
http://www.tutorialspoint.com/apache_poi/apache_poi_quick_guide.htm Copyright © tutorialspoint.com

APACHE POI QUICK GUIDEAPACHE POI QUICK GUIDE

APACHE POI OVERVIEWAPACHE POI OVERVIEW
Many a time, a software application is required to generate reports in Microsoft Excel file format.
Sometimes, an application is even expected to receive Excel files as input data. For example, an
application developed for the Finance department of a company will be required to generate all
their outputs in Excel.

Any Java programmer who wants to produce MS Office files as output must use a predefined and
read-only API to do so.

What is Apache POI?
Apache POI is a popular API that allows programmers to create, modify, and display MS Office files
using Java programs. It is an open source library developed and distributed by Apache Software
Foundation to design or modify Microsoft Office files using Java program. It contains classes and
methods to decode the user input data or a file into MS Office documents.

Components of Apache POI
Apache POI contains classes and methods to work on all OLE2 Compound documents of MS Office.
The list of components of this API is given below.

POIFS PoorObfuscationImplementationFileSystem : This component is the basic factor of all other
POI elements. It is used to read different files explicitly.

HSSF HorribleSpreadsheetFormat : It is used to read and write xls format of MS-Excel files.

XSSF XMLSpreadsheetFormat : It is used for xlsx file format of MS-Excel.

HPSF HorriblePropertySetFormat : It is used to extract property sets of the MS-Office files.

HWPF HorribleWordProcessorFormat : It is used to read and write doc extension files of MS-Word.

XWPF XMLWordProcessorFormat : It is used to read and write docx extension files of MS-Word.

HSLF HorribleSlideLayoutFormat : It is used for read, create, and edit PowerPoint presentations.

HDGF HorribleDiaGramFormat : It contains classes and methods for MS-Visio binary files.

HPBF HorriblePuBlisherFormat : It is used to read and write MS-Publisher files.

This tutorial guides you through the process of working on Excel files using Java. Therefore the
discussion is confined to HSSF and XSSF components.

Note : Older versions of POI support binary file formats such as doc, xls, ppt, etc. Version 3.5
onwards, POI supports OOXML file formats of MS-Office such as docx, xlsx, pptx, etc.

Like Apache POI, there are other libraries provided by various vendors for Excel file generation.
These include Aspose cells for Java by Aspose, JXL by Commons Libraries, and JExcel by Team Dev.

FLAVORS OF JAVA EXCEL APIFLAVORS OF JAVA EXCEL API
This chapter takes you through some of the flavors of Java Excel API and their features. There are
many vendors who provide Java Excel related APIs; some of them are considered in this chapter.

Aspose Cells for Java
Aspose Cells for Java is a purely licensed Java Excel API developed and distributed by the vendor
Aspose. The latest version of this API is 8.1.2, released in July 2014. It is a rich and heavy API
combinationofplainJavaclassesandAWTclasses for designing the Excel component that can read, write, and
manipulate spreadsheets. The common uses of this API are as follows:

http://www.tutorialspoint.com/apache_poi/apache_poi_quick_guide.htm

Excel reporting, build dynamic Excel reports
High-fidelity Excel rendering and printing
Import and export data from Excel spreadsheets
Generate, edit, and convert spreadsheets

JXL
JXL is a third-party framework designed for Selenium that supports data driven automation on web
browsers auto − updateofdataonwebbrowsers. However it is also used as a common support library for
JExcel API because it has basic features to create, read, and write spreadsheets. The basic features
are as follows:

Generate Excel files
Import data from workbooks and spreadsheets
Obtain the total number of rows and columns

Note : JXL supports only .xls file format and it cannot handle large data volume.

JExcel
JExcel is a purely licensed API provided by Team Dev. Using this, programmers can easily read,
write, display, and modify Excel workbooks in both .xls and .xlsx formats. This API can be easily
embedded with Java Swing and AWT. The latest version of this API is Jexcel-2.6.12, released in
2009. The main features are as follows.

Automate Excel application, workbooks, spreadsheets, etc.
Embed workbooks in a Java Swing application as ordinary Swing component
Add event listeners to workbooks and spreadsheets
Add event handlers to handle the behavior of workbook and spreadsheet events
Add native peers to develop custom functionality

Apache POI
Apache POI is a 100% open source library provided by Apache Software Foundation. Most of the
small and medium scale application developers depend heavily on Apache POI HSSF + XSSF. It
supports all the basic features of Excel libraries; however, rendering and text extraction are its
main features.

APACHE POI INSTALLATIONAPACHE POI INSTALLATION
This chapter takes you through the process of setting up Apache POI on Windows and Linux based
systems. Apache POI can be easily installed and integrated with your current Java environment
following a few simple steps without any complex setup procedures. User administration is
required while installation.

System Requirements

JDK Java SE 2 JDK 1.5 or above

Memory 1 GB RAM recommended

Disk Space No minimum requirement

Operating System Version Windows XP or above, Linux

Let us now proceed with the steps to install Apache POI.

Step 1: Verify your Java Installation
First of all, you need to have Java Software Development Kit SDK installed on your system. To verify
this, execute any of the two commands depending on the platform you are working on.

If the Java installation has been done properly, then it will display the current version and
specification of your Java installation. A sample output is given in the following table.

Platform Command Sample Output

Windows Open Command Console and type:
Java version "1.7.0_60"

Java TM SE Run Time
Environment

\>java –version
build1.7.060 − b19

Java Hotspot TM 64-bit
Server VM

build24.60 − b09, mixedmode

Open command java version "1.7.0_25" Open JDK Runtime

terminal and type:
$java –version

Environment rhel − 2.3.10.4.el64 − x8664 Open JDK 64-
Bit Server VM build23.7 − b01, mixedmode

We assume the readers of this tutorial have Java SDK version 1.7.0_60 installed on their
system.

In case you do not have Java SDK, download its current version from
http://www.oracle.com/technetwork/java/javase/downloads/index.html and have it installed.

Step 2: Set your Java Environment
Set the environment variable JAVA_HOME to point to the base directory location where Java is
installed on your machine. For example,

Platform Description

Windows Set JAVA_HOME to C:\ProgramFiles\java\jdk1.7.0_60

Linux Export JAVA_HOME=/usr/local/java-current

Append the full path of Java compiler location to the System Path.

Platform Description

Windows Linux

Append the String "C:\Program Files\Java\jdk1.7.0_60\bin" to the end
of the system variable PATH.

Export PATH=PATH:
JAVA_HOME/bin/

Execute the command java -version from the command prompt as explained above.

Step 3: Install Apache POI Library
Download the latest version of Apache POI from http://poi.apache.org/download.html and unzip its
contents to a folder from where the required libraries can be linked to your Java program. Let us
assume the files are collected in a folder on C drive.

The following images show the directories and the file structure inside the downloaded folder.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Add the complete path of the five jars as highlighted in the above image to the CLASSPATH.

