

 metric_params=None, n_jobs=1, n_neighbors=20, p=2,

 weights='uniform')

We need to create the testing sample by providing any arbitrary number greater than

1600, which were the training samples.

test = np.array(digit['data'][1725])

test1 = test.reshape(1,-1)

Image_display(1725)

AI with Python

 68

Image_display(6)

Image of 6 is displayed as follows:

Now we will predict the test data as follows:

KNN.predict(test1)

The above code will generate the following output:

 array([6])

Now, consider the following:

digit['target_names']

The above code will generate the following output:

 array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

AI with Python

 69

Natural Language Processing (NLP) refers to AI method of communicating with intelligent

systems using a natural language such as English.

Processing of Natural Language is required when you want an intelligent system like robot

to perform as per your instructions, when you want to hear decision from a dialogue based

clinical expert system, etc.

The field of NLP involves making computers erform useful tasks with the natural languages

humans use. The input and output of an NLP system can be −

 Speech

 Written Text

Components of NLP

In this section, we will learn about the different components of NLP. There are two

components of NLP. The components are described below:

Natural Language Understanding (NLU)

It involves the following tasks:

 Mapping the given input in natural language into useful representations.

 Analyzing different aspects of the language.

Natural Language Generation (NLG)

It is the process of producing meaningful phrases and sentences in the form of natural

language from some internal representation. It involves:

 Text planning − This includes retrieving the relevant content from the knowledge

base.

 Sentence planning − This includes choosing the required words, forming

meaningful phrases, setting tone of the sentence.

 Text Realization − This is mapping sentence plan into sentence structure.

Difficulties in NLU

The NLU is very rich in form and structure; however, it is ambiguous. There can be different

levels of ambiguity −

Lexical ambiguity

It is at a very primitive level such as the word-level. For example, treating the word “board”

as noun or verb?

9. AI with Python – Natural Language Processing

AI with Python

 70

Syntax level ambiguity

A sentence can be parsed in different ways. For example, “He lifted the beetle with red

cap.” − Did he use cap to lift the beetle or he lifted a beetle that had red cap?

Referential ambiguity

Referring to something using pronouns. For example, Rima went to Gauri. She said, “I am

tired.” − Exactly who is tired?

NLP Terminology

Let us now see a few important terms in the NLP terminology.

 Phonology − It is study of organizing sound systematically.

 Morphology − It is a study of construction of words from primitive meaningful

units.

 Morpheme − It is a primitive unit of meaning in a language.

 Syntax − It refers to arranging words to make a sentence. It also involves

determining the structural role of words in the sentence and in phrases.

 Semantics − It is concerned with the meaning of words and how to combine words

into meaningful phrases and sentences.

 Pragmatics − It deals with using and understanding sentences in different

situations and how the interpretation of the sentence is affected.

 Discourse − It deals with how the immediately preceding sentence can affect the

interpretation of the next sentence.

 World Knowledge − It includes the general knowledge about the world.

Steps in NLP

This section shows the different steps in NLP.

Lexical Analysis

It involves identifying and analyzing the structure of words. Lexicon of a language means

the collection of words and phrases in a language. Lexical analysis is dividing the whole

chunk of txt into paragraphs, sentences, and words.

Syntactic Analysis (Parsing)

It involves analysis of words in the sentence for grammar and arranging words in a manner

that shows the relationship among the words. The sentence such as “The school goes to

boy” is rejected by English syntactic analyzer.

Semantic Analysis

It draws the exact meaning or the dictionary meaning from the text. The text is checked

for meaningfulness. It is done by mapping syntactic structures and objects in the task

domain. The semantic analyzer disregards sentence such as “hot ice-cream”.

AI with Python

 71

Discourse Integration

The meaning of any sentence depends upon the meaning of the sentence just before it.

In addition, it also brings about the meaning of immediately succeeding sentence.

Pragmatic Analysis

During this, what was said is re-interpreted on what it actually meant. It involves deriving

those aspects of language which require real world knowledge.

AI with Python

 72

In this chapter, we will learn how to get started with the Natural Language Toolkit Package.

Prerequisite

If we want to build applications with Natural Language processing then the change in

context makes it most difficult. The context factor influences how the machine understands

a particular sentence. Hence, we need to develop Natural language applications by using

machine learning approaches so that machine can also understand the way a human can

understand the context.

To build such applications we will use the Python package called NLTK (Natural Language

Toolkit Package).

Importing NLTK

We need to install NLTK before using it. It can be installed with the help of the following

command:

 pip install nltk

To build a conda package for NLTK, use the following command:

 conda install -c anaconda nltk

Now after installing the NLTK package, we need to import it through the python command

prompt. We can import it by writing the following command on the Python command

prompt:

 >>> import nltk

Downloading NLTK’s Data

Now after importing NLTK, we need to download the required data. It can be done

with the help of the following command on the Python command prompt:

>>> nltk.download()

10. AI with Python – NLTK package

AI with Python

 73

Installing Other Necessary Packages

For building natural language processing applications by using NLTK, we need to install

the necessary packages. The packages are as follows:

gensim

It is a robust semantic modeling library that is useful for many applications. We can install

it by executing the following command:

 pip install gensim

pattern

It is used to make gensim package work properly. We can install it by executing the

following command:

 pip install pattern

Concept of Tokenization, Stemming, and Lemmatization

In this section, we will understand what is tokenization, stemming, and lemmatization.

Tokenization

It may be defined as the process of breaking the given text i.e. the character sequence

into smaller units called tokens. The tokens may be the words, numbers or punctuation

marks. It is also called word segmentation. Following is a simple example of tokenization:

Input: Mango, banana, pineapple and apple all are fruits.

Output:

The process of breaking the given text can be done with the help of locating the word

boundaries. The ending of a word and the beginning of a new word are called word

boundaries. The writing system and the typographical structure of the words influence the

boundaries.

In the Python NLTK module, we have different packages related to tokenization which we

can use to divide the text into tokens as per our requirements. Some of the packages are

as follows:

sent_tokenize package

As the name suggest, this package will divide the input text into sentences. We can import

this package with the help of the following Python code:

from nltk.tokenize import sent_tokenize

Mango

Banana

Pineapple

and

Apple

all

are

Fruits

AI with Python

 74

word_tokenize package

This package divides the input text into words. We can import this package with the help

of the following Python code:

from nltk.tokenize import word_tokenize

WordPunctTokenizer package

This package divides the input text into words as well as the punctuation marks. We can

import this package with the help of the following Python code:

from nltk.tokenize import WordPuncttokenizer

Stemming

While working with words, we come across a lot of variations due to grammatical reasons.

The concept of variations here means that we have to deal with different forms of the

same words like democracy, democratic, and democratization. It is very necessary

for machines to understand that these different words have the same base form. In this

way, it would be useful to extract the base forms of the words while we are analyzing the

text.

We can achieve this by stemming. In this way, we can say that stemming is the heuristic

process of extracting the base forms of the words by chopping off the ends of words.

In the Python NLTK module, we have different packages related to stemming. These

packages can be used to get the base forms of word. These packages use algorithms.

Some of the packages are as follows:

PorterStemmer package

This Python package uses the Porter’s algorithm to extract the base form. We can import

this package with the help of the following Python code:

from nltk.stem.porter import PorterStemmer

For example, if we will give the word ‘writing’ as the input to this stemmer them we will

get the word ‘write’ after stemming.

LancasterStemmer package

This Python package will use the Lancaster’s algorithm to extract the base form. We can

import this package with the help of the following Python code:

from nltk.stem.lancaster import LancasterStemmer

For example, if we will give the word ‘writing’ as the input to this stemmer them we will

get the word ‘writ’ after stemming.

AI with Python

 75

SnowballStemmer package

This Python package will use the snowball’s algorithm to extract the base form. We can

import this package with the help of the following Python code:

from nltk.stem.snowball import SnowballStemmer

For example, if we will give the word ‘writing’ as the input to this stemmer then we will

get the word ‘write’ after stemming.

All of these algorithms have different level of strictness. If we compare these three

stemmers then the Porter stemmers is the least strict and Lancaster is the strictest.

Snowball stemmer is good to use in terms of speed as well as strictness.

Lemmatization

We can also extract the base form of words by lemmatization. It basically does this task

with the use of a vocabulary and morphological analysis of words, normally aiming to

remove inflectional endings only. This kind of base form of any word is called lemma.

The main difference between stemming and lemmatization is the use of vocabulary and

morphological analysis of the words. Another difference is that stemming most commonly

collapses derivationally related words whereas lemmatization commonly only collapses the

different inflectional forms of a lemma. For example, if we provide the word saw as the

input word then stemming might return the word ‘s’ but lemmatization would attempt to

return the word either see or saw depending on whether the use of the token was a verb

or a noun.

In the Python NLTK module, we have the following package related to lemmatization

process which we can use to get the base forms of word:

WordNetLemmatizer package

This Python package will extract the base form of the word depending upon whether it is

used as a noun or as a verb. We can import this package with the help of the following

Python code:

from nltk.stem import WordNetLemmatizer

Chunking: Dividing Data into Chunks

It is one of the important processes in natural language processing. The main job of

chunking is to identify the parts of speech and short phrases like noun phrases. We have

already studied the process of tokenization, the creation of tokens. Chunking basically is

the labeling of those tokens. In other words, chunking will show us the structure of the

sentence.

In the following section, we will learn about the different types of Chunking.

AI with Python

 76

Types of chunking

There are two types of chunking. The types are as follows:

Chunking up

In this process of chunking, the object, things, etc. move towards being more general and

the language gets more abstract. There are more chances of agreement. In this process,

we zoom out. For example, if we will chunk up the question that “for what purpose cars

are”? We may get the answer “transport”.

Chunking down

In this process of chunking, the object, things, etc. move towards being more specific and

the language gets more penetrated. The deeper structure would be examined in chunking

down. In this process, we zoom in. For example, if we chunk down the question “Tell

specifically about a car”? We will get smaller pieces of information about the car.

Example

In this example, we will do Noun-Phrase chunking, a category of chunking which will find

the noun phrases chunks in the sentence, by using the NLTK module in Python:

Follow these steps in python for implementing noun phrase chunking:

Step 1: In this step, we need to define the grammar for chunking. It would consist of the

rules which we need to follow.

Step 2: In this step, we need to create a chunk parser. It would parse the grammar and

give the output.

Step 3: In this last step, the output is produced in a tree format.

Let us import the necessary NLTK package as follows:

import nltk

Now, we need to define the sentence. Here, DT means the determinant, VBP means the

verb, JJ means the adjective, IN means the preposition and NN means the noun.

sentence = [("a", "DT"),("clever",

"JJ"),("fox","NN"),("was","VBP"),("jumping","VBP"),("over","IN"),("the","DT"),(

"wall","NN")]

Now, we need to give the grammar. Here, we will give the grammar in the form of regular

expression.

grammar = "NP:{<DT>?<JJ>*<NN>}"

We need to define a parser which will parse the grammar.

parser_chunking=nltk.RegexpParser(grammar)

AI with Python

 77

The parser parses the sentence as follows:

parser_chunking.parse(sentence)

Next, we need to get the output. The output is generated in the simple variable called

output_chunk.

Output_chunk=parser_chunking.parse(sentence)

Upon execution of the following code, we can draw our output in the form of a tree.

output.draw()

Bag of Word (BoW) Model

Bag of Word (BoW), a model in natural language processing, is basically used to extract

the features from text so that the text can be used in modeling such that in machine

learning algorithms.

Now the question arises that why we need to extract the features from text. It is because

the machine learning algorithms cannot work with raw data and they need numeric data

so that they can extract meaningful information out of it. The conversion of text data into

numeric data is called feature extraction or feature encoding.

How it works

This is very simple approach for extracting the features from text. Suppose we have a text

document and we want to convert it into numeric data or say want to extract the features

out of it then first of all this model extracts a vocabulary from all the words in the

document. Then by using a document term matrix, it will build a model. In this way, BoW

represents the document as a bag of words only. Any information about the order or

structure of words in the document is discarded.

