tutor-lalspomt

M. P LY E A S ¥ LE A RIN

/|

www.tutorialspoint.com

ﬂ https://www.facebook.com/tutorialspointindia j https://twitter.com/tutorialspoint

Apache Oozie

About the Tutonal

Apache Oozie is the tool in which all sort of programs can be pipelined in a desired order
to work in Hadoop’s distributed environment. Oozie also provides a mechanism to run the
job at a given schedule.

This tutorial explains the scheduler system to run and manage Hadoop jobs called Apache
Oozie. It is tightly integrated with Hadoop stack supporting various Hadoop jobs like Hive,
Pig, Sqoop, as well as system specific jobs like Java and Shell.

This tutorial explores the fundamentals of Apache Oozie like workflow, coordinator, bundle
and property file along with some examples. By the end of this tutorial, you will have
enough understanding on scheduling and running Oozie jobs on Hadoop cluster in a
distributed environment.

Audience

This tutorial has been prepared for professionals working with Big Data Analytics and want
to understand about scheduling complex Hadoop jobs using Apache Oozie.

This tutorial is intended to make you comfortable in getting started with Oozie and does
not detail each and every function available. For these details, Oozie documentation is the
best place to visit.

Prerequisites

Before proceeding with this tutorial, you must have a conceptual understanding of Cron
jobs and schedulers.

Copyright and Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

MPLYEAEYLEARNINEG

w ' tutorialspoint

Apache Oozie

Table of Contents
About the TULOTal.....cicuiiiiiiienne e e s e e s e e s ae s e e e e s a e aes i
0T o i
PrErOUISITES coiiiieeeneiiiiiiiitenniiiiiiiteeneeisestitesnnsssssessinesnnssssssssssesnnssssssssssssnnnsssssssssssnnnssssssssssssnnnssssssssssnnnnes i
Copyright and DiSCIAIMETcceeviiiiiiiiiiiiiiiiiiiiiiisisisssisss i
Table of CONTENTSccoiiiiiiiiin e s sa s s sas e s as e s sa e s san s san e en i
1. APACHE OOZIE = INTRODUCTION.uutiiiiiiiiie et eseseree s s s e e s e smene s s semne e e seane 1
What is APaChe O0ZIE?.......cciiiiueeiiiiiiiiiiinnneiiiisnnsee s sssssssss e sassee s s s s s ssansse s s s sssssssssnsesssssssssnns 1
L0 1o 2Tl T T o N 2
2. APACHE OOZIE — WORKFLOWcttiiiiiiiiiiiiiieiniiiiicsiiiecseniinee e seintee s snnse s ssane e 5
EXamPle WOIKFIOWcceeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeesesssessssessssssssssssssssssssssssssssssssssssnnssnnnsnnnnnnnnnn 5
RUNNING the WOTKFIOWcceeeeeeeeeieeeeiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesssssssessssssssasssssssssssssssssssssnsnssssnnnsnnnnnnnnn 8
Fork and Join Control Node in WOrkflow..........ccueuieiiiiiniiniiiccctctctctctcctceensseeeses s 9
Decision Nodes in WOrkFIOWoeeeeieeieiieeeneneectentntestente et a s ae s aes 11
MagiC Of Property Filecueveeeeeeeeeeeeeeeieeeeeeememeeeeeeeeeeessesssessnsnns 12
3. APACHE OOZIE = PROPERTY FILEoeiiiiiiie et ceres s s s 13
PrOPEItY File.. .. iieeeeeeciiiiiiieiecccirrieeriesseceeresesnnssssseseeseennssssssssssessnnssssssssssssnnssssssssssssnnnssssssssssennnnssssssnnnes 13
4. APACHE OOZIE — COORDINATOR.......otviiiriiriiiiiiiiis ittt sise s st ssare s 16
00 T 1T 1o N 16
Coordinator JOb StatUS.......cuivieiiiiiiiniinin e s 18
Parametrization of @ CoOOrdinator..........ccuceivieiiiiiinniennn e e 19
5. APACHE OOZIE = BUNDLE.........coiiiiiiiiiiiiriniircircircie e s 20
5T T 20
=TT T 1o B - 20

MPLYEAEYLEARNINEG

w ' tutorialspoint

6.