Platform Description

Windows
Append the following strings to the end of the user variable

CLASSPATH:

“C:\poi-3.9\poi-3.9-20121203.jar;”

“C:\poi-3.9\poi-ooxml-3.9-20121203.jar;”

“C:\poi-3.9\poi-ooxml-schemas-3.9-20121203.jar;”

“C:\poi-3.9\ooxml-lib\dom4j-1.6.1.jar;”

“C:\poi-3.9\ooxml-lib\xmlbeans-2.3.0.jar;.;”

Linux
Export CLASSPATH=$CLASSPATH:

/usr/share/poi-3.9/poi-3.9-20121203.tar:

/usr/share/poi-3.9/poi-ooxml-schemas-3.9-20121203.tar:

/usr/share/poi-3.9/poi-ooxml-3.9-20121203.tar:

/usr/share/poi-3.9/ooxml-lib/dom4j-1.6.1.tar:

/usr/share/poi-3.9/ooxml-lib/xmlbeans-2.3.0.tar

POI – CLASSES AND METHODSPOI – CLASSES AND METHODS
This chapter explains a few classes and methods under the Apache POI API that are critical to work
on Excel files using Java programs.

Workbook
This is the super-interface of all classes that create or maintain Excel workbooks. It belongs to the
org.apache.poi.ss.usermodel package. The two classes that implement this interface are as
follows:

HSSFWorkbook : This class has methods to read and write Microsoft Excel files in .xls
format. It is compatible with MS-Office versions 97–2003.

XSSFWorkbook : This class has methods to read and write Microsoft Excel and OpenOffice
xml files in .xls or .xlsx format. It is compatible with MS-Office versions 2007 or later.

HSSFWorkbook
It is a high-level class under the org.apache.poi.hssf.usermodel package. It implements the
Workbook interface and is used for Excel files in .xls format. Listed below are some of the methods
and constructors under this class.

Class Constructors

S.No. Constructor and Description

1
HSSFWorkbook

Creates a new HSSFWorkbook object from scratch.

2
HSSFWorkbookDirectoryNodedirectory, booleanpreserveNodes

Creates a new HSSFWworkbook objectinside a specific directory.

3
HSSFWorkbookDirectoryNodedirectory, POIFSFileSystemfs, booleanpreserveNodes

Given a POIFSFileSystem object and a specific directory within it, it creates an
SSFWorkbook object to read a specified workbook.

4
HSSFWorkbookjava. io. InputStreams

Creates a new HSSFWorkbook object using an input stream.

5
HSSFWorkbookjava. io. InputStreams, booleanpreserveNodes

Constructs a POI file system around your input stream.

6
HSSFWorkbookPOIFSFileSystemfs

Constructs a new HSSFWorkbook object using a POIFSFileSystem object.

7
HSSFWorkbookPOIFSFileSystemfs, booleanpreserveNodes

Given a POIFSFileSystem object, it creates a new HSSFWorkbook object to read a
specified workbook.

The frequently used parameters inside these constructors are:

directory : It is the POI filesystem directory to process from.

fs : It is the POI filesystem that contains the workbook stream.

preservenodes : This is an optional parameter that decides whether to preserve other
nodes like macros. It consumes a lot of memory as it stores all the POIFileSystem in memory
ifset.

Note : The HSSFWorkbook class contains a number of methods; however they are compatible with
xls format only. In this tutorial, the focus is on the latest version of Excel file formats. Hence, the
class methods of HSSFWorkbook are not listed here. If you require these class methods, then refer
POI-HSSFWorkbook class API at
https://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html.

XSSFWorkbook
It is a class that is used to represent both high and low level Excel file formats. It belongs to the
org.apache.xssf.usemodel package and implements the Workbook interface. Listed below are the
methods and constructors under this class.

https://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFWorkbook.html.

Class Constructors

S.No. Constructor and Description

1
XSSFWorkbook

Creates a new XSSFworkbook object from scratch.

2
XSSFWorkbookjava. io. Filefile

Constructs an XSSFWorkbook object from a given file.

3
XSSFWorkbookjava. io. InputStreamis

Constructs an XSSFWorkbook object, by buffering the whole input stream into memory
and then opening an OPCPackage object for it.

4
XSSFWorkbookjava. lang. Stringpath

Constructs an XSSFWorkbook object given the full path of a file.

Class Methods

S.No. Method and Description

1
createSheet

Creates an XSSFSheet for this workbook, adds it to the sheets, and returns the high level
representation.

2
createSheetjava. lang. Stringsheetname

Creates a new sheet for this Workbook and returns the high level representation.

3
createFont

Creates a new font and adds it to the workbook's font table.

4
createCellStyle

Creates a new XSSFCellStyle and adds it to the workbook's style table.

5
createFont

Creates a new font and adds it to the workbook's font table.

6

6
setPrintAreaintsheetIndex, intstartColumn, intendColumn, intstartRow, intendRow

Sets the print area of a given sheet as per the specified parameters.

For the remaining methods of this class, refer the complete API document at:
http://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFWorkbook.html.for the
complete list of methods.

Sheet
Sheet is an interface under the org.apache.poi.ss.usermodel package and it is a super-interface of
all classes that create high or low level spreadsheets with specific names. The most common type
of spreadsheet is worksheet, which is represented as a grid of cells.

HSSFSheet
This is a class under the org.apache.poi.hssf.usermodel package. It can create excel spreadsheets
and it allows to format the sheet style and sheet data.

Class Constructors

S.No. Constructor and Description

1
HSSFSheetHSSFWorkbookworkbook

Creates new HSSFSheet called by HSSFWorkbook to create a sheet from scratch.

2
HSSFSheetHSSFWorkbookworkbook, InternalSheetsheet

Creates an HSSFSheet representing the given sheet object.

XSSFSheet
This is a class which represents high level representation of excel spreadsheet. It is under
org.apache.poi.hssf.usermodel package.

Class Constructors

S.No. Constructor and Description

1
XSSFSheet

Creates new XSSFSheet - called by XSSFWorkbook to create a sheet from scratch.

2
XSSFSheetPackagePartpart, PackageRelationshiprel

Creates an XSSFSheet representing the given package part and relationship.

Class Methods

http://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFWorkbook.html

S.No. Methods and Description

1
addMergedRegionCellRangeAddressregion

Adds a merged region of cells hencethosecellsformone.

2
autoSizeColumnintcolumn

Adjusts the column width to fit the contents.

3
iterator

This method is an alias for rowIterator to allow foreach loops

4
addHyperlinkXSSFHyperlinkhyperlink

Registers a hyperlink in the collection of hyperlinks on this sheet

For the remaining methods of this class, refer the complete API at:
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFSheet.html.

Row
This is an interface under the org.apache.poi.ss.usermodel package. It is used for high-level
representation of a row of a spreadsheet. It is a super-interface of all classes that represent rows in
POI library.