Concept of document term matrix

The BoW algorithm builds a model by using the document term matrix. As the name

suggests, the document term matrix is the matrix of various word counts that occur in the

document. With the help of this matrix, the text document can be represented as a

AI with Python

 78

weighted combination of various words. By setting the threshold and choosing the words

that are more meaningful, we can build a histogram of all the words in the documents that

can be used as a feature vector. Following is an example to understand the concept of

document term matrix:

Example

Suppose we have the following two sentences:

 Sentence 1: We are using the Bag of Words model.

 Sentence 2: Bag of Words model is used for extracting the features.

Now, by considering these two sentences, we have the following 13 distinct words:

 we

 are

 using

 the

 bag

 of

 words

 model

 is

 used

 for

 extracting

 features

Now, we need to build a histogram for each sentence by using the word count in each

sentence:

 Sentence 1: [1,1,1,1,1,1,1,1,0,0,0,0,0]

 Sentence 2: [0,0,0,1,1,1,1,1,1,1,1,1,1]

In this way, we have the feature vectors that have been extracted. Each feature vector is

13-dimensional because we have 13 distinct words.

Concept of the Statistics

The concept of the statistics is called TermFrequency-Inverse Document Frequency (tf-

idf). Every word is important in the document. The statistics help us nderstand the

importance of every word.

Term Frequency(tf)

It is the measure of how frequently each word appears in a document. It can be obtained

by dividing the count of each word by the total number of words in a given document.

AI with Python

 79

Inverse Document Frequency(idf)

It is the measure of how unique a word is to this document in the given set of documents.

For calculating idf and formulating a distinctive feature vector, we need to reduce the

weights of commonly occurring words like the and weigh up the rare words.

Building a Bag of Words Model in NLTK

In this section, we will define a collection of strings by using CountVectorizer to create

vectors from these sentences.

Let us import the necessary package:

from sklearn.feature_extraction.text import CountVectorizer

Now define the set of sentences.

 Sentences=['We are using the Bag of Word model', 'Bag of Word model is

used for extracting the features.']

 vectorizer_count = CountVectorizer()

 features_text = vectorizer.fit_transform(Sentences).todense()

 print(vectorizer.vocabulary_)

The above program generates the output as shown below. It shows that we have 13

distinct words in the above two sentences:

{'we': 11, 'are': 0, 'using': 10, 'the': 8, 'bag': 1, 'of': 7, 'word': 12,

'model': 6, 'is': 5, 'used': 9, 'for': 4, 'extracting': 2, 'features': 3}

These are the feature vectors (text to numeric form) which can be used for machine

learning.

Solving Problems

In this section, we will solve a few related problems.

Category Prediction

In a set of documents, not only the words but the category of the words is also important;

in which category of text a particular word falls. For example, we want to predict whether

a given sentence belongs to the category email, news, sports, computer, etc. In the

following example, we are going to use tf-idf to formulate a feature vector to find the

category of documents. We will use the data from 20 newsgroup dataset of sklearn.

We need to import the necessary packages:

AI with Python

 80

from sklearn.datasets import fetch_20newsgroups

from sklearn.naive_bayes import MultinomialNB

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

Define the category map. We are using five different categories named Religion, Autos,

Sports, Electronics and Space.

category_map = {'talk.religion.misc': 'Religion', 'rec.autos':

'Autos','rec.sport.hockey':'Hockey','sci.electronics':'Electronics',

'sci.space': 'Space'}

Create the training set:

training_data = fetch_20newsgroups(subset='train',

 categories=category_map.keys(), shuffle=True, random_state=5)

Build a count vectorizer and extract the term counts:

vectorizer_count = CountVectorizer()

train_tc = vectorizer_count.fit_transform(training_data.data)

print("\nDimensions of training data:", train_tc.shape)

The tf-idf transformer is created as follows:

tfidf = TfidfTransformer()

train_tfidf = tfidf.fit_transform(train_tc)

Now, define the test data:

input_data = [

 'Discovery was a space shuttle',

 'Hindu, Christian, Sikh all are religions',

 'We must have to drive safely',

 'Puck is a disk made of rubber',

 'Television, Microwave, Refrigrated all uses electricity'

]

The above data will help us train a Multinomial Naive Bayes classifier:

classifier = MultinomialNB().fit(train_tfidf, training_data.target)

AI with Python

 81

Transform the input data using the count vectorizer:

 input_tc = vectorizer_count.transform(input_data)

Now, we will transform the vectorized data using the tfidf transformer:

 input_tfidf = tfidf.transform(input_tc)

We will predict the output categories:

 predictions = classifier.predict(input_tfidf)

The output is generated as follows:

for sent, category in zip(input_data, predictions):

 print('\nInput Data:', sent, '\n Category:', \

 category_map[training_data.target_names[category]])

The category predictor generates the following output:

Dimensions of training data: (2755, 39297)

Input Data: Discovery was a space shuttle

Category: Space

Input Data: Hindu, Christian, Sikh all are religions

Category: Religion

Input Data: We must have to drive safely

Category: Autos

Input Data: Puck is a disk made of rubber

Category: Hockey

Input Data: Television, Microwave, Refrigrated all uses electricity

Category: Electronics

Gender Finder

n this problem statement, a classifier would be trained to find the gender (male or female)

by providing the names. We need to use a heuristic to construct a feature vector and train

AI with Python

 82

the classifier. We will be using the labeled data from the scikit-learn package. Following is

the Python code to build a gender finder:

Let us import the necessary packages:

import random

from nltk import NaiveBayesClassifier

from nltk.classify import accuracy as nltk_accuracy

from nltk.corpus import names

Now we need to extract the last N letters from the input word. These letters will act as

features:

def extract_features(word, N=2):

 last_n_letters = word[-N:]

 return {'feature': last_n_letters.lower()}

if __name__=='__main__':

Create the training data using labeled names (male as well as female) available in NLTK:

 male_list = [(name, 'male') for name in names.words('male.txt')]

 female_list = [(name, 'female') for name in names.words('female.txt')]

 data = (male_list + female_list)

 random.seed(5)

 random.shuffle(data)

Now, test data will be created as follows:

 namesInput = ['Rajesh', 'Gaurav', 'Swati', 'Shubha']

Define the number of samples used for train and test with the following code

 train_sample = int(0.8 * len(data))

Now, we need to iterate through different lengths so that the accuracy can be compared:

for i in range(1, 6):

 print('\nNumber of end letters:', i)

 features = [(extract_features(n, i), gender) for (n, gender) in data]

AI with Python

 83

 train_data, test_data = features[:train_sample],

features[train_sample:]

 classifier = NaiveBayesClassifier.train(train_data)

The accuracy of the classifier can be computed as follows:

 accuracy_classifier = round(100 * nltk_accuracy(classifier, test_data),

2)

 print('Accuracy = ' + str(accuracy_classifier) + '%')

Now, we can predict the output:

 for name in namesInput:

 print(name, '==>', classifier.classify(extract_features(name, i)))

The above program will generate the following output:

Number of end letters: 1

Accuracy = 74.7%

Rajesh -> female

Gaurav -> male

Swati -> female

Shubha -> female

Number of end letters: 2

Accuracy = 78.79%

Rajesh -> male

Gaurav -> male

Swati -> female

Shubha -> female

Number of end letters: 3

Accuracy = 77.22%

Rajesh -> male

Gaurav -> female

Swati -> female

Shubha -> female

Number of end letters: 4

Accuracy = 69.98%

Rajesh -> female

AI with Python

 84

Gaurav -> female

Swati -> female

Shubha -> female

Number of end letters: 5

Accuracy = 64.63%

Rajesh -> female

Gaurav -> female

Swati -> female

Shubha -> female

In the above output, we can see that accuracy in maximum number of end letters are two

and it is decreasing as the number of end letters are increasing.

Topic Modeling: Identifying Patterns in Text Data

We know that generally documents are grouped into topics. Sometimes we need to identify

the patterns in a text that correspond to a particular topic. The technique of doing this is

called topic modeling. In other words, we can say that topic modeling is a technique to

uncover abstract themes or hidden structure in the given set of documents.

We can use the topic modeling technique in the following scenarios:

Text Classification

With the help of topic modeling, classification can be improved because it groups similar

words together rather than using each word separately as a feature.

Recommender Systems

With the help of topic modeling, we can build the recommender systems by using similarity

measures.

Algorithms for Topic Modeling

Topic modeling can be implemented by using algorithms. The algorithms are as follows:

Latent Dirichlet Allocation(LDA)

This algorithm is the most popular for topic modeling. It uses the probabilistic graphical

models for implementing topic modeling. We need to import gensim package in Python for

using LDA slgorithm.

Latent Semantic Analysis(LDA) or Latent Semantic Indexing(LSI)

This algorithm is based upon Linear Algebra. Basically it uses the concept of SVD (Singular

Value Decomposition) on the document term matrix.

AI with Python

 85

Non-Negative Matrix Factorization (NMF)

It is also based upon Linear Algebra.

All of the above mentioned algorithms for topic modeling would have the number of

topics as a parameter, Document-Word Matrix as an input and WTM (Word Topic

Matrix) & TDM (Topic Document Matrix) as output.

AI with Python

 86

Predicting the next in a given input sequence is another important concept in machine

learning. This chapter gives you a detailed explanation about analyzing time series data.

Introduction
Time series data means the data that is in a series of particular time intervals. If we want

to build sequence prediction in machine learning, then we have to deal with sequential

data and time. Series data is an abstract of sequential data. Ordering of data is an

important feature of sequential data.

Basic Concept of Sequence Analysis or Time Series Analysis
Sequence analysis or time series analysis is to predict the next in a given input sequence

based on the previously observed. The prediction can be of anything that may come next:

a symbol, a number, next day weather, next term in speech etc. Sequence analysis can

be very handy in applications such as stock market analysis, weather forecasting, and

product recommendations.

Example
Consider the following example to understand sequence prediction. Here A,B,C,D are the

given values and you have to predict the value E using a Sequence Prediction Model.

Installing Useful Packages
For time series data analysis using Python, we need to install the following packages:

Pandas
Pandas is an open source BSD-licensed library which provides high-performance, ease of

data structure usage and data analysis tools for Python. You can install Pandas with the

help of the following command:

 pip install pandas

If you are using Anaconda and want to install by using the conda package manager, then

you can use the following command:

 conda install -c anaconda pandas

11. AI with Python – Analyzing Time Series Data

(A,B,C,D) Sequence Prediction Model (E)

AI with Python

 87

hmmlearn

It is an open source BSD-licensed library which consists of simple algorithms and models

to learn Hidden Markov Models(HMM) in Python. You can install it with the help of the

following command:

 pip install hmmlearn

If you are using Anaconda and want to install by using the conda package manager, then

you can use the following command:

 conda install -c omnia hmmlearn

PyStruct

It is a structured learning and prediction library. Learning algorithms implemented in

PyStruct have names such as conditional random fields(CRF), Maximum-Margin Markov

Random Networks (M3N) or structural support vector machines. You can install it with the

help of the following command:

 pip install pystruct

CVXOPT

It is used for convex optimization based on Python programming language. It is also a free

software package. You can install it with the help of following command:

 pip install cvxopt

If you are using Anaconda and want to install by using the conda package manager, then

you can use the following command:

 conda install -c anaconda cvdoxt

Pandas: Handling, Slicing and Extracting Statistic from Time Series
Data

Pandas is a very useful tool if you have to work with time series data. With the help of

Pandas, you can perform the following:

 Create a range of dates by using the pd.date_range package

 Index pandas with dates by using the pd.Series package

 Perform re-sampling by using the ts.resample package

 Change the frequency

AI with Python

 88

Example

The following example shows you handling and slicing the time series data by using

Pandas. Note that here we are using the Monthly Arctic Oscillation data, which can be

downloaded from

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index

.b50.current.ascii and can be converted to text format for our use.