Apache Oozie

APACHE OOZIE — CLI AND EXTENSIONS ...ttt ceeetie e eeevis e eesvnsssesnneeeennnnns 22
(0013100 F= 1 T I KT V=T o Yo] 30U 22
ACTION EXEENSIONS ..ccuuiiieeniiiennieitinnietteneeteneseerensseetensseessnssessenssesssnssesssnssessansssssanssesssnssessanssssssnssessnnssssanns 23

iii

MPLYEAEYLEARNINEG

w ' tutorialspoint

1. Apache Oozie — Introduction

In this chapter, we will start with the fundamentals of Apache Oozie. Following is a detailed
explanation about Oozie along with a few examples and screenshots for better
understanding.

What is Apache Oozie?

Apache Oozie is a scheduler system to run and manage Hadoop jobs in a distributed
environment. It allows to combine multiple complex jobs to be run in a sequential order
to achieve a bigger task. Within a sequence of task, two or more jobs can also be
programmed to run parallel to each other.

One of the main advantages of Oozie is that it is tightly integrated with Hadoop stack
supporting various Hadoop jobs like Hive, Pig, Sqoop as well as system-specific jobs like
Java and Shell.

Oozie is an Open Source Java Web-Application available under Apache license 2.0. It
is responsible for triggering the workflow actions, which in turn uses the Hadoop execution
engine to actually execute the task. Hence, Oozie is able to leverage the existing Hadoop
machinery for load balancing, fail-over, etc.

Oozie detects completion of tasks through callback and polling. When Oozie starts a task,
it provides a unique callback HTTP URL to the task, and notifies that URL when it is
complete. If the task fails to invoke the callback URL, Oozie can poll the task for
completion.

Following three types of jobs are common in Oozie:

e Oozie Workflow Jobs — These are represented as Directed Acyclic Graphs
(DAGSs) to specify a sequence of actions to be executed.

e Oozie Coordinator Jobs — These consist of workflow jobs triggered by time
and data availability.

¢ Oozie Bundle — These can be referred to as a package of multiple coordinator
and workflow jobs.

We will look into each of these in detail in the following chapters.

@ tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

A sample workflow with Controls (Start, Decision, Fork, Join and End) and Actions (Hive,
Shell, Pig) will look like the following diagram:

End

Shell Job

Shell Job

Join

b J

Start Hive Job

Hive Job

i
o

pug

Workflow will always start with a Start tag and end with an End tag.

Use-Cases of Apache Oozie

Apache Oozie is used by Hadoop system administrators to run complex log analysis on
HDFS. Hadoop Developers use Oozie for performing ETL operations on data in a sequential
order and saving the output in a specified format (Avro, ORC, etc.) in HDFS.

In an enterprise, Oozie jobs are scheduled as coordinators or bundles.

Oozie Editors

Before we dive into Oozie lets have a quick look at the available editors for Oozie.

Most of the time, you won't need an editor and will write the workflows using any popular
text editors (like Notepad++, Sublime or Atom) as we will be doing in this tutorial.

But as a beginner it makes some sense to create a workflow by the drag and drop method
using the editor and then see how the workflow gets generated. Also, to map GUI with
the actual workflow.xml created by the editor. This is the only section where we will
discuss about Oozie editors and won't use it in our tutorial.

The most popular among Oozie editors is Hue.

MPLYEAEYLEARNINEG

w ' tutorialspoint

Apache Oozie

Hue Editor for Oozie

This editor is very handy to use and is available with almost all Hadoop vendors’ solutions.