XSSFRow
This is a class under the org.apache.poi.xssf.usermodel package. It implements the Row
interface, therefore it can create rows in a spreadsheet. Listed below are the methods and
constructors under this class.

Class Methods

S.No. Description

1
createCellintcolumnIndex

Creates new cells within the row and returns it.

2
setHeightshortheight

Sets the height in short units.

For the remaining methods of this class, follow the given link
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFRow.html

Cell
This is an interface under the org.apache.poi.ss.usermodel package. It is a super-interface of all
classes that represent cells in the rows of a spreadsheet.

https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFSheet.html.
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFRow.html

Cells can take various attributes such as blank, numeric, date, error, etc. Cells should have their
own numbers 0based before being added to a row.

XSSFCell
This is a class under the org.apache.poi.xssf.usermodel package. It implements the Cell interface.
It is a high-level representation of cells in the rows of a spreadsheet.

Field Summary
Listed below are some of the fields of the XSSFCell class along with their description.

Cell Type Description

CELL_TYPE_BLANK Represents blank cell

CELL_TYPE_BOOLEAN Represents Boolean cell trueorfalse

CELL_TYPE_ERROR Represents error value on a cell

CELL_TYPE_FORMULA Represents formula result on a cell

CELL_TYPE_NUMERIC Represents numeric data on a cell

CELL_TYPE_STRING Represents string text on a cell

Class Methods

S.No. Description

1
setCellStyleCellStylestyle

Sets the style for the cell.

2
setCellTypeintcellType

Sets the type of cells numeric, formula, orstring.

3
setCellValuebooleanvalue

Sets a boolean value for the cell.

4
setCellValuejava. util. Calendarvalue

Sets a date value for the cell.

5
setCellValuedoublevalue

Sets a numeric value for the cell.

6
setCellValuejava. lang. Stringstr

Sets a string value for the cell.

7
setHyperlinkHyperlinkhyperlink

Assigns a hyperlink to this cell.

For the remaining methods and fields of this class, visit the following link:
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFCell.html

XSSFCellStyle
This is a class under the org.apache.poi.xssf.usermodel package. It will provide possible
information regarding the format of the content in a cell of a spreadsheet. It also provides options
for modifying that format. It implements the CellStyle interface.

Field Summary
The following table lists a few fields that are inherited from the CellStyle interface.

Field Name Field Description

ALIGN_CENTER Center align the cell contents

ALIGN_CENTER_SELECTION Center-selection horizontal alignment

ALIGN_FILL Cell fit to the content size

ALIGN_JUSTIFY Fit cell contents to its width

ALIGN_LEFT Left align the cell contents

ALIGN_RIGHT Right align the cell contents

BORDER_DASH_DOT Cell style with dash and dot

BORDER_DOTTED Cell style with dotted border

BORDER_DASHED Cell style with dashed border

BORDER_THICK Cell style with thick border

BORDER_THIN Cell style with thin border

VERTICAL_BOTTOM Align the cell contents vertical bottom

VERTICAL_CENTER Align the cell contents vertical center

VERTICAL_JUSTIFY Align and justify the cell contents vertically

VERTICAL_TOP Top aligned vertical alignment

Class Constructors

S.No. Constructor and Description

1
XSSFCellStyleintcellXfId, intcellStyleXfId, StylesTablestylesSource, ThemesTabletheme

Creates a cell style from the supplied parts

2

https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFCell.html

2
XSSFCellStyleStylesTablestylesSource

Creates an empty cell Style

Class Methods
Sets the type of border for the bottom border of the cell

S.No Method and Description

1
setAlignmentshortalign

Sets the type of horizontal alignment for the cell

2
setBorderBottomshortborder

3
setBorderColorXSSFCellBorder. BorderSideside, XSSFColorcolor

Sets the color for the selected border

4
setBorderLeftShortborder

Sets the type of border for the left border of the cell

5
setBorderRightshortborder

Sets the type of border for the right border of the cell

6
setBorderTopshortborder

Sets the type of border for the top border of the cell

7
setFillBackgroundColorXSSFColorcolor

Sets the background fill color represented as an XSSFColor value.

8
setFillForegroundColorXSSFColorcolor

Sets the foreground fill color represented as an XSSFColor value.

9
setFillPatternshortfp

Specifies the cell fill information for pattern and solid color cell fills.

10
setFontFontfont

Sets the font for this style.

11
setRotationshortrotation

Sets the degree of rotation for the text in the cell.

12
setVerticalAlignmentshortalign

Sets the type of vertical alignment for the cell.

For the remaining methods and fields in this class, go through the following link:
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFCellStyle.html

HSSFColor
This is a class under the org.apache.poi.hssf.util package. It provides different colors as nested
classes. Usually these nested classes are represented by using their own indexes. It implements
the Color interface.

Nested classes
All nested classes of this class are static and each class has its index. These nested color classes
are used for cell formatting such as cell content, border, foreground, and background. Listed
below are some of the nested classes.

S.No. Class names colors

1 HSSFColor.AQUA

2 HSSFColor.AUTOMATIC

3 HSSFColor.BLACK

4 HSSFColor.BLUE

5 HSSFColor.BRIGHT_GREEN

6 HSSFColor.BRIGHT_GRAY

7 HSSFColor.CORAL

8 HSSFColor.DARK_BLUE

9 HSSFColor.DARK_GREEN

10 HSSFColor.SKY_BLUE

11 HSSFColor.WHITE

12 HSSFColor.YELLOW

Class Methods
Only one method of this class is important and that is used to get the index value.

S.No. Method and Description

1
getIndex

https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFCellStyle.html.

This method is used to get the index value of a nested class

For the remaining methods and nested classes, refer the following link:
https://poi.apache.org/apidocs/org/apache/poi/hssf/util/HSSFColor.html.

XSSFColor
This is a class under the org.apache.poi.xssf.usermodel package. It is used to represent color in a
spreadsheet. It implements the Color interface. Listed below are some of its methods and
constructors.

Class Constructors

S.No. Constructor and Description

1
XSSFColor

Creates a new instance of XSSFColor.

2
XSSFColorbyte[]rgb

Creates a new instance of XSSFColor using RGB.

3
XSSFColorjava. awt. Colorclr

Creates a new instance of XSSFColor using the Color class from the awt package.

Class Methods

S.No. Method and Description

1
setAutobooleanauto

Sets a boolean value to indicate that the ctColor is automatic and the system ctColor is
dependent.

2
setIndexedintindexed

Sets indexed ctColor value as system ctColor.

For the remaining methods, visit the following link:
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFColor.html.

XSSFFont
This is a class under the org.apache.poi.xssf.usermodel package. It implements the Font interface
and therefore it can handle different fonts in a workbook.

Class Constructor

https://poi.apache.org/apidocs/org/apache/poi/hssf/util/HSSFColor.html.

https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFColor.html.