Handling time series data

For handling time series data, you will have to perform the following steps:

The first step involves importing the following packages:

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Next, define a function which will read the data from the input file, as shown in the code

given below:

 def read_data(input_file):

 input_data = np.loadtxt(input_file, delimiter=None)

Now, convert this data to time series. For this, create the range of dates of our time series.

In this example, we keep one month as frequency of data. Our file is having the data which

starts from January 1950.

 dates = pd.date_range('1950-01', periods=input_data.shape[0], freq='M')

In this step, we create the time series data with the help of Pandas Series, as shown

below:

 output = pd.Series(input_data[:, index], index=dates)

 return output

 if __name__=='__main__':

Enter the path of the input file as shown here:

 input_file = "/Users/admin/AO.txt"

Now, convert the column to timeseries format, as shown here:

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii
http://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/monthly.ao.index.b50.current.ascii

AI with Python

 89

 timeseries = read_data(input_file)

Finally, plot and visualize the data, using the commands shown:

 plt.figure()

 timeseries.plot()

 plt.show()

You will observe the plots as shown in the following images:

AI with Python

 90

Slicing time series data

Slicing involves retrieving only some part of the time series data. As a part of the example,

we are slicing the data only from 1980 to 1990. Observe the following code that performs

this task:

timeseries['1980':'1990'].plot()

 <matplotlib.axes._subplots.AxesSubplot at 0xa0e4b00>

 plt.show()

AI with Python

 91

When you run the code for slicing the time series data, you can observe the following

graph as shown in the image here:

Extracting Statistic from Time Series Data

You will have to extract some statistics from a given data, in cases where you need to

draw some important conclusion. Mean, variance, correlation, maximum value, and

minimum value are some of such statistics. You can use the following code if you want to

extract such statistics from a given time series data:

Mean

You can use the mean() function, for finding the mean, as shown here:

timeseries.mean()

Then the output that you will observe for the example discussed is:

-0.11143128165238671

Maximum

You can use the max() function, for finding maximum, as shown here:

timeseries.max()

Then the output that you will observe for the example discussed is:

 3.4952999999999999

AI with Python

 92

Minimum
You can use the min() function, for finding minimum, as shown here:

timeseries.min()

Then the output that you will observe for the example discussed is:

 -4.2656999999999998

Getting everything at once

If you want to calculate all statistics at a time, you can use the describe() function as

shown here:

timeseries.describe()

Then the output that you will observe for the example discussed is:

count 817.000000

mean -0.111431

std 1.003151

min -4.265700

25% -0.649430

50% -0.042744

75% 0.475720

max 3.495300

dtype: float64

Re-sampling

You can resample the data to a different time frequency. The two parameters for

performing re-sampling are:

 Time period

 Method

Re-sampling with mean()

You can use the following code to resample the data with the mean()method, which is the

default method:

timeseries_mm = timeseries.resample("A").mean()

timeseries_mm.plot(style='g--')

plt.show()

AI with Python

 93

Then, you can observe the following graph as the output of resampling using mean():

Re-sampling with median()

You can use the following code to resample the data using the median()method:

timeseries_mm = timeseries.resample("A").median()

timeseries_mm.plot()

plt.show()

AI with Python

 94

Then, you can observe the following graph as the output of re-sampling with median():

Rolling Mean

You can use the following code to calculate the rolling (moving) mean:

timeseries.rolling(window=12, center=False).mean().plot(style='-g')

plt.show()

Then, you can observe the following graph as the output of the rolling (moving) mean:

AI with Python

 95

Analyzing Sequential Data by Hidden Markov Model (HMM)
HMM is a statistic model which is widely used for data having continuation and extensibility

such as time series stock market analysis, health checkup, and speech recognition. This

section deals in detail with analyzing sequential data using Hidden Markov Model (HMM).

Hidden Markov Model (HMM)
HMM is a stochastic model which is built upon the concept of Markov chain based on the

assumption that probability of future stats depends only on the current process state

rather any state that preceded it. For example, when tossing a coin, we cannot say that

the result of the fifth toss will be a head. This is because a coin does not have any memory

and the next result does not depend on the previous result.

Mathematically, HMM consists of the following variables:

States (S)
It is a set of hidden or latent states present in a HMM. It is denoted by S.

Output symbols (O)
It is a set of possible output symbols present in a HMM. It is denoted by O.

State Transition Probability Matrix (A)
It is the probability of making transition from one state to each of the other states. It is

denoted by A.

Observation Emission Probability Matrix (B)
It is the probability of emitting/observing a symbol at a particular state. It is denoted by

B.

AI with Python

 96

Prior Probability Matrix (Π)

It is the probability of starting at a particular state from various states of the system. It is

denoted by Π.

Hence, a HMM may be defined as 𝝀 = (𝑺, 𝑶, 𝑨, 𝑩, 𝝅),

where, 𝑺 = {𝒔𝟏, 𝒔𝟐, … , 𝒔𝑵} is a set of N possible states,

𝑶 = {𝒐𝟏, 𝒐𝟐, … , 𝒐𝑴} is a set of M possible observation symbols,

A is an 𝑵𝒙𝑵 state Transition Probability Matrix (TPM),

B is an 𝑵𝒙𝑴 observation or Emission Probability Matrix (EPM),

π is an N dimensional initial state probability distribution vector.

Example: Analysis of Stock Market data

In this example, we are going to analyze the data of stock market, step by step, to get an

idea about how the HMM works with sequential or time series data. Please note that we

are implementing this example in Python.

Import the necessary packages as shown below:

import datetime

import warnings

Now, use the stock market data from the matpotlib.finance package, as shown here:

import numpy as np

from matplotlib import cm, pyplot as plt

from matplotlib.dates import YearLocator, MonthLocator

try:

 from matplotlib.finance import quotes_historical_yahoo_och1

except ImportError:

 from matplotlib.finance import (

 quotes_historical_yahoo as quotes_historical_yahoo_och1)

from hmmlearn.hmm import GaussianHMM

Load the data from a start date and end date, i.e., between two specific dates as shown

here:

start_date = datetime.date(1995, 10, 10)

end_date = datetime.date(2015, 4, 25)

quotes = quotes_historical_yahoo_och1('INTC', start_date, end_date)

AI with Python

 97

In this step, we will extract the closing quotes every day. For this, use the following

command:

closing_quotes = np.array([quote[2] for quote in quotes])

Now, we will extract the volume of shares traded every day. For this, use the following

command:

volumes = np.array([quote[5] for quote in quotes])[1:]

Here, take the percentage difference of closing stock prices, using the code shown below:

diff_percentages = 100.0 * np.diff(closing_quotes) / closing_quotes[:-]

dates = np.array([quote[0] for quote in quotes], dtype=np.int)[1:]

training_data = np.column_stack([diff_percentages, volumes])

In this step, create and train the Gaussian HMM. For this, use the following code:

hmm = GaussianHMM(n_components=7, covariance_type='diag', n_iter=1000)

with warnings.catch_warnings():

 warnings.simplefilter('ignore')

 hmm.fit(training_data)

Now, generate data using the HMM model, using the commands shown:

num_samples = 300

samples, _ = hmm.sample(num_samples)

Finally, in this step, we plot and visualize the difference percentage and volume of shares

traded as output in the form of graph.

Use the following code to plot and visualize the difference percentages:

plt.figure()

plt.title('Difference percentages')

plt.plot(np.arange(num_samples), samples[:, 0], c='black')

Use the following code to plot and visualize the volume of shares traded:

plt.figure()

plt.title('Volume of shares')

plt.plot(np.arange(num_samples), samples[:, 1], c='black')

plt.ylim(ymin=0)

AI with Python

 98

 plt.show()

AI with Python

 99

In this chapter, we will learn about speech recognition using AI with Python.

Speech is the most basic means of adult human communication. The basic goal of speech

processing is to provide an interaction between a human and a machine.

Speech processing system has mainly three tasks:

 First, speech recognition that allows the machine to catch the words, phrases and

sentences we speak

 Second, natural language processing to allow the machine to understand what we

speak, and

 Third, speech synthesis to allow the machine to speak.

This chapter focuses on speech recognition, the process of understanding the words that

are spoken by human beings. Remember that the speech signals are captured with the

help of a microphone and then it has to be understood by the system.

Building a Speech Recognizer

Speech Recognition or Automatic Speech Recognition (ASR) is the center of attention for

AI projects like robotics. Without ASR, it is not possible to imagine a cognitive robot

interacting with a human. However, it is not quite easy to build a speech recognizer.

Difficulties in developing a speech recognition system

Developing a high quality speech recognition system is really a difficult problem. The

difficulty of speech recognition technology can be broadly characterized along a number

of dimensions as discussed below:

 Size of the vocabulary: Size of the vocabulary impacts the ease of developing an

ASR. Consider the following sizes of vocabulary for a better understanding.

o A small size vocabulary consists of 2-100 words, for example, as in a voice-

menu system

o A medium size vocabulary consists of several 100s to 1,000s of words, for

example, as in a database-retrieval task

o A large size vocabulary consists of several 10,000s of words, as in a general

dictation task.

 Note that, the larger the size of vocabulary, the harder it is to perform recognition.

 Channel characteristics: Channel quality is also an important dimension. For

example, human speech contains high bandwidth with full frequency range, while

a telephone speech consists of low bandwidth with limited frequency range. Note

that it is harder in the latter.

 Speaking mode: Ease of developing an ASR also depends on the speaking mode,

that is whether the speech is in isolated word mode, or connected word mode, or

in a continuous speech mode. Note that a continuous speech is harder to recognize.

12. AI with Python – Speech Recognition

AI with Python

 100

 Speaking style: A read speech may be in a formal style, or spontaneous and

conversational with casual style. The latter is harder to recognize.

 Speaker dependency: Speech can be speaker dependent, speaker adaptive, or

speaker independent. A speaker independent is the hardest to build.

 Type of noise: Noise is another factor to consider while developing an ASR. Signal

to noise ratio may be in various ranges, depending on the acoustic environment

that observes less versus more background noise:

o If the signal to noise ratio is greater than 30dB, it is considered as high

range

o If the signal to noise ratio lies between 30dB to 10db, it is considered as

medium SNR

o If the signal to noise ratio is lesser than 10dB, it is considered as low range

For example, the type of background noise such as stationary, non-human noise,

background speech and crosstalk by other speakers also contributes to the

difficulty of the problem.

 Microphone characteristics: The quality of microphone may be good, average,

or below average. Also, the distance between mouth and micro-phone can vary.

These factors also should be considered for recognition systems.

Despite these difficulties, researchers worked a lot on various aspects of speech such as

understanding the speech signal, the speaker, and identifying the accents.

You will have to follow the steps given below to build a speech recognizer:

Visualizing Audio Signals - Reading from a File and Working on it

This is the first step in building speech recognition system as it gives an understanding of

how an audio signal is structured. Some common steps that can be followed to work with

audio signals are as follows:

Recording
When you have to read the audio signal from a file, then record it using a microphone, at

first.

Sampling

When recording with microphone, the signals are stored in a digitized form. But to work

upon it, the machine needs them in the discrete numeric form. Hence, we should perform

sampling at a certain frequency and convert the signal into the discrete numerical form.

Choosing the high frequency for sampling implies that when humans listen to the signal,

they feel it as a continuous audio signal.

Example

The following example shows a stepwise approach to analyze an audio signal, using

Python, which is stored in a file. The frequency of this audio signal is 44,100 HZ.

AI with Python

 101

Import the necessary packages as shown here:

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

Now, read the stored audio file. It will return two values: the sampling frequency and the

audio signal. Provide the path of the audio file where it is stored, as shown here:

frequency_sampling, audio_signal = wavfile.read("/Users/admin/audio_file.wav")

Display the parameters like sampling frequency of the audio signal, data type of signal

and its duration, using the commands shown:

print('\nSignal shape:', audio_signal.shape)

print('Signal Datatype:', audio_signal.dtype)

print('Signal duration:', round(audio_signal.shape[0] /

float(frequency_sampling), 2), 'seconds')

This step involves normalizing the signal as shown below:

audio_signal = audio_signal / np.power(2, 15)

In this step, we are extracting the first 100 values from this signal to visualize. Use the

following commands for this purpose:

audio_signal = audio_signal [:100]

time_axis = 1000 * np.arange(0, len(signal), 1) / float(frequency_sampling)

Now, visualize the signal using the commands given below:

plt.plot(time_axis, signal, color='blue')

plt.xlabel('Time (milliseconds)')

plt.ylabel('Amplitude')

plt.title('Input audio signal')

plt.show()

You would be able to see an output graph and data extracted for the above audio signal

as shown in the image here:

AI with Python

 102

Signal shape: (132300,)

Signal Datatype: int16

Signal duration: 3.0 seconds

Characterizing the Audio Signal: Transforming to Frequency Domain

Characterizing an audio signal involves converting the time domain signal into frequency

domain, and understanding its frequency components, by. This is an important step

because it gives a lot of information about the signal. You can use a mathematical tool

like Fourier Transform to perform this transformation.

Example

The following example shows, step-by-step, how to characterize the signal, using Python,

which is stored in a file. Note that here we are using Fourier Transform mathematical tool

to convert it into frequency domain.

Import the necessary packages, as shown here:

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

Now, read the stored audio file. It will return two values: the sampling frequency and the

the audio signal. Provide the path of the audio file where it is stored as shown in the

command here:

frequency_sampling, audio_signal = wavfile.read("/Users/admin/sample.wav")

AI with Python

 103

In this step, we will display the parameters like sampling frequency of the audio signal,

data type of signal and its duration, using the commands given below:

print('\nSignal shape:', audio_signal.shape)

print('Signal Datatype:', audio_signal.dtype)

print('Signal duration:', round(audio_signal.shape[0] /

float(frequency_sampling), 2), 'seconds')

In this step, we need to normalize the signal, as shown in the following command:

audio_signal = audio_signal / np.power(2, 15)

This step involves extracting the length and half length of the signal. Use the following

commands for this purpose:

length_signal = len(audio_signal)

half_length = np.ceil((length_signal + 1) / 2.0).astype(np.int)

Now, we need to apply mathematics tools for transforming into frequency domain. Here

we are using the Fourier Transform.

signal_frequency = np.fft.fft(audio_signal)

Now, do the normalization of frequency domain signal and square it:

signal_frequency = abs(signal_frequency[0:half_length]) / length_signal

signal_frequency **= 2

Next, extract the length and half length of the frequency transformed signal:

len_fts = len(signal_frequency)

Note that the Fourier transformed signal must be adjusted for even as well as odd case.

if length_signal % 2:

 signal_frequency[1:len_fts] *= 2

else:

 signal_frequency[1:len_fts-1] *= 2

Now, extract the power in decibal(dB):

signal_power = 10 * np.log10(signal_frequency)

Adjust the frequency in kHz for X-axis:

AI with Python

 104

x_axis = np.arange(0, len_half, 1) * (frequency_sampling / length_signal) /

1000.0

Now, visualize the characterization of signal as follows:

plt.figure()

plt.plot(x_axis, signal_power, color='black')

plt.xlabel('Frequency (kHz)')

plt.ylabel('Signal power (dB)')

plt.show()

You can observe the output graph of the above code as shown in the image below:

Generating Monotone Audio Signal

The two steps that you have seen till now are important to learn about signals. Now, this

step will be useful if you want to generate the audio signal with some predefined

parameters. Note that this step will save the audio signal in an output file.

Example

In the following example, we are going to generate a monotone signal, using Python,

which will be stored in a file. For this, you will have to take the following steps:

Import the necessary packages as shown:

import numpy as np

AI with Python

 105

import matplotlib.pyplot as plt

from scipy.io.wavfile import write

Provide the file where the output file should be saved:

output_file = 'audio_signal_generated.wav'

Now, specify the parameters of your choice, as shown:

duration = 4 # in seconds

frequency_sampling = 44100 # in Hz

frequency_tone = 784

min_val = -4 * np.pi

max_val = 4 * np.pi

In this step, we can generate the audio signal, as shown:

t = np.linspace(min_val, max_val, duration * frequency_sampling)

audio_signal = np.sin(2 * np.pi * tone_freq * t)

Now, save the audio file in the output file:

write(output_file, frequency_sampling, signal_scaled)

Extract the first 100 values for our graph, as shown:

audio_signal = audio_signal[:100]

time_axis = 1000 * np.arange(0, len(signal), 1) / float(sampling_freq)

Now, visualize the generated audio signal as follows:

plt.plot(time_axis, signal, color='blue')

plt.xlabel('Time in milliseconds')

plt.ylabel('Amplitude')

plt.title('Generated audio signal')

plt.show()

AI with Python

 106

You can observe the plot as shown in the figure given here:

Feature Extraction from Speech

This is the most important step in building a speech recognizer because after converting

the speech signal into the frequency domain, we must convert it into the usable form of

feature vector. We can use different feature extraction techniques like MFCC, PLP, PLP-

RASTA etc. for this purpose.

Example

In the following example, we are going to extract the features from signal, step-by-step,

using Python, by using MFCC technique.

Import the necessary packages, as shown here:

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

from python_speech_features import mfcc, logfbank

AI with Python

 107

Now, read the stored audio file. It will return two values: the sampling frequency and the

audio signal. Provide the path of the audio file where it is stored.

frequency_sampling, audio_signal = wavfile.read("/Users/admin/audio_file.wav")

Note that here we are taking first 15000 samples for analysis.

audio_signal = audio_signal[:15000]

Use the MFCC techniques and execute the following command to extract the MFCC

features:

features_mfcc = mfcc(audio_signal, frequency_sampling)

Now, print the MFCC parameters, as shown:

print('\nMFCC:\nNumber of windows =', features_mfcc.shape[0])

print('Length of each feature =', features_mfcc.shape[1])

Now, plot and visualize the MFCC features using the commands given below:

features_mfcc = features_mfcc.T

plt.matshow(features_mfcc)

plt.title('MFCC')

In this step, we work with the filter bank features as shown:

Extract the filter bank features:

filterbank_features = logfbank(audio_signal, frequency_sampling)

Now, print the filterbank parameters.

print('\nFilter bank:\nNumber of windows =', filterbank_features.shape[0])

print('Length of each feature =', filterbank_features.shape[1])

Now, plot and visualize the filterbank features.

filterbank_features = filterbank_features.T

plt.matshow(filterbank_features)

plt.title('Filter bank')

plt.show()

AI with Python

 108

As a result of the steps above, you can observe the following outputs: Figure1 for MFCC

and Figure2 for Filter Bank

Recognition of Spoken Words

Speech recognition means that when humans are speaking, a machine understands it.

Here we are using Google Speech API in Python to make it happen. We need to install the

following packages for this:

 Pyaudio: It can be installed by using pip install Pyaudio command.

AI with Python

 109

 SpeechRecognition: This package can be installed by using pip install

SpeechRecognition.

 Google-Speech-API: It can be installed by using the command pip install

google-api-python-client.

Example

Observe the following example to understand about recognition of spoken words:

Import the necessary packages as shown:

import speech_recognition as sr

Create an object as shown below:

recording = sr.Recognizer()

Now, the Microphone() module will take the voice as input:

with sr.Microphone() as source: recording.adjust_for_ambient_noise(source)

 print("Please Say something:")

 audio = recording.listen(source)

Now google API would recognize the voice and gives the output.

try:

 print("You said: \n" + recording.recognize_google(audio))

except Exception as e:

 print(e)

AI with Python

 110

You can see the following output:

Please Say Something:

You said:

For example, if you said tutorialspoint.com, then the system recognizes it correctly as

follows:

tutorialspoint.com

AI with Python

 111

Heuristic search plays a key role in artificial intelligence. In this chapter, you will learn in

detail about it.

Concept of Heuristic Search in AI

Heuristic is a rule of thumb which leads us to the probable solution. Most problems in

artificial intelligence are of exponential nature and have many possible solutions. You do

not know exactly which solutions are correct and checking all the solutions would be very

expensive.

Thus, the use of heuristic narrows down the search for solution and eliminates the wrong

options. The method of using heuristic to lead the search in search space is called Heuristic

Search. Heuristic techniques are very useful because the search can be boosted when you

use them.

Difference between Uninformed and Informed Search

There are two types of control strategies or search techniques: uninformed and informed.

They are explained in detail as given here:

Uninformed Search

It is also called blind search or blind control strategy. It is named so because there is

information only about the problem definition, and no other extra information is available

about the states. This kind of search techniques would search the whole state space for

getting the solution. Breadth First Search (BFS) and Depth First Search (DFS) are the

examples of uninformed search.

Informed Search

It is also called heuristic search or heuristic control strategy. It is named so because there

is some extra information about the states. This extra information is useful to compute

the preference among the child nodes to explore and expand. There would be a heuristic

function associated with each node. Best First Search (BFS), A*, Mean and Analysis are

the examples of informed search.

Constraint Satisfaction Problems (CSPs)

Constraint means restriction or limitation. In AI, constraint satisfaction problems are the

problems which must be solved under some constraints. The focus must be on not to

violate the constraint while solving such problems. Finally, when we reach the final

solution, CSP must obey the restriction.

13. AI with Python – Heuristic Search

AI with Python

 112

Real World Problem Solved by Constraint Satisfaction

The previous sections dealt with creating constraint satisfaction problems. Now, let us

apply this to real world problems too. Some examples of real world problems solved by

constraint satisfaction are as follows:

Solving algebraic relation

With the help of constraint satisfaction problem, we can solve algebraic relations. In this

example, we will try to solve a simple algebraic relation 𝒂 ∗ 𝟐 = 𝒃. It will return the value

of 𝒂 and 𝒃 within the range that we would define.

After completing this Python program, you would be able to understand the basics of

solving problems with constraint satisfaction.

Note that before writing the program, we need to install Python package called python-

constraint. You can install it with the help of the following command:

 pip install python-constraint

The following steps show you a Python program for solving algebraic relation using

constraint satisfaction:

Import the constraint package using the following command:

 from constraint import *

Now, create an object of module named problem() as shown below:

 problem = Problem()

Now, define variables. Note that here we have two variables a and b, and we are defining

10 as their range, which means we got the solution within first 10 numbers.

 problem.addVariable('a', range(10))

 problem.addVariable('b', range(10))

Next, define the particular constraint that we want to apply on this problem. Observe that

here we are using the constraint a*2 = b.

 problem.addConstraint(lambda a, b: a * 2 == b)

AI with Python

 113

Now, create the object of getSolution() module using the following command:

 solutions = problem.getSolutions()

Lastly, print the output using the following command:

 print (solutions)

You can observe the output of the above program as follows:

[{'a': 4, 'b': 8}, {'a': 3, 'b': 6}, {'a': 2, 'b': 4}, {'a': 1, 'b': 2},

{'a': 0, 'b': 0}]

Magic Square

A magic square is an arrangement of distinct numbers, generally integers, in a square

grid, where the numbers in each row , and in each column , and the numbers in the

diagonal, all add up to the same number called the “magic constant”.

The following is a stepwise execution of simple Python code for generating magic squares:

Define a function named magic_square, as shown below:

def magic_square(matrix_ms):

 iSize = len(matrix_ms[0])

 sum_list = []

The following code shows the code for vertical of squares:

for col in range(iSize):

 sum_list.append(sum(row[col] for row in matrix_ms))

The following code shows the code for horizantal of squares:

 sum_list.extend([sum (lines) for lines in matrix_ms])

The following code shows the code for horizontal of squares:

 dlResult = 0

 for i in range(0,iSize):

 dlResult +=matrix_ms[i][i]

 sum_list.append(dlResult)

 drResult = 0

 for i in range(iSize-1,-1,-1):

 drResult +=matrix_ms[i][i]

 sum_list.append(drResult)

AI with Python

 114

 if len(set(sum_list))>1:

 return False

 return True

Now, give the value of the matrix and check the output:

print(magic_square([[1,2,3], [4,5,6], [7,8,9]]))

You can observe that the output would be False as the sum is not up to the same number.

print(magic_square([[3,9,2], [3,5,7], [9,1,6]]))

You can observe that the output would be True as the sum is the same number, that is

15 here.