S.No. Constructor and Description

1
XSSFFont

Creates a new XSSFont instance.

Class Methods

S.No. Method and Description

1
setBoldbooleanbold

Sets a Boolean value for the 'bold' attribute.

2
setColorshortcolor

Sets the indexed color for the font.

3
setColorXSSFColorcolor

Sets the color for the font in Standard Alpha RGB color value.

4
setFontHeightshortheight

Sets the font height in points.

5
setFontNamejava. lang. Stringname

Sets the name for the font.

6
setItalicbooleanitalic

Sets a Boolean value for the 'italic' property.

For the remaining methods, go through the following link:
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFFont.html.

XSSFHyperlink
This is a class under the org.apache.poi.xssf.usermodel package. It implements the Hyperlink
interface. It is used to set a hyperlink to the cell contents of a spreadsheet.

Fields
The fields of this class are as follows. Here, fields mean the types of hyperlinks used.

Field Description

LINK_DOCUMENT Used to link any other document

https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFFont.html.

LINK_EMAIL Used to link email

LINK_FILE Used to link any other file in any format

LINK_URL Used to link a web URL

Class Methods

S.No. Method and Description

1
setAddressjava. lang. Stringaddress

Hyperlink address.

For the remaining methods, visit the following link:
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFHyperlink.html

XSSFCreationHelper
This is a class under the org.apache.poi.xssf.usermodel package. It implements the
CreationHelper interface. It is used as a support class for formula evaluation and setting up
hyperlinks.

Class methods

S.No. Method and Description

1
createFormulaEvaluator

Creates an XSSFFormulaEvaluator instance, the object that evaluates formula cells.

2
createHyperlinkinttype

Creates a new XSSFHyperlink.

For the remaining methods, refer the following link:
https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFCreationHelper.html.

XSSFPrintSetup
This is a class under the org.apache.poi.xsssf.usermodel package. It implements the PrintSetup
interface. It is used to set print page size, area, options, and settings.

Class Methods

S.No. Method and Description

1
setLandscapebooleanls

Sets a boolean value to allow or block landscape printing.

https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFHyperlink.html

https://poi.apache.org/apidocs/org/apache/poi/xssf/usermodel/XSSFCreationHelper.html.

2
setLeftToRightbooleanltor

Sets whether to go left to right or top down in ordering while printing.

3
setPaperSizeshortsize

Sets the paper size.

For the remaining methods, visit the following link:
https://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFPrintSetup.html

POI – WORKBOOKSPOI – WORKBOOKS
Here the term 'Workbook' means Microsoft Excel file. After completion of this chapter, you will be
able to create new Workbooks and open existing Workbooks with your Java program.

Create Blank Workbook
The following simple program is used to create a blank Microsoft Excel Workbook.

import java.io.*;
import org.apache.poi.xssf.usermodel.*;
public class CreateWorkBook
{
 public static void main(String[] args)throws Exception
 {
 //Create Blank workbook
 XSSFWorkbook workbook = new XSSFWorkbook();
 //Create file system using specific name
 FileOutputStream out = new FileOutputStream(
 new File("createworkbook.xlsx"));
 //write operation workbook using file out object
 workbook.write(out);
 out.close();
 System.out.println("
 createworkbook.xlsx written successfully");
 }
}

Let us save the above Java code as CreateWorkBook.java, and then compile and execute it from
the command prompt as follows:

$javac CreateWorkBook.java
$java CreateWorkBook

If your system environment is configured with the POI library, it will compile and execute to
generate the blank Excel file named createworkbook.xlsx in your current directory and display
the following output in the command prompt.

createworkbook.xlsx written successfully

Open Existing Workbook
Use the following code to open an existing workbook.

import java.io.*;
import org.apache.poi.xssf.usermodel.*;
public class OpenWorkBook
{
 public static void main(String args[])throws Exception

https://poi.apache.org/apidocs/org/apache/poi/hssf/usermodel/HSSFPrintSetup.html

 {
 File file = new File("openworkbook.xlsx");
 FileInputStream fIP = new FileInputStream(file);
 //Get the workbook instance for XLSX file
 XSSFWorkbook workbook = new XSSFWorkbook(fIP);
 if(file.isFile() && file.exists())
 {
 System.out.println(
 "openworkbook.xlsx file open successfully.");
 }
 else
 {
 System.out.println(
 "Error to open openworkbook.xlsx file.");
 }
 }
}

Save the above Java code as OpenWorkBook.java, and then compile and execute it from the
command prompt as follows:

$javac OpenWorkBook.java
$java OpenWorkBook

It will compile and execute to generate the following output.

openworkbook.xlsx file open successfully.

After opening a workbook, you can perform read and write operations on it.

POI – SPREADSHEETSPOI – SPREADSHEETS
This chapter explains how to create a spreadsheet and manipulate it using Java. Spreadsheet is a
page in an Excel file; it contains rows and columns with specific names.

After completing this chapter, you will be able to create a spreadsheet and perform read
operations on it.

Create a Spreadsheet
First of all, let us create a spreadsheet using the referenced classes discussed in the earlier
chapters. By following the previous chapter, create a workbook first and then we can go on and
create a sheet.

The following code snippet is used to create a spreadsheet.

//Create Blank workbook
XSSFWorkbook workbook = new XSSFWorkbook();
//Create a blank spreadsheet
XSSFSheet spreadsheet = workbook.createSheet("Sheet Name");

Rows on Spreadsheet
Spreadsheets have a grid layout. The rows and columns are identified with specific names. The
columns are identified with alphabets and rows with numbers.

The following code snippet is used to create a row.

XSSFRow row = spreadsheet.createRow((short)1);

Write into a Spreadsheet
Let us consider an example of employee data. Here the employee data is given in a tabular form.

Emp Id Emp Name Designation

Tp01 Gopal Technical Manager

TP02 Manisha Proof Reader

Tp03 Masthan Technical Writer

Tp04 Satish Technical Writer

Tp05 Krishna Technical Writer

The following code is used to write the above data into a spreadsheet.

import java.io.File;
import java.io.FileOutputStream;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class Writesheet
{
 public static void main(String[] args) throws Exception
 {
 //Create blank workbook
 XSSFWorkbook workbook = new XSSFWorkbook();
 //Create a blank sheet
 XSSFSheet spreadsheet = workbook.createSheet(
 " Employee Info ");
 //Create row object
 XSSFRow row;
 //This data needs to be written (Object[])
 Map < String, Object[] > empinfo =
 new TreeMap < String, Object[] >();
 empinfo.put("1", new Object[] {
 "EMP ID", "EMP NAME", "DESIGNATION" });
 empinfo.put("2", new Object[] {
 "tp01", "Gopal", "Technical Manager" });
 empinfo.put("3", new Object[] {
 "tp02", "Manisha", "Proof Reader" });
 empinfo.put("4", new Object[] {
 "tp03", "Masthan", "Technical Writer" });
 empinfo.put("5", new Object[] {
 "tp04", "Satish", "Technical Writer" });
 empinfo.put("6", new Object[] {
 "tp05", "Krishna", "Technical Writer" });
 //Iterate over data and write to sheet
 Set < String > keyid = empinfo.keySet();
 int rowid = 0;
 for (String key : keyid)
 {
 row = spreadsheet.createRow(rowid++);
 Object [] objectArr = empinfo.get(key);
 int cellid = 0;
 for (Object obj : objectArr)
 {
 Cell cell = row.createCell(cellid++);
 cell.setCellValue((String)obj);
 }
 }
 //Write the workbook in file system
 FileOutputStream out = new FileOutputStream(
 new File("Writesheet.xlsx"));
 workbook.write(out);

 out.close();
 System.out.println(
 "Writesheet.xlsx written successfully");
 }
}

Save the above Java code as Writesheet.java, and then compile and run it from the command
prompt as follows:

$javac Writesheet.java
$java Writesheet

It will compile and execute to generate an Excel file named Writesheet.xlsx in your current
directory and you will get the following output in the command prompt.

Writesheet.xlsx written successfully

The Writesheet.xlsx file looks as follows.

Read from a Spreadsheet
Let us consider the above excel file named Writesheet.xslx as input. Observe the following code;
it is used for reading the data from a spreadsheet.

import java.io.File;
import java.io.FileInputStream;
import java.util.Iterator;
import org.apache.poi.ss.usermodel.Cell;
import org.apache.poi.ss.usermodel.Row;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class Readsheet
{
 static XSSFRow row;
 public static void main(String[] args) throws Exception
 {
 FileInputStream fis = new FileInputStream(
 new File("WriteSheet.xlsx"));

 XSSFWorkbook workbook = new XSSFWorkbook(fis);
 XSSFSheet spreadsheet = workbook.getSheetAt(0);
 Iterator < Row > rowIterator = spreadsheet.iterator();
 while (rowIterator.hasNext())
 {
 row = (XSSFRow) rowIterator.next();
 Iterator < Cell > cellIterator = row.cellIterator();
 while (cellIterator.hasNext())
 {
 Cell cell = cellIterator.next();
 switch (cell.getCellType())
 {
 case Cell.CELL_TYPE_NUMERIC:
 System.out.print(
 cell.getNumericCellValue() + " \t\t ");
 break;
 case Cell.CELL_TYPE_STRING:
 System.out.print(
 cell.getStringCellValue() + " \t\t ");
 break;
 }
 }
 System.out.println();
 }
 fis.close();
 }
}

Let us keep the above code in Readsheet.java file, and then compile and run it from the
command prompt as follows:

$javac Readsheet.java
$java Readsheet

If your system environment is configured with the POI library, it will compile and execute to
generate the following output in the command prompt.

EMP ID EMP NAME DESIGNATION
 tp01 Gopal Technical Manager
 tp02 Manisha Proof Reader
 tp03 Masthan Technical Writer
 tp04 Satish Technical Writer
 tp05 Krishna Technical Writer

POI – CELLSPOI – CELLS
Any data that you enter into a spreadsheet is always stored in a cell. We use the labels of rows and
columns to identify a cell. This chapter describes how to manipulate data in cells in a spreadsheet
using Java programming.

Create a Cell
You need to create a row before creating a cell. A row is nothing but a collection of cells.

The following code snippet is used for creating a cell.

//create new workbook
XSSFWorkbook workbook = new XSSFWorkbook();
//create spreadsheet with a name
XSSFSheet spreadsheet = workbook.createSheet("new sheet");
//create first row on a created spreadsheet
XSSFRow row = spreadsheet.createRow(0);
//create first cell on created row
XSSFCell cell = row.createCell(0);

Types of Cells
The cell type specifies whether a cell can contain strings, numeric value, or formulas. A string cell
cannot hold numeric values and a numeric cell cannot hold strings. Given below are the types of
cells, their values, and type syntax.

Type of cell value Type Syntax

Blank cell value XSSFCell.CELL_TYPE_BLANK

Boolean cell value XSSFCell.CELL.TYPE_BOOLEAN

Error cell value XSSFCell.CELL_TYPE_ERROR

Numeric cell value XSSFCell.CELL_TYPE_NUMERIC

String cell value XSSFCell.CELL_TYPE_STRING

The following code is used to create different types of cells in a spreadsheet.

import java.io.File;
import java.io.FileOutputStream;
import java.util.Date;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class TypesofCells
{
 public static void main(String[] args)throws Exception
 {
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook.createSheet("cell types");
 XSSFRow row = spreadsheet.createRow((short) 2);
 row.createCell(0).setCellValue("Type of Cell");
 row.createCell(1).setCellValue("cell value");
 row = spreadsheet.createRow((short) 3);
 row.createCell(0).setCellValue("set cell type BLANK");
 row.createCell(1);
 row = spreadsheet.createRow((short) 4);
 row.createCell(0).setCellValue("set cell type BOOLEAN");
 row.createCell(1).setCellValue(true);
 row = spreadsheet.createRow((short) 5);
 row.createCell(0).setCellValue("set cell type ERROR");
 row.createCell(1).setCellValue(XSSFCell.CELL_TYPE_ERROR);
 row = spreadsheet.createRow((short) 6);
 row.createCell(0).setCellValue("set cell type date");
 row.createCell(1).setCellValue(new Date());
 row = spreadsheet.createRow((short) 7);
 row.createCell(0).setCellValue("set cell type numeric");
 row.createCell(1).setCellValue(20);
 row = spreadsheet.createRow((short) 8);
 row.createCell(0).setCellValue("set cell type string");
 row.createCell(1).setCellValue("A String");
 FileOutputStream out = new FileOutputStream(
 new File("typesofcells.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println(
 "typesofcells.xlsx written successfully");
 }
}

Save the above code in a file named TypesofCells.java, compile and execute it from the
command prompt as follows.

$javac TypesofCells.java
$java TypesofCells

pIf your system is configured with the POI library, then it will compile and execute to generate an
Excel file named typesofcells.xlsx in your current directory and display the following output.

typesofcells.xlsx written successfully

The typesofcells.xlsx file looks as follows.

Cell Styles
Here you can learn how to do cell formatting and apply different styles such as merging adjacent
cells, adding borders, setting cell alignment and filling with colors.