AI with Python

 115

Games are played with a strategy. Every player or team would make a strategy before

starting the game and they have to change or build new strategy according to the current

situation(s) in the game.

Search Algorithms

You will have to consider computer games also with the same strategy as above. Note that

Search Algorithms are the ones that figure out the strategy in computer games.

How it works

The goal of search algorithms is to find the optimal set of moves so that they can reach at

the final destination and win. These algorithms use the winning set of conditions, different

for every game, to find the best moves.

Visualize a computer game as the tree. We know that tree has nodes. Starting from the

root, we can come to the final winning node, but with optimal moves. That is the work of

search algorithms. Every node in such tree represents a future state. The search

algorithms search through this tree to make decisions at each step or node of the game.

Combinational Search

The major disadvantage of using search algorithms is that they are exhaustive in nature,

which is why they explore the entire search space to find the solution that leads to wastage

of resources. It would be more cumbersome if these algorithms need to search the whole

search space for finding the final solution.

To eliminate such kind of problem, we can use combinational search which uses the

heuristic to explore the search space and reduces its size by eliminating the possible wrong

moves. Hence, such algorithms can save the resources. Some of the algorithms that use

heuristic to search the space and save the resources are discussed here:

Minimax Algorithm

It is the strategy used by combinational search that uses heuristic to speed up the search

strategy. The concept of Minimax strategy can be understood with the example of two

player games, in which each player tries to predict the next move of the opponent and

tries to minimize that function. Also, in order to win, the player always try to maximize its

own function based on the current situation.

Heuristic plays an important role in such kind of strategies like Minimax. Every node of the

tree would have a heuristic function associated with it. Based on that heuristic, it will take

the decision to make a move towards the node that would benefit them the most.

14. AI with Python – Gaming

AI with Python

 116

Alpha-Beta Pruning

A major issue with Minimax algorithm is that it can explore those parts of the tree that are

irrelevant, leads to the wastage of resources. Hence there must be a strategy to decide

which part of the tree is relevant and which is irrelevant and leave the irrelevant part

unexplored. Alpha-Beta pruning is one such kind of strategy.

The main goal of Alpha-Beta pruning algorithm is to avoid the searching those parts of the

tree that do not have any solution. The main concept of Alpha-Beta pruning is to use two

bounds named Alpha, the maximum lower bound, and Beta, the minimum upper bound.

These two parameters are the values that restrict the set of possible solutions. It compares

the value of the current node with the value of alpha and beta parameters, so that it can

move to the part of the tree that has the solution and discard the rest.

Negamax Algorithm

This algorithm is not different from Minimax algorithm, but it has a more elegant

implementation. The main disadvantage of using Minimax algorithm is that we need to

define two different heuristic functions. The connection between these heuristic is that,

the better a state of a game is for one player, the worse it is for the other player. In

Negamax algorithm, the same work of two heuristic functions is done with the help of a

single heuristic function.

Building Bots to Play Games

For building bots to play two player games in AI, we need to install the easyAI library. It

is an artificial intelligence framework that provides all the functionality to build two-player

games. You can download it with the help of the following command:

pip install easyAI

A Bot to Play Last Coin Standing

In this game, there would be a pile of coins. Each player has to take a number of coins

from that pile. The goal of the game is to avoid taking the last coin in the pile. We will be

using the class LastCoinStanding inherited from the TwoPlayersGame class of the

easyAI library. The following code shows the Python code for this game:

Import the required packages as shown:

from easyAI import TwoPlayersGame, id_solve, Human_Player, AI_Player

from easyAI.AI import TT

Now, inherit the class from the TwoPlayerGame class to handle all operations of the

game:

class LastCoin_game(TwoPlayersGame):

 def __init__(self, players):

Now, define the players and the player who is going to start the game.

AI with Python

 117

self.players = players

 self.nplayer = 1

Now, define the number of coins in the game, here we are using 15 coins for the game.

 self.num_coins = 15

Define the maximum number of coins a player can take in a move.

 self.max_coins = 4

Now there are some certain things to define as shown in the following code. Define possible

moves.

 def possible_moves(self):

 return [str(a) for a in range(1, self.max_coins + 1)]

Define the removal of the coins .

 def make_move(self, move):

 self.num_coins -= int(move)

Define who took the last coin.

 def win_game(self):

 return self.num_coins <= 0

Define when to stop the game, that is when somebody wins.

 def is_over(self):

 return self.win()

Define how to compute the score.

 def score(self):

 return 100 if self.win_game() else 0

Define number of coins remaining in the pile.

 def show(self):

 print(self.num_coins, 'coins left in the pile')

if __name__ == "__main__":

 tt = TT()

AI with Python

 118

 LastCoin_game.ttentry = lambda self: self.num_coins

Solving the game with the following code block:

 r, d, m = id_solve(LastCoin_game,

 range(2, 20), win_score=100, tt=tt)

 print(r, d, m)

Deciding who will start the game

 game = LastCoin_game([AI_Player(tt), Human_Player()])

 game.play()

You can find the following output and a simple play of this game:

d:2, a:0, m:1

d:3, a:0, m:1

d:4, a:0, m:1

d:5, a:0, m:1

d:6, a:100, m:4

1 6 4

15 coins left in the pile

Move #1: player 1 plays 4 :

11 coins left in the pile

Player 2 what do you play ? 2

Move #2: player 2 plays 2 :

9 coins left in the pile

Move #3: player 1 plays 3 :

6 coins left in the pile

Player 2 what do you play ? 1

Move #4: player 2 plays 1 :

5 coins left in the pile

Move #5: player 1 plays 4 :

1 coins left in the pile

Player 2 what do you play ? 1

Move #6: player 2 plays 1 :

0 coins left in the pile

AI with Python

 119

A Bot to Play Tic Tac Toe

Tic-Tac-Toe is very familiar and one of the most popular games. Let us create this game

by using the easyAI library in Python. The following code is the Python code of this game:

Import the packages as shown:

from easyAI import TwoPlayersGame, AI_Player, Negamax

from easyAI.Player import Human_Player

Inherit the class from the TwoPlayerGame class to handle all operations of the game:

class TicTacToe_game(TwoPlayersGame):

 def __init__(self, players):

Now, define the players and the player who is going to start the game:

self.players = players

self.nplayer = 1

Define the type of board:

 self.board = [0] * 9

Now there are some certain things to define as follows:

Define possible moves:

 def possible_moves(self):

 return [x + 1 for x, y in enumerate(self.board) if y == 0]

Define the move of a player:

 def make_move(self, move):

 self.board[int(move) - 1] = self.nplayer

To boost AI, define when a player makes a move:

 def umake_move(self, move):

 self.board[int(move) - 1] = 0

Define the lose condition that an opponent have three in a line

 def condition_for_lose(self):

 possible_combinations = [[1,2,3], [4,5,6], [7,8,9],

 [1,4,7], [2,5,8], [3,6,9], [1,5,9], [3,5,7]]

AI with Python

 120

 return any([all([(self.board[z-1] == self.nopponent)

 for z in combination]) for combination in

possible_combinations])

Define a check for the finish of game

 def is_over(self):

 return (self.possible_moves() == []) or self.condition_for_lose()

Show the current position of the players in the game

 def show(self):

 print('\n'+'\n'.join([' '.join([['.', 'O', 'X'][self.board[3*j + i]]

 for i in range(3)]) for j in range(3)]))

Compute the scores.

 def scoring(self):

 return -100 if self.condition_for_lose() else 0

Define the main method to define the algorithm and start the game:

if __name__ == "__main__":

 algo = Negamax(7)

 TicTacToe_game([Human_Player(), AI_Player(algo)]).play()

You can see the following output and a simple play of this game:

. . .

. . .

. . .

Player 1 what do you play ? 1

Move #1: player 1 plays 1 :

O . .

. . .

. . .

Move #2: player 2 plays 5 :

O . .

. X .

AI with Python

 121

. . .

Player 1 what do you play ? 3

Move #3: player 1 plays 3 :

O . O

. X .

. . .

Move #4: player 2 plays 2 :

O X O

. X .

. . .

Player 1 what do you play ? 4

Move #5: player 1 plays 4 :

O X O

O X .

. . .

Move #6: player 2 plays 8 :

O X O

O X .

. X .

AI with Python

 122

Neural networks are parallel computing devices that are an attempt to make a computer

model of brain. The main objective behind is to develop a system to perform various

computational task faster than the traditional systems. These tasks include Pattern

Recognition and Classification, Approximation, Optimization and Data Clustering.

What is Artificial Neural Networks (ANN)

Artificial Neural network (ANN) is an efficient computing system whose central theme is

borrowed from the analogy of biological neural networks. ANNs are also named as Artificial

Neural Systems, Parallel Distributed Processing Systems, and Connectionist Systems.

ANN acquires large collection of units that are interconnected in some pattern to allow

communications between them. These units, also referred to as nodes or neurons, are

simple processors which operate in parallel.

Every neuron is connected with other neuron through a connection link. Each connection

link is associated with a weight having the information about the input signal. This is the

most useful information for neurons to solve a particular problem because the weight

usually excites or inhibits the signal that is being communicated. Each neuron is having

its internal state which is called activation signal. Output signals, which are produced

after combining input signals and activation rule, may be sent to other units.

If you want to study neural networks in detail then you can follow the link:

https://www.tutorialspoint.com/artificial_neural_network/index.htm.

Installing Useful Packages

For creating neural networks in Python, we can use a powerful package for neural networks

called NeuroLab. It is a library of basic neural networks algorithms with flexible network

configurations and learning algorithms for Python. You can install this package with the

help of the following command on command prompt:

 pip install NeuroLab

If you are using the Anaconda environment, then use the following command to install

NeuroLab:

conda install -c labfabulous neurolab

Building Neural Networks

In this section, let us build some neural networks in Python by using the NeuroLab

package.

15. AI with Python – Neural Networks

https://www.tutorialspoint.com/artificial_neural_network/index.htm

AI with Python

 123

Perceptron based Classifier

Perceptrons are the building blocks of ANN. If you want to know more about Perceptron,

you can follow the link:

https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_supe

rvised_learning.htm

Following is a stepwise execution of the Python code for building a simple neural network

perceptron based classifier:

Import the necessary packages as shown:

import matplotlib.pyplot as plt

import neurolab as nl

Enter the input values. Note that it is an example of supervised learning, hence you will

have to provide target values too.

input = [[0, 0], [0, 1], [1, 0], [1, 1]]

target = [[0], [0], [0], [1]]

Create the network with 2 inputs and 1 neuron:

net = nl.net.newp([[0, 1],[0, 1]], 1)

Now, train the network. Here, we are using Delta rule for training.

error_progress = net.train(input, target, epochs=100, show=10, lr=0.1)

Now, visualize the output and plot the graph:

plt.figure()

plt.plot(error_progress)

plt.xlabel('Number of epochs')

plt.ylabel('Training error')

plt.grid()

plt.show()

https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_supervised_learning.htm
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_supervised_learning.htm

AI with Python

 124

You can see the following graph showing the training progress using the error metric:

Single - Layer Neural Networks

In this example, we are creating a single layer neural network that consists of independent

neurons acting on input data to produce the output. Note that we are using the text file

named neural_simple.txt as our input.