The following code is used to apply different styles to cells using Java programming.

import java.io.File;
import java.io.FileOutputStream;
import org.apache.poi.hssf.util.HSSFColor;
import org.apache.poi.ss.usermodel.IndexedColors;
import org.apache.poi.ss.util.CellRangeAddress;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFCellStyle;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class CellStyle
{
 public static void main(String[] args)throws Exception
 {
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook.createSheet("cellstyle");
 XSSFRow row = spreadsheet.createRow((short) 1);
 row.setHeight((short) 800);
 XSSFCell cell = (XSSFCell) row.createCell((short) 1);
 cell.setCellValue("test of merging");
 //MEARGING CELLS
 //this statement for merging cells

 spreadsheet.addMergedRegion(new CellRangeAddress(
 1, //first row (0-based)
 1, //last row (0-based)
 1, //first column (0-based)
 4 //last column (0-based)
));
 //CELL Alignment
 row = spreadsheet.createRow(5);
 cell = (XSSFCell) row.createCell(0);
 row.setHeight((short) 800);
 // Top Left alignment
 XSSFCellStyle style1 = workbook.createCellStyle();
 spreadsheet.setColumnWidth(0, 8000);
 style1.setAlignment(XSSFCellStyle.ALIGN_LEFT);
 style1.setVerticalAlignment(XSSFCellStyle.VERTICAL_TOP);
 cell.setCellValue("Top Left");
 cell.setCellStyle(style1);
 row = spreadsheet.createRow(6);
 cell = (XSSFCell) row.createCell(1);
 row.setHeight((short) 800);
 // Center Align Cell Contents
 XSSFCellStyle style2 = workbook.createCellStyle();
 style2.setAlignment(XSSFCellStyle.ALIGN_CENTER);
 style2.setVerticalAlignment(
 XSSFCellStyle.VERTICAL_CENTER);
 cell.setCellValue("Center Aligned");
 cell.setCellStyle(style2);
 row = spreadsheet.createRow(7);
 cell = (XSSFCell) row.createCell(2);
 row.setHeight((short) 800);
 // Bottom Right alignment
 XSSFCellStyle style3 = workbook.createCellStyle();
 style3.setAlignment(XSSFCellStyle.ALIGN_RIGHT);
 style3.setVerticalAlignment(
 XSSFCellStyle.VERTICAL_BOTTOM);
 cell.setCellValue("Bottom Right");
 cell.setCellStyle(style3);
 row = spreadsheet.createRow(8);
 cell = (XSSFCell) row.createCell(3);
 // Justified Alignment
 XSSFCellStyle style4 = workbook.createCellStyle();
 style4.setAlignment(XSSFCellStyle.ALIGN_JUSTIFY);
 style4.setVerticalAlignment(
 XSSFCellStyle.VERTICAL_JUSTIFY);
 cell.setCellValue("Contents are Justified in Alignment");
 cell.setCellStyle(style4);
 //CELL BORDER
 row = spreadsheet.createRow((short) 10);
 row.setHeight((short) 800);
 cell = (XSSFCell) row.createCell((short) 1);
 cell.setCellValue("BORDER");
 XSSFCellStyle style5 = workbook.createCellStyle();
 style5.setBorderBottom(XSSFCellStyle.BORDER_THICK);
 style5.setBottomBorderColor(
 IndexedColors.BLUE.getIndex());
 style5.setBorderLeft(XSSFCellStyle.BORDER_DOUBLE);
 style5.setLeftBorderColor(
 IndexedColors.GREEN.getIndex());
 style5.setBorderRight(XSSFCellStyle.BORDER_HAIR);
 style5.setRightBorderColor(
 IndexedColors.RED.getIndex());
 style5.setBorderTop(XSSFCellStyle.BIG_SPOTS);
 style5.setTopBorderColor(
 IndexedColors.CORAL.getIndex());
 cell.setCellStyle(style5);
 //Fill Colors
 //background color
 row = spreadsheet.createRow((short) 10);
 cell = (XSSFCell) row.createCell((short) 1);

 XSSFCellStyle style6 = workbook.createCellStyle();
 style6.setFillBackgroundColor(
 HSSFColor.LEMON_CHIFFON.index);
 style6.setFillPattern(XSSFCellStyle.LESS_DOTS);
 style6.setAlignment(XSSFCellStyle.ALIGN_FILL);
 spreadsheet.setColumnWidth(1,8000);
 cell.setCellValue("FILL BACKGROUNG/FILL PATTERN");
 cell.setCellStyle(style6);
 //Foreground color
 row = spreadsheet.createRow((short) 12);
 cell = (XSSFCell) row.createCell((short) 1);
 XSSFCellStyle style7=workbook.createCellStyle();
 style7.setFillForegroundColor(HSSFColor.BLUE.index);
 style7.setFillPattern(XSSFCellStyle.LESS_DOTS);
 style7.setAlignment(XSSFCellStyle.ALIGN_FILL);
 cell.setCellValue("FILL FOREGROUND/FILL PATTERN");
 cell.setCellStyle(style7);
 FileOutputStream out = new FileOutputStream(
 new File("cellstyle.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println("cellstyle.xlsx written successfully");
 }
}

Save the above code in a file named CellStyle.java, compile and execute it from the command
prompt as follows.

$javac CellStyle.java
$java CellStyle

It will generate an Excel file named cellstyle.xlsx in your current directory and display the
following output.

cellstyle.xlsx written successfully

The cellstyle.xlsx file looks as follows.

POI – FONTS AND TEXT DIRECTIONPOI – FONTS AND TEXT DIRECTION
This chapter explains how to set different fonts, apply styles, and display text in different angles of
direction in an Excel spreadsheet.

Every system comes bundled with a huge collection of fonts such as Arial, Impact, Times New
Roman, etc. The collection can also be updated with new fonts, if required. Similarly there are
various styles in which a font can be displayed, for example, bold, italic, underline, strike through,
etc.

Fonts and Font Styles
The following code is used to apply a particular font and style to the contents of a cell.

import java.io.File;
import java.io.FileOutputStream;
import org.apache.poi.hssf.util.HSSFColor;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFCellStyle;
import org.apache.poi.xssf.usermodel.XSSFFont;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class FontStyle
{
 public static void main(String[] args)throws Exception
 {
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook.createSheet("Fontstyle");
 XSSFRow row = spreadsheet.createRow(2);
 //Create a new font and alter it.
 XSSFFont font = workbook.createFont();
 font.setFontHeightInPoints((short) 30);
 font.setFontName("IMPACT");
 font.setItalic(true);
 font.setColor(HSSFColor.BRIGHT_GREEN.index);
 //Set font into style
 XSSFCellStyle style = workbook.createCellStyle();
 style.setFont(font);
 // Create a cell with a value and set style to it.
 XSSFCell cell = row.createCell(1);
 cell.setCellValue("Font Style");
 cell.setCellStyle(style);
 FileOutputStream out = new FileOutputStream(
 new File("fontstyle.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println(
 "fontstyle.xlsx written successfully");
 }
}

Let us save the above code in a file named FontStyle.java. Compile and execute it from the
command prompt as follows.

$javac FontStyle.java
$java FontStyle

It generates an Excel file named fontstyle.xlsx in your current directory and display the following
output on the command prompt.

fontstyle.xlsx written successfully

The fontstyle.xlsx file looks as follows.