Import the useful packages as shown:

import numpy as np

import matplotlib.pyplot as plt

import neurolab as nl

Load the dataset as follows:

input_data = np.loadtxt(“/Users/admin/neural_simple.txt')

The following is the data we are going to use. Note that in this data, first two columns are

the features and last two columns are the labels.

array([[2. , 4. , 0. , 0.],

 [1.5, 3.9, 0. , 0.],

 [2.2, 4.1, 0. , 0.],

 [1.9, 4.7, 0. , 0.],

 [5.4, 2.2, 0. , 1.],

 [4.3, 7.1, 0. , 1.],

 [5.8, 4.9, 0. , 1.],

 [6.5, 3.2, 0. , 1.],

 [3. , 2. , 1. , 0.],

 [2.5, 0.5, 1. , 0.],

 [3.5, 2.1, 1. , 0.],

AI with Python

 125

 [2.9, 0.3, 1. , 0.],

 [6.5, 8.3, 1. , 1.],

 [3.2, 6.2, 1. , 1.],

 [4.9, 7.8, 1. , 1.],

 [2.1, 4.8, 1. , 1.]])

Now, separate these four columns into 2 data columns and 2 labels:

data = input_data[:, 0:2]

labels = input_data[:, 2:]

Plot the input data using the following commands:

plt.figure()

plt.scatter(data[:,0], data[:,1])

plt.xlabel('Dimension 1')

plt.ylabel('Dimension 2')

plt.title('Input data')

Now, define the minimum and maximum values for each dimension as shown here:

dim1_min, dim1_max = data[:,0].min(), data[:,0].max()

dim2_min, dim2_max = data[:,1].min(), data[:,1].max()

Next, define the number of neurons in the output layer as follows:

nn_output_layer = labels.shape[1]

Now, define a single-layer neural network:

dim1 = [dim1_min, dim1_max]

dim2 = [dim2_min, dim2_max]

neural_net = nl.net.newp([dim1, dim2], nn_output_layer)

Train the neural network with number of epochs and learning rate as shown:

error = neural_net.train(data, labels, epochs=200, show=20, lr=0.01)

Now, visualize and plot the training progress using the following commands:

plt.figure()

plt.plot(error)

plt.xlabel('Number of epochs')

AI with Python

 126

plt.ylabel('Training error')

plt.title('Training error progress')

plt.grid()

plt.show()

Now, use the test data-points in above classifier:

print('\nTest Results:')

data_test = [[1.5, 3.2], [3.6, 1.7], [3.6, 5.7],[1.6, 3.9]] for item in

data_test:

 print(item, '-->', neural_net.sim([item])[0])

You can find the test results as shown here:

[1.5, 3.2] --> [1. 0.]

[3.6, 1.7] --> [1. 0.]

[3.6, 5.7] --> [1. 1.]

[1.6, 3.9] --> [1. 0.]

AI with Python

 127

You can see the following graphs as the output of the code discussed till now:

Multi-Layer Neural Networks

In this example, we are creating a multi-layer neural network that consists of more than

one layer to extract the underlying patterns in the training data. This multilayer neural

network will work like a regressor. We are going to generate some data points based on

the equation: 𝒚 = 𝟐𝑿𝟐 + 𝟖.

Import the necessary packages as shown:

import numpy as np

import matplotlib.pyplot as plt

import neurolab as nl

Generate some data point based on the above mentioned equation:

min_val = -30

max_val = 30

num_points = 160

x = np.linspace(min_val, max_val, num_points)

y = 2 * np.square(x) + 8

y /= np.linalg.norm(y)

Now, reshape this data set as follows:

AI with Python

 128

data = x.reshape(num_points, 1)

labels = y.reshape(num_points, 1)

Visualize and plot the input data set using the following commands:

plt.figure()

plt.scatter(data, labels)

plt.xlabel('Dimension 1')

plt.ylabel('Dimension 2')

plt.title('Data-points')

Now, build the neural network having two hidden layers with neurolab with ten neurons

in the first hidden layer, six in the second hidden layer and one in the output layer.

neural_net = nl.net.newff([[min_val, max_val]], [10, 6, 1])

Now use the gradient training algorithm:

neural_net.trainf = nl.train.train_gd

Now train the network with goal of learning on the data generated above:

error = neural_net.train(data, labels, epochs=1000, show=100, goal=0.01)

Now, run the neural networks on the training data-points:

output = neural_net.sim(data)

y_pred = output.reshape(num_points)

AI with Python

 129

Now plot and visualization task:

plt.figure()

plt.plot(error)

plt.xlabel('Number of epochs')

plt.ylabel('Error')

plt.title('Training error progress')

Now we will be plotting the actual versus predicted output:

x_dense = np.linspace(min_val, max_val, num_points * 2)

y_dense_pred=neural_net.sim(x_dense.reshape(x_dense.size,1)).reshape(x_dense.si

ze)

plt.figure()

plt.plot(x_dense, y_dense_pred, '-', x, y, '.', x, y_pred, 'p')

plt.title('Actual vs predicted')

plt.show()

As a result of the above commands, you can observe the graphs as shown below:

AI with Python

 130

AI with Python

 131

In this chapter, you will learn in detail about the concepts reinforcement learning in AI

with Python.

Basics of Reinforcement Learning

This type of learning is used to reinforce or strengthen the network based on critic

information. That is, a network being trained under reinforcement learning, receives some

feedback from the environment. However, the feedback is evaluative and not instructive

as in the case of supervised learning. Based on this feedback, the network performs the

adjustments of the weights to obtain better critic information in future.

This learning process is similar to supervised learning but we might have very less

information. The following figure gives the block diagram of reinforcement learning:

Building Blocks: Environment and Agent

Environment and Agent are main building blocks of reinforcement learning in AI. This

section discusses them in detail:

Agent

An agent is anything that can perceive its environment through sensors and acts upon

that environment through effectors.

 A human agent has sensory organs such as eyes, ears, nose, tongue and skin

parallel to the sensors, and other organs such as hands, legs, mouth, for effectors.

 A robotic agent replaces cameras and infrared range finders for the sensors, and

various motors and actuators for effectors.

 A software agent has encoded bit strings as its programs and actions.

16. AI with Python – Reinforcement Learning

X (input)

Neural

Network

Y (Actual Output)

Error Signal

Generator

Error Signal

R (Reinforcement signal)

AI with Python

 132

Agent Terminology

The following terms are more frequently used in reinforcement learning in AI:

 Performance Measure of Agent: It is the criteria, which determines how

successful an agent is.

 Behavior of Agent: It is the action that agent performs after any given sequence

of percepts.

 Percept: It is agent’s perceptual inputs at a given instance.

 Percept Sequence: It is the history of all that an agent has perceived till date.

 Agent Function: It is a map from the precept sequence to an action.

Environment

Some programs operate in an entirely artificial environment confined to keyboard

input, database, computer file systems and character output on a screen.

In contrast, some software agents, such as software robots or softbots, exist in rich and

unlimited softbot domains. The simulator has a very detailed, and complex

environment. The software agent needs to choose from a long array of actions in real

time.

For example, a softbot designed to scan the online preferences of the customer and display

interesting items to the customer works in the real as well as an artificial environment.

Properties of Environment

The environment has multifold properties as discussed below:

 Discrete/Continuous: If there are a limited number of distinct, clearly defined,

states of the environment, the environment is discrete , otherwise it is continuous.

For example, chess is a discrete environment and driving is a continuous

environment.

 Observable/Partially Observable: If it is possible to determine the complete

state of the environment at each time point from the percepts, it is observable;

otherwise it is only partially observable.

 Static/Dynamic: If the environment does not change while an agent is acting,

then it is static; otherwise it is dynamic.

 Single agent/Multiple agents: The environment may contain other agents which

may be of the same or different kind as that of the agent.

 Accessible/Inaccessible: If the agent’s sensory apparatus can have access to

the complete state of the environment, then the environment is accessible to that

agent; otherwise it is inaccessible.

 Deterministic/Non-deterministic: If the next state of the environment is

completely determined by the current state and the actions of the agent, then the

environment is deterministic; otherwise it is non-deterministic.

 Episodic/Non-episodic: In an episodic environment, each episode consists of the

agent perceiving and then acting. The quality of its action depends just on the

episode itself. Subsequent episodes do not depend on the actions in the previous

AI with Python

 133

episodes. Episodic environments are much simpler because the agent does not

need to think ahead.

Constructing an Environment with Python

For building reinforcement learning agent, we will be using the OpenAI Gym package

which can be installed with the help of the following command:

pip install gym

There are various environments in OpenAI gym which can be used for various purposes.

Few of them are Cartpole-v0, Hopper-v1, and MsPacman-v0. They require different

engines. The detail documentation of OpenAI Gym can be found on

https://gym.openai.com/docs/#environments.

The following code shows an example of Python code for cartpole-v0 environment:

import gym

env = gym.make('CartPole-v0')

env.reset()

for _ in range(1000):

 env.render()

 env.step(env.action_space.sample())

https://gym.openai.com/docs/#environments

AI with Python

 134

You can construct other environments in a similar way.

Constructing a learning agent with Python

For building reinforcement learning agent, we will be using the OpenAI Gym package as

shown:

import gym

env = gym.make('CartPole-v0')

for _ in range(20):

 observation = env.reset()

 for i in range(100):

 env.render()

 print(observation)

 action = env.action_space.sample()

 observation, reward, done, info = env.step(action)

 if done:

 print("Episode finished after {} timesteps".format(i+1))

 break

Observe that the cartpole can balance itself.

AI with Python

 135

This chapter discusses Genetic Algorithms of AI in detail.

What are Genetic Algorithms?

Genetic Algorithms (GAs) are search based algorithms based on the concepts of natural

selection and genetics. GAs are a subset of a much larger branch of computation known

as Evolutionary Computation.

GAs were developed by John Holland and his students and colleagues at the University of

Michigan, most notably David E. Goldberg. It has since been tried on various optimization

problems with a high degree of success.

In GAs, we have a pool of possible solutions to the given problem. These solutions then

undergo recombination and mutation (like in natural genetics), produces new children,

and the process is repeated for various generations. Each individual (or candidate solution)

is assigned a fitness value (based on its objective function value) and the fitter individuals

are given a higher chance to mate and yield fitter individuals. This is in line with the

Darwinian Theory of Survival of the Fittest.

Thus, it keeps evolving better individuals or solutions over generations, till it reaches a

stopping criterion.

Genetic Algorithms are sufficiently randomized in nature, but they perform much better

than random local search (where we just try random solutions, keeping track of the best

so far), as they exploit historical information as well.

How to Use GA for Optimization Problems?

Optimization is an action of making design, situation, resource and system, as effective as

possible. The following block diagram shows the optimization process:

Stages of GA mechanism for optimization process

The following is a sequence of steps of GA mechanism when used for optimization of

problems.

 Step 1: Generate the initial population randomly.

 Step 2: Select the initial solution with best fitness values.

 Step 3: Recombine the selected solutions using mutation and crossover operators.

 Step 4: Insert an offspring into the population.

17. AI with Python – Genetic Algorithms

Input Output Function

n

AI with Python

 136

 Step 5: Now, if the stop condition is met, return the solution with their best fitness

value. Else go to step 2.

Installing Necessary Packages

For solving the problem by using Genetic Algorithms in Python, we are going to use a

powerful package for GA called DEAP. It is a library of novel evolutionary computation

framework for rapid prototyping and testing of ideas. We can install this package with the

help of the following command on command prompt:

 pip install deap

If you are using anaconda environment, then following command can be used to install

deap:

conda install -c conda-forge deap

Implementing Solutions using Genetic Algorithms

This section explains you the implementation of solutions using Genetic Algorithms.

Generating bit patterns

The following example shows you how to generate a bit string that would contain 15 ones,

based on the One Max problem.