Text Direction
Here you can learn how to set the text direction in different angles. Usually cell contents are
displayed horizontally, from left to right, and at 00 angle; however you can use the following code
to rotate the text direction, if required.

import java.io.File;
import java.io.FileOutputStream;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFCellStyle;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class TextDirection
{
 public static void main(String[] args)throws Exception
 {
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook.createSheet(
 "Text direction");
 XSSFRow row = spreadsheet.createRow(2);
 XSSFCellStyle myStyle = workbook.createCellStyle();
 myStyle.setRotation((short) 0);
 XSSFCell cell = row.createCell(1);
 cell.setCellValue("0D angle");
 cell.setCellStyle(myStyle);
 //30 degrees
 myStyle=workbook.createCellStyle();
 myStyle.setRotation((short) 30);
 cell = row.createCell(3);
 cell.setCellValue("30D angle");
 cell.setCellStyle(myStyle);
 //90 degrees
 myStyle=workbook.createCellStyle();

 myStyle.setRotation((short) 90);
 cell = row.createCell(5);
 cell.setCellValue("90D angle");
 cell.setCellStyle(myStyle);
 //120 degrees
 myStyle=workbook.createCellStyle();
 myStyle.setRotation((short) 120);
 cell = row.createCell(7);
 cell.setCellValue("120D angle");
 cell.setCellStyle(myStyle);
 //270 degrees
 myStyle = workbook.createCellStyle();
 myStyle.setRotation((short) 270);
 cell = row.createCell(9);
 cell.setCellValue("270D angle");
 cell.setCellStyle(myStyle);
 //360 degrees
 myStyle=workbook.createCellStyle();
 myStyle.setRotation((short) 360);
 cell = row.createCell(12);
 cell.setCellValue("360D angle");
 cell.setCellStyle(myStyle);
 FileOutputStream out = new FileOutputStream(
 new File("textdirection.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println(
 "textdirection.xlsx written successfully");
 }
}

Keep the above code in TextDirectin.java file, then compile and execute it from the command
prompt as follows.

$javac TextDirection.java
$java TextDirection

It will compile and execute to generate an Excel file named textdirection.xlsx in your current
directory and display the following output on the command prompt.

textdirection.xlsx written successfully

The textdirection.xlsx file looks as follows.

POI – FORMULAPOI – FORMULA
This chapter takes you through the process of applying different formulas on cells using Java
programming. The basic purpose of Excel application is to maintain numerical data by applying

formulas on it.

In a formula, we pass dynamic values or locations of the values in the Excel sheet. On executing
this formula, you get the desired result. The following table lists a few basic formulas that are
frequently used in Excel.

Operation Syntax

Adding multiple numbers =SUMLoc1:Locn or =SUMn1, n2,

Count =COUNTLoc1:Locn or =COUNTn1, n2,

Power of two numbers =POWERLoc1, Loc2 or =POWERnumber, power

Max of multiple numbers =MAXLoc1:Locn or =MAXn1, n2,

Product =PRODUCTLoc1:Locn or =PRODUCTn1, n2,

Factorial =FACTLocn or =FACTnumber

Absolute number =ABSLocn or =ABSnumber

Today date =TODAY

Converts lowercase =LOWERLocn or =LOWERtext

Square root =SQRTlocn or =SQRTnumber

The following code is used to add formulas to a cell and execute it.

import java.io.File;
import java.io.FileOutputStream;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class Formula
{
 public static void main(String[] args)throws Exception
 {
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook.createSheet("formula");
 XSSFRow row = spreadsheet.createRow(1);
 XSSFCell cell = row.createCell(1);
 cell.setCellValue("A =");
 cell = row.createCell(2);
 cell.setCellValue(2);
 row = spreadsheet.createRow(2);
 cell = row.createCell(1);
 cell.setCellValue("B =");
 cell = row.createCell(2);
 cell.setCellValue(4);
 row = spreadsheet.createRow(3);
 cell = row.createCell(1);
 cell.setCellValue("Total =");
 cell = row.createCell(2);
 // Create SUM formula
 cell.setCellType(XSSFCell.CELL_TYPE_FORMULA);
 cell.setCellFormula("SUM(C2:C3)");
 cell = row.createCell(3);
 cell.setCellValue("SUM(C2:C3)");
 row = spreadsheet.createRow(4);
 cell = row.createCell(1);
 cell.setCellValue("POWER =");
 cell=row.createCell(2);
 // Create POWER formula

 cell.setCellType(XSSFCell.CELL_TYPE_FORMULA);
 cell.setCellFormula("POWER(C2,C3)");
 cell = row.createCell(3);
 cell.setCellValue("POWER(C2,C3)");
 row = spreadsheet.createRow(5);
 cell = row.createCell(1);
 cell.setCellValue("MAX =");
 cell = row.createCell(2);
 // Create MAX formula
 cell.setCellType(XSSFCell.CELL_TYPE_FORMULA);
 cell.setCellFormula("MAX(C2,C3)");
 cell = row.createCell(3);
 cell.setCellValue("MAX(C2,C3)");
 row = spreadsheet.createRow(6);
 cell = row.createCell(1);
 cell.setCellValue("FACT =");
 cell = row.createCell(2);
 // Create FACT formula
 cell.setCellType(XSSFCell.CELL_TYPE_FORMULA);
 cell.setCellFormula("FACT(C3)");
 cell = row.createCell(3);
 cell.setCellValue("FACT(C3)");
 row = spreadsheet.createRow(7);
 cell = row.createCell(1);
 cell.setCellValue("SQRT =");
 cell = row.createCell(2);
 // Create SQRT formula
 cell.setCellType(XSSFCell.CELL_TYPE_FORMULA);
 cell.setCellFormula("SQRT(C5)");
 cell = row.createCell(3);
 cell.setCellValue("SQRT(C5)");
 workbook.getCreationHelper()
 .createFormulaEvaluator()
 .evaluateAll();
 FileOutputStream out = new FileOutputStream(
 new File("formula.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println("fromula.xlsx written successfully");
 }
}

Save the above code as Formula.java and then compile and execute it from the command
prompt as follows.

$javac Formula.java
$java Formula

It will generate an Excel file named formula.xlsx in your current directory and display the
following output on the command prompt.

fromula.xlsx written successfully

The formula.xlsx file looks as follows.

POI – HYPERLINKPOI – HYPERLINK
This chapter explains how to add hyperlinks to the contents in a cell. Usually hyperlinks are used to
access any web URL, email, or an external file.

The following code shows how to create hyperlinks on cells.

import java.io.File;
import java.io.FileOutputStream;
import org.apache.poi.common.usermodel.Hyperlink;
import org.apache.poi.hssf.util.HSSFColor;
import org.apache.poi.ss.usermodel.CreationHelper;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFCellStyle;
import org.apache.poi.xssf.usermodel.XSSFFont;
import org.apache.poi.xssf.usermodel.XSSFHyperlink;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class HyperlinkEX
{
 public static void main(String[] args) throws Exception
 {
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook
 .createSheet("Hyperlinks");
 XSSFCell cell;
 CreationHelper createHelper = workbook
 .getCreationHelper();
 XSSFCellStyle hlinkstyle = workbook.createCellStyle();
 XSSFFont hlinkfont = workbook.createFont();
 hlinkfont.setUnderline(XSSFFont.U_SINGLE);
 hlinkfont.setColor(HSSFColor.BLUE.index);
 hlinkstyle.setFont(hlinkfont);
 //URL Link
 cell = spreadsheet.createRow(1)
 .createCell((short) 1);
 cell.setCellValue("URL Link");
 XSSFHyperlink link = (XSSFHyperlink)createHelper
 .createHyperlink(Hyperlink.LINK_URL);
 link.setAddress("http://www.tutorialspoint.com/");
 cell.setHyperlink((XSSFHyperlink) link);
 cell.setCellStyle(hlinkstyle);
 //Hyperlink to a file in the current directory
 cell = spreadsheet.createRow(2)
 .createCell((short) 1);
 cell.setCellValue("File Link");
 link = (XSSFHyperlink)createHelper
 .createHyperlink(Hyperlink.LINK_FILE);
 link.setAddress("cellstyle.xlsx");
 cell.setHyperlink(link);
 cell.setCellStyle(hlinkstyle);
 //e-mail link
 cell = spreadsheet.createRow(3)
 .createCell((short) 1);
 cell.setCellValue("Email Link");

 link = (XSSFHyperlink)createHelper
 .createHyperlink(Hyperlink.LINK_EMAIL);
 link.setAddress(
 "mailto:contact@tutorialspoint.com?"
 +"subject=Hyperlink");
 cell.setHyperlink(link);
 cell.setCellStyle(hlinkstyle);
 FileOutputStream out = new FileOutputStream(
 new File("hyperlink.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println("hyperlink.xlsx written successfully");
 }
}

Save the above code as HyperlinkEX.java. Compile and execute it from the command prompt as
follows.

$javac HyperlinkEX.java
$java HyperlinkEX

It will generate an Excel file named hyperlink.xlsx in your current directory and display the
following output on the command prompt.

hyperlink.xlsx written successfully

The hyperlink.xlsx file looks as follows.

POI – PRINT AREAPOI – PRINT AREA
This chapter explains how to set the print area on a spreadsheet. The usual print area is from left
top to right bottom on Excel spreadsheets. Print area can be customized according to your
requirement. It means you can print a particular range of cells from the whole spreadsheet,
customize the paper size, print the contents with the grid lines turned on, etc.

The following code is used to set up the print area on a spreadsheet.

import java.io.File;
import java.io.FileOutputStream;
import org.apache.poi.xssf.usermodel.XSSFPrintSetup;
import org.apache.poi.xssf.usermodel.XSSFSheet;

import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class PrintArea
{
 public static void main(String[] args)throws Exception
 {
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook
 .createSheet("Print Area");
 //set print area with indexes
 workbook.setPrintArea(
 0, //sheet index
 0, //start column
 5, //end column
 0, //start row
 5 //end row
);
 //set paper size
 spreadsheet.getPrintSetup().setPaperSize(
 XSSFPrintSetup.A4_PAPERSIZE);
 //set display grid lines or not
 spreadsheet.setDisplayGridlines(true);
 //set print grid lines or not
 spreadsheet.setPrintGridlines(true);
 FileOutputStream out = new FileOutputStream(
 new File("printarea.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println("printarea.xlsx written successfully");
 }
}

Let us save the above code as PrintArea.java. Compile and execute it from the command prompt
as follows.

$javac PrintArea.java
$java PrintArea

It will generate a file named printarea.xlsx in your current directory and display the following
output on the command prompt.

printarea.xlsx written successfully

In the above code, we have not added any cell values. Hence printarea.xlsx is a blank file. But
you can observe in the following figure that the print preview shows the print area with grid lines.

POI INTERACTION WITH DATABASEPOI INTERACTION WITH DATABASE
This chapter explains how the POI library interacts with a database. With the help of JDBC, you can
retrieve data from a database and insert that data into a spreadsheet using the POI library. Let us
consider MySQL database for SQL operations.

Write into Database
Let us assume the following employee data table called emp_tbl is to be retrieved from the
MySQL database test.

EMP ID EMP NAME DEG SALARY DEPT

1201 Gopal Technical Manager 45000 IT

1202 Manisha Proof reader 45000 Testing

1203 Masthanvali Technical Writer 45000 IT

1204 Kiran Hr Admin 40000 HR

1205 Kranthi Op Admin 30000

Use the following code to retrieve data from a database and insert the same into a spreadsheet.

import java.io.File;
import java.io.FileOutputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class ExcelDatabase
{
 public static void main(String[] args) throws Exception
 {
 Class.forName("com.mysql.jdbc.Driver");
 Connection connect = DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/test" ,
 "root" ,
 "root"
);
 Statement statement = connect.createStatement();
 ResultSet resultSet = statement
 .executeQuery("select * from emp_tbl");
 XSSFWorkbook workbook = new XSSFWorkbook();
 XSSFSheet spreadsheet = workbook
 .createSheet("employe db");
 XSSFRow row=spreadsheet.createRow(1);
 XSSFCell cell;
 cell=row.createCell(1);
 cell.setCellValue("EMP ID");
 cell=row.createCell(2);
 cell.setCellValue("EMP NAME");
 cell=row.createCell(3);
 cell.setCellValue("DEG");
 cell=row.createCell(4);
 cell.setCellValue("SALARY");

 cell=row.createCell(5);
 cell.setCellValue("DEPT");
 int i=2;
 while(resultSet.next())
 {
 row=spreadsheet.createRow(i);
 cell=row.createCell(1);
 cell.setCellValue(resultSet.getInt("eid"));
 cell=row.createCell(2);
 cell.setCellValue(resultSet.getString("ename"));
 cell=row.createCell(3);
 cell.setCellValue(resultSet.getString("deg"));
 cell=row.createCell(4);
 cell.setCellValue(resultSet.getString("salary"));
 cell=row.createCell(5);
 cell.setCellValue(resultSet.getString("dept"));
 i++;
 }
 FileOutputStream out = new FileOutputStream(
 new File("exceldatabase.xlsx"));
 workbook.write(out);
 out.close();
 System.out.println(
 "exceldatabase.xlsx written successfully");
 }
}

Let us save the above code as ExcelDatabase.java. Compile and execute it from the command
prompt as follows.

$javac ExcelDatabase.java
$java ExcelDatabase

It will generate an Excel file named exceldatabase.xlsx in your current directory and display the
following output on the command prompt.

exceldatabase.xlsx written successfully

The exceldatabase.xlsx file looks as follows.

Processing math: 100%