Import the necessary packages as shown:

import random

from deap import base, creator, tools

Define the evaluation function. It is the first step to create a genetic algorithm.

def eval_func(individual):

 target_sum = 15

 return len(individual) - abs(sum(individual) - target_sum),

Now, create the toolbox with the right parameters:

def create_toolbox(num_bits):

 creator.create("FitnessMax", base.Fitness, weights=(1.0,))

 creator.create("Individual", list, fitness=creator.FitnessMax)

Initialize the toolbox:

 toolbox = base.Toolbox()

toolbox.register("attr_bool", random.randint, 0, 1)

AI with Python

 137

toolbox.register("individual", tools.initRepeat, creator.Individual,

 toolbox.attr_bool, num_bits)

 toolbox.register("population", tools.initRepeat, list, toolbox.individual)

Register the evaluation operator:

 toolbox.register("evaluate", eval_func)

Now, register the crossover operator:

 toolbox.register("mate", tools.cxTwoPoint)

Register a mutation operator:

 toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)

Define the operator for breeding:

 toolbox.register("select", tools.selTournament, tournsize=3)

 return toolbox

if __name__ == "__main__":

 num_bits = 45

 toolbox = create_toolbox(num_bits)

 random.seed(7)

 population = toolbox.population(n=500)

 probab_crossing, probab_mutating = 0.5, 0.2

 num_generations = 10

 print('\nEvolution process starts')

Evaluate the entire population:

 fitnesses = list(map(toolbox.evaluate, population))

 for ind, fit in zip(population, fitnesses):

 ind.fitness.values = fit

 print('\nEvaluated', len(population), 'individuals')

Create and iterate through generations:

 for g in range(num_generations):

 print("\n- Generation", g)

AI with Python

 138

Selecting the next generation individuals:

 offspring = toolbox.select(population, len(population))

Now, clone the selected individuals:

 offspring = list(map(toolbox.clone, offspring))

Apply crossover and mutation on the offspring:

 for child1, child2 in zip(offspring[::2], offspring[1::2]):

 if random.random() < probab_crossing:

 toolbox.mate(child1, child2)

Delete the fitness value of child:

 del child1.fitness.values

 del child2.fitness.values

Now, apply mutation:

 for mutant in offspring:

 if random.random() < probab_mutating:

 toolbox.mutate(mutant)

 del mutant.fitness.values

Evaluate the individuals with an invalid fitness:

 invalid_ind = [ind for ind in offspring if not ind.fitness.valid]

 fitnesses = map(toolbox.evaluate, invalid_ind)

 for ind, fit in zip(invalid_ind, fitnesses):

 ind.fitness.values = fit

 print('Evaluated', len(invalid_ind), 'individuals')

Now, replace population with next generation individual:

 population[:] = offspring

Print the statistics for the current generations:

 fits = [ind.fitness.values[0] for ind in population]

 length = len(population)

 mean = sum(fits) / length

AI with Python

 139

 sum2 = sum(x*x for x in fits)

 std = abs(sum2 / length - mean**2)**0.5

 print('Min =', min(fits), ', Max =', max(fits))

 print('Average =', round(mean, 2), ', Standard deviation =',

 round(std, 2))

 print("\n- Evolution ends")

Print the final output:

 best_ind = tools.selBest(population, 1)[0]

 print('\nBest individual:\n', best_ind)

 print('\nNumber of ones:', sum(best_ind))

Following would be the output:

Evolution process starts

Evaluated 500 individuals

- Generation 0

Evaluated 295 individuals

Min = 32.0 , Max = 45.0

Average = 40.29 , Standard deviation = 2.61

- Generation 1

Evaluated 292 individuals

Min = 34.0 , Max = 45.0

Average = 42.35 , Standard deviation = 1.91

- Generation 2

Evaluated 277 individuals

Min = 37.0 , Max = 45.0

Average = 43.39 , Standard deviation = 1.46

… … … …

- Generation 9

Evaluated 299 individuals

Min = 40.0 , Max = 45.0

Average = 44.12 , Standard deviation = 1.11

- Evolution ends

Best individual:

[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1,

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1]

Number of ones: 15

AI with Python

 140

Symbol Regression Problem

It is one of the best known problems in genetic programming. All symbolic regression

problems use an arbitrary data distribution, and try to fit the most accurate data with a

symbolic formula. Usually, a measure like the RMSE (Root Mean Square Error) is used to

measure an individual’s fitness. It is a classic regressor problem and here we are using

the equation 𝟓𝑿𝟑 − 𝟔𝑿𝟐 + 𝟖𝑿 = 𝟏. We need to follow all the steps as followed in the above

example, but the main part would be to create the primitive sets because they are the

building blocks for the individuals so the evaluation can start. Here we will be using the

classic set of primitives.

The following Python code explains this in detail:

import operator

import math

import random

import numpy as np

from deap import algorithms, base, creator, tools, gp

def division_operator(numerator, denominator):

 if denominator == 0:

 return 1

 return numerator / denominator

def eval_func(individual, points):

 func = toolbox.compile(expr=individual)

 mse = ((func(x) - (5 * x**3 - 6 * x**2 + 8 * x - 1))**2 for x in points)

 return math.fsum(mse) / len(points),

def create_toolbox():

 pset = gp.PrimitiveSet("MAIN", 1)

 pset.addPrimitive(operator.add, 2)

 pset.addPrimitive(operator.sub, 2)

 pset.addPrimitive(operator.mul, 2)

 pset.addPrimitive(division_operator, 2)

 pset.addPrimitive(operator.neg, 1)

 pset.addPrimitive(math.cos, 1)

 pset.addPrimitive(math.sin, 1)

 pset.addEphemeralConstant("rand101", lambda: random.randint(-1,1))

 pset.renameArguments(ARG0='x')

 creator.create("FitnessMin", base.Fitness, weights=(-1.0,))

 creator.create("Individual",gp.PrimitiveTree,fitness=creator.FitnessMin)

 toolbox = base.Toolbox()

 toolbox.register("expr", gp.genHalfAndHalf, pset=pset, min_=1, max_=2)

AI with Python

 141

 toolbox.register("individual", tools.initIterate, creator.Individual,

toolbox.expr)

 toolbox.register("population",tools.initRepeat,list, toolbox.individual)

 toolbox.register("compile", gp.compile, pset=pset)

 toolbox.register("evaluate", eval_func, points=[x/10. for x in range(-

10,10)])

 toolbox.register("select", tools.selTournament, tournsize=3)

 toolbox.register("mate", gp.cxOnePoint)

 toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)

 toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)

 toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("height"),

max_value=17))

 toolbox.decorate("mutate",

gp.staticLimit(key=operator.attrgetter("height"), max_value=17))

 return toolbox

if __name__ == "__main__":

 random.seed(7)

 toolbox = create_toolbox()

 population = toolbox.population(n=450)

 hall_of_fame = tools.HallOfFame(1)

 stats_fit = tools.Statistics(lambda x: x.fitness.values)

 stats_size = tools.Statistics(len)

 mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)

 mstats.register("avg", np.mean)

 mstats.register("std", np.std)

 mstats.register("min", np.min)

 mstats.register("max", np.max)

 probab_crossover = 0.4

 probab_mutate = 0.2

 number_gen = 10

 population, log = algorithms.eaSimple(population, toolbox,

 probab_crossover, probab_mutate, number_gen,

 stats=mstats, halloffame=hall_of_fame, verbose=True)

Note that all the basic steps are same as used while generating bit patterns. This program

will give us the output as min, max, std (standard deviation) after 10 number of

generations.

AI with Python

 142

Computer vision is concerned with modeling and replicating human vision using computer

software and hardware. In this chapter, you will learn in detail about this.

Computer Vision

Computer vision is a discipline that studies how to reconstruct, interrupt and understand

a 3d scene from its 2d images, in terms of the properties of the structure present in the

scene.

Computer Vision Hierarchy

Computer vision is divided into three basic categories as following:

 Low-level vision: It includes process image for feature extraction.

 Intermediate-level vision: It includes object recognition and 3D scene

interpretation

 High-level vision: It includes conceptual description of a scene like activity,

intention and behavior.

Computer Vision Vs Image Processing

Image processing studies image to image transformation. The input and output of image

processing are both images.

Computer vision is the construction of explicit, meaningful descriptions of physical objects

from their image. The output of computer vision is a description or an interpretation of

structures in 3D scene.

Applications

Computer vision finds applications in the following fields:

Robotics

 Localization-determine robot location automatically

 Navigation

 Obstacles avoidance

 Assembly (peg-in-hole, welding, painting)

 Manipulation (e.g. PUMA robot manipulator)

 Human Robot Interaction (HRI): Intelligent robotics to interact with and serve

people

18. AI with Python – Computer Vision

AI with Python

 143

Medicine

 Classification and detection (e.g. lesion or cells classification and tumor

 detection)

 2D/3D segmentation

 3D human organ reconstruction (MRI or ultrasound)

 Vision-guided robotics surgery

Security

 Biometrics (iris, finger print, face recognition)

 Surveillance-detecting certain suspicious activities or behaviors

Transportation

 Autonomous vehicle

 Safety, e.g., driver vigilance monitoring

Industrial Automation Application

 Industrial inspection (defect detection)

 Assembly

 Barcode and package label reading

 Object sorting

 Document understanding (e.g. OCR)

Installing Useful Packages

For Computer vision with Python, you can use a popular library called OpenCV (Open

Source Computer Vision). It is a library of programming functions mainly aimed at the

real-time computer vision. It is written in C++ and its primary interface is in C++. You

can install this package with the help of the following command:

pip install opencv_python-X.X-cp36-cp36m-winX.whl

Here X represents the version of Python installed on your machine as well as the win32 or

64 bit you are having.

If you are using the anaconda environment, then use the following command to install

OpenCV:

conda install -c conda-forge opencv

AI with Python

 144

Reading, Writing and Displaying an Image

Most of the CV applications need to get the images as input and produce the images as

output. In this section, you will learn how to read and write image file with the help of

functions provided by OpenCV.

OpenCV functions for Reading, Showing, Writing an Image File

OpenCV provides the following functions for this purpose:

 imread() function: This is the function for reading an image. OpenCV

imread() supports various image formats like PNG, JPEG, JPG, TIFF, etc.

 imshow() function: This is the function for showing an image in a window.

The window automatically fits to the image size. OpenCV imshow()

supports various image formats like PNG, JPEG, JPG, TIFF, etc.

 imwrite() function: This is the function for writing an image. OpenCV

imwrite() supports various image formats like PNG, JPEG, JPG, TIFF, etc.

Example

This example shows the Python code for reading an image in one format: showing it in a

window and writing the same image in other format. Consider the steps shown below:

Import the OpenCV package as shown:

import cv2

Now, for reading a particular image, use the imread() function:

image = cv2.imread('image_flower.jpg')

For showing the image, use the imshow() function. The name of the window in which

you can see the image would be image_flower.

cv2.imshow('image_flower',image)

cv2.destroyAllwindows()

AI with Python

 145

Now, we can write the same image into the other format, say .png by using the imwrite()

function:

 cv2.imwrite('image_flower.png',image)

The output True means that the image has been successfully written as .png file also in

the same folder.

 True

Note: The function destroyallWindows() simply destroys all the windows we created.

Color Space Conversion

In OpenCV, the images are not stored by using the conventional RGB color, rather they

are stored in the reverse order i.e. in the BGR order. Hence the default color code while

reading an image is BGR. The cvtColor() color conversion function in for converting the

image from one color code to other.

Example

Consider this example to convert image from BGR to grayscale.

Import the OpenCV package as shown:

import cv2

Now, for reading a particular image, use the imread() function:

image = cv2.imread('image_flower.jpg')

Now, if we see this image using imshow() function, then we can see that this image is in

BGR.

AI with Python

 146

cv2.imshow('BGR_Penguins',image)

Now, use cvtColor() function to convert this image to grayscale.

image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

cv2.imshow('gray_penguins',image)

AI with Python

 147

Edge Detection

Humans, after seeing a rough sketch, can easily recognize many object types and their

poses. That is why edges play an important role in the life of humans as well as in the

applications of computer vision. OpenCV provides very simple and useful function called

Canny()for detecting the edges.

Example

The following example shows clear identification of the edges.

Import OpenCV package as shown:

import cv2

import numpy as np

Now, for reading a particular image, use the imread() function.

image = cv2.imread('Penguins.jpg')

Now, use the Canny () function for detecting the edges of the already read image.

cv2.imwrite(‘edges_Penguins.jpg’,cv2.Canny(image,200,300))

Now, for showing the image with edges, use the imshow() function.

cv2.imshow(‘edges’, cv2.imread(‘‘edges_Penguins.jpg’))

This Python program will create an image named edges_penguins.jpg with edge

detection.

AI with Python

 148

Face Detection

Face detection is one of the fascinating applications of computer vision which makes it

more realistic as well as futuristic. OpenCV has a built-in facility to perform face detection.

We are going to use the Haar cascade classifier for face detection.

Haar Cascade Data

We need data to use the Haar cascade classifier. You can find this data in our OpenCV

package. After installing OpenCv, you can see the folder name haarcascades. There

would be .xml files for different application. Now, copy all of them for different use and

paste then in a new folder under the current project.

Example

The following is the Python code using Haar Cascade to detect the face of Amitabh Bachan

shown in the following image:

Import the OpenCV package as shown:

import cv2

import numpy as np

Now, use the HaarCascadeClassifier for detecting face:

face_detection =

cv2.CascadeClassifier('D:/ProgramData/cascadeclassifier/haarcascade_frontalface

_default.xml')

Now, for reading a particular image, use the imread() function:

img = cv2.imread('AB.jpg')

Now, convert it into grayscale because it would accept gray images:

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

AI with Python

 149

Now, using face_detection.detectMultiScale, perform actual face detection

faces = face_detection.detectMultiScale(gray, 1.3, 5)

Now, draw a rectangle around the whole face:

for (x,y,w,h) in faces:

 img = cv2.rectangle(img,(x,y),(x+w, y+h),(255,0,0),3)

cv2.imwrite('Face_AB.jpg',img)

This Python program will create an image named Face_AB.jpg with face detection as

shown:

Eye Detection

Eye detection is another fascinating application of computer vision which makes it more

realistic as well as futuristic. OpenCV has a built-in facility to perform eye detection. We

are going to use the Haar cascade classifier for eye detection.

Example

The following example gives the Python code using Haar Cascade to detect the face of

Amitabh Bachan given in the following image:

AI with Python

 150

Import OpenCV package as shown:

import cv2

import numpy as np

Now, use the HaarCascadeClassifier for detecting face:

eye_cascade =

cv2.CascadeClassifier('D:/ProgramData/cascadeclassifier/haarcascade_eye.xml')

Now, for reading a particular image, use the imread() function:

img = cv2.imread('AB_Eye.jpg')

Now, convert it into grayscale because it would accept grey images:

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

Now with the help of eye_cascade.detectMultiScale, perform actual face detection:

eyes = eye_cascade.detectMultiScale(gray, 1.03, 5)

Now, draw a rectangle around the whole face:

for (ex,ey,ew,eh) in eyes:

 img = cv2.rectangle(img,(ex,ey),(ex+ew, ey+eh),(0,255,0),2)

cv2.imwrite('Eye_AB.jpg',img)

This Python program will create an image named Eye_AB.jpg with eye detection as

shown:

AI with Python

 151

Artificial Neural Network (ANN) it is an efficient computing system, whose central theme

is borrowed from the analogy of biological neural networks. Neural networks are one type

of model for machine learning. In the mid-1980s and early 1990s, much important

architectural advancements were made in neural networks. In this chapter, you will learn

more about Deep Learning, an approach of AI.

Deep learning emerged from a decade’s explosive computational growth as a serious

contender in the field. Thus, deep learning is a particular kind of machine learning whose

algorithms are inspired by the structure and function of human brain.

Machine Learning v/s Deep Learning

Deep learning is the most powerful machine learning technique these days. It is so

powerful because they learn the best way to represent the problem while learning how to

solve the problem. A comparison of Deep learning and Machine learning is given below:

Data Dependency

The first point of difference is based upon the performance of DL and ML when the scale

of data increases. When the data is large, deep learning algorithms perform very well.

Machine Dependency

Deep learning algorithms need high-end machines to work perfectly. On the other hand,

machine learning algorithms can work on low-end machines too.

Feature Extraction

Deep learning algorithms can extract high level features and try to learn from the same

too. On the other hand, an expert is required to identify most of the features extracted by

machine learning.

Time of Execution

Execution time depends upon the numerous parameters used in an algorithm. Deep

learning has more parameters than machine learning algorithms. Hence, the execution

time of DL algorithms, specially the training time, is much more than ML algorithms. But

the testing time of DL algorithms is less than ML algorithms.

Approach to Problem Solving

Deep learning solves the problem end-to-end while machine learning uses the traditional

way of solving the problem i.e. by breaking down it into parts.

Convolutional Neural Network (CNN)

Convolutional neural networks are the same as ordinary neural networks because they are

also made up of neurons that have learnable weights and biases. Ordinary neural networks

19. AI with Python – Deep Learning

AI with Python

 152

ignore the structure of input data and all the data is converted into 1-D array before

feeding it into the network. This process suits the regular data, however if the data

contains images, the process may be cumbersome.

CNN solves this problem easily. It takes the 2D structure of the images into account when

they process them, which allows them to extract the properties specific to images. In this

way, the main goal of CNNs is to go from the raw image data in the input layer to the

correct class in the output layer. The only difference between an ordinary NNs and CNNs

is in the treatment of input data and in the type of layers.

Architecture Overview of CNNs

Architecturally, the ordinary neural networks receive an input and transform it through a

series of hidden layer. Every layer is connected to the other layer with the help of neurons.

The main disadvantage of ordinary neural networks is that they do not scale well to full

images.

The architecture of CNNs have neurons arranged in 3 dimensions called width, height and

depth. Each neuron in the current layer is connected to a small patch of the output from

the previous layer. It is similar to overlaying a 𝑵 × 𝑵 filter on the input image. It uses M

filters to be sure about getting all the details. These M filters are feature extractors which

extract features like edges, corners, etc.

Layers used to construct CNNs

Following layers are used to construct CNNs:

 Input Layer: It takes the raw image data as it is.

 Convolutional Layer: This layer is the core building block of CNNs that does most

of the computations. This layer computes the convolutions between the neurons

and the various patches in the input.

 Rectified Linear Unit Layer: It applies an activation function to the output of the

previous layer. It adds non-linearity to the network so that it can generalize well to

any type of function.

 Pooling Layer: Pooling helps us to keep only the important parts as we progress

in the network. Pooling layer operates independently on every depth slice of the

input and resizes it spatially. It uses the MAX function.

 Fully Connected layer/Output layer: This layer computes the output scores in

the last layer. The resulting output is of the size 𝟏 × 𝟏 × 𝑳 , where L is the number

training dataset classes.

Installing Useful Python Packages

You can use Keras, which is an high level neural networks API, written in Python and

capable of running on top of TensorFlow, CNTK or Theno. It is compatible with Python 2.7-

3.6. You can learn more about it from https://keras.io/.

Use the following commands to install keras:

https://keras.io/

AI with Python

 153

pip install keras

On conda environment, you can use the following command:

conda install –c conda-forge keras

Building Linear Regressor using ANN

In this section, you will learn how to build a linear regressor using artificial neural

networks. You can use KerasRegressor to achieve this. In this example, we are using

the Boston house price dataset with 13 numerical for properties in Boston. The Python

code for the same is shown here:

Import all the required packages as shown:

import numpy

import pandas

from keras.models import Sequential

from keras.layers import Dense

from keras.wrappers.scikit_learn import KerasRegressor

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import KFold

Now, load our dataset which is saved in local directory.

dataframe = pandas.read_csv("/Usrrs/admin/data.csv", delim_whitespace=True,

header=None)

dataset = dataframe.values

Now, divide the data into input and output variables i.e. X and Y:

X = dataset[:,0:13]

Y = dataset[:,13]

Since we use baseline neural networks, define the model:

def baseline_model():

AI with Python

 154

Now, create the model as follows:

 model_regressor = Sequential()

 model_regressor.add(Dense(13, input_dim=13, kernel_initializer='normal',

activation='relu'))

 model_regressor.add(Dense(1, kernel_initializer='normal'))

Next, compile the model:

 model_regressor.compile(loss='mean_squared_error', optimizer='adam')

 return model_regressor

Now, fix the random seed for reproducibility as follows:

seed = 7

numpy.random.seed(seed)

The Keras wrapper object for use in scikit-learn as a regression estimator is called

KerasRegressor. In this section, we shall evaluate this model with standardize data set.

estimator = KerasRegressor(build_fn=baseline_model, nb_epoch=100, batch_size=5,

verbose=0)

kfold = KFold(n_splits=10, random_state=seed)

baseline_result = cross_val_score(estimator, X, Y, cv=kfold)

print("Baseline: %.2f (%.2f) MSE" %

(Baseline_result.mean(),Baseline_result.std()))

The output of the code shown above would be the estimate of the model’s performance

on the problem for unseen data. It will be the mean squared error, including the average

and standard deviation across all 10 folds of the cross validation evaluation.

Image Classifier: An Application of Deep Learning

Convolutional Neural Networks (CNNs) solve an image classification problem, that is to

which class the input image belongs to. You can use Keras deep learning library. Note that

we are using the training and testing data set of images of cats and dogs from following

link https://www.kaggle.com/c/dogs-vs-cats/data.

Import the important keras libraries and packages as shown:

The following package called sequential will initialize the neural networks as sequential

network.

from keras.models import Sequential

https://www.kaggle.com/c/dogs-vs-cats/data

AI with Python

 155

The following package called Conv2D is used to perform the convolution operation, the

first step of CNN.

from keras.layers import Conv2D

The following package called MaxPoling2D is used to perform the pooling operation, the

second step of CNN.

from keras.layers import MaxPooling2D

The following package called Flatten is the process of converting all the resultant 2D

arrays into a single long continuous linear vector.

from keras.layers import Flatten

The following package called Dense is used to perform the full connection of the neural

network, the fourth step of CNN.

from keras.layers import Dense

Now, create an object of the sequential class.

S_classifier = Sequential()

Now, next step is coding the convolution part.

S_classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation =

'relu'))

Here relu is the rectifier function.

Now, the next step of CNN is the pooling operation on the resultant feature maps after

convolution part.

S-classifier.add(MaxPooling2D(pool_size = (2, 2)))

Now, convert all the pooled images into a continuous vector by using flattering:

S_classifier.add(Flatten())

Next, create a fully connected layer.

S_classifier.add(Dense(units = 128, activation = 'relu'))

Here, 128 is the number of hidden units. It is a common practice to define the number of

hidden units as the power of 2.

Now, initialize the output layer as follows:

AI with Python

 156

S_classifier.add(Dense(units = 1, activation = 'sigmoid'))

Now, compile the CNN, we have built:

S_classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics

= ['accuracy'])

Here optimizer parameter is to choose the stochastic gradient descent algorithm, loss

parameter is to choose the loss function and metrics parameter is to choose the

performance metric.

Now, perform image augmentations and then fit the images to the neural networks:

train_datagen = ImageDataGenerator(rescale = 1./255,shear_range = 0.2,

zoom_range = 0.2,

horizontal_flip = True)

test_datagen = ImageDataGenerator(rescale = 1./255)

training_set =

train_datagen.flow_from_directory(”/Users/admin/training_set”,target_size =

(64, 64),batch_size = 32,class_mode = 'binary')

test_set = test_datagen.flow_from_directory('test_set',target_size = (64,

64),batch_size = 32,class_mode = 'binary')

Now, fit the data to the model we have created:

classifier.fit_generator(training_set,steps_per_epoch = 8000,epochs =

25,validation_data = test_set,validation_steps = 2000)

Here steps_per_epoch have the number of training images.

Now as the model has been trained, we can use it for prediction as follows:

from keras.preprocessing import image

test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg',

target_size = (64, 64))

test_image = image.img_to_array(test_image)

test_image = np.expand_dims(test_image, axis = 0)

result = classifier.predict(test_image)

AI with Python

 157

training_set.class_indices

if result[0][0] == 1:

prediction = 'dog'

else:

prediction = 'cat'