The following screenshot shows an example workflow created by this editor.

e Drowrner T30k Broweer O choudens

WU M Queytdum v Ostatioman » Wodfaws v Gesth Secuy v o » » B

simple-Workflow

b |

You can drag and drop controls and actions and add your job inside these actions.
A good resource to learn more on this topic:

http://gethue.com/new-apache-oozie-workflow-coordinator-bundle-editors/

Oozie Eclipse Plugin (OEP)

Oozie Eclipse plugin (OEP) is an Eclipse plugin for editing Apache Oozie workflows
graphically. It is a graphical editor for editing Apache Oozie workflows inside Eclipse.

Composing Apache Oozie workflows is becoming much simpler. It becomes a matter of
drag-and-drop, a matter of connecting lines between the nodes.

|§j’ tutorialspoint

EIMPLYEAESYLEARMNINEG

http://gethue.com/new-apache-oozie-workflow-coordinator-bundle-editors/

The following screenshots are examples of OEP.

Apache Oozie

& workflow1.workflow 8 L3 work!lowxml xml = 8
3 Palette b
f‘ o r o] [‘ Ve ’
bl ’ i L)
b b &> Control Nodes
i1 2
pig- map-reduce\] X kill
(M:. [QW @ Decision
[L \ £ Fork
spark-2 action-1 * Join
r B e 1,
»/"’a' .= S > Action Nodes
N - — > | Wl 19 V @ MapReduce
L — sub-workflo... fs3 N)
P—¢ o R Pig
star: dg(isigr\\ (Al =] & sub workflow
/&h—n! - s
- $ 8 » pe s
java-4 sshes \ x]| £ Java
W = Kl (> Extended Action Nod... ©
/") ill-3
- / g] 4 BssH
\. L sqoop-6 shell-8 —5q00p
orko]| /=] « Spark
fork-13 L R P
L0 || & shell
distcp-9 hive-1 Sy Distcp
A — join-15)
P ” & Hive
.] »
Lz&» L..) A Hive2
hive2-11 email-12 & Email
& Custom Action
sitexml Gt workflowl.workf %8 2 = 8 O rproperties % = Outline [l TaskList o E R ¥ =0
& b Property Value
& Control Nodes @ Archive
map-reduc\&q X Kill ¥ Configuration
Decision ¥ Configuration {Name:, value:, Description: }
£ Fork Description
2k Join Name
& Action Nodes @ Value
¥ File
@ MapReduce)
2 bi File
¢ v Job XML
{3 sub workflow
. Job XML
4' ¥ Misc
& Jav Config Class
= Extended ActionN... © (g
B ssH Jobtracker job-tracker
~5qoop Name map-reduce-1
fork-13 « Spark Namenode name-node
Ml shell * Pipes {Map:, Reduce:, Input Format: , Output Format: , Partil
Distep » Position {X: 470, Y: 26}
‘&% Hive » Prepare {[Delete: hdfs://lol:1/hadoop], [Mkdir: hdfs://lol:1/had
% Hive2 Retry Interval
hive2-1 email-1 4 Email Retry Max
£ Custom Action * Streaming {Mapper:, Reducer:, Record Reader:, [], []}
Type map-reduce
i v v

To learn more on OEP, you can visit http://oep.mashin.io/

Now let’s go to our next lesson and start writing Oozie workflow.

tutorialspoint

EIMPLYEAESYLEARMNINEG

http://oep.mashin.io/
http://oep.mashin.io/home/screenshot02.png?attredirects=0

2. Apache Oozie — Workflow

Workflow in Oozie is a sequence of actions arranged in a control dependency DAG (Direct
Acyclic Graph). The actions are in controlled dependency as the next action can only run
as per the output of current action. Subsequent actions are dependent on its previous
action. A workflow action can be a Hive action, Pig action, Java action, Shell action,
etc. There can be decision trees to decide how and on which condition a job should run.

A fork is used to run multiple jobs in parallel. Oozie workflows can be parameterized
(variables like ${nameNode} can be passed within the workflow definition). These
parameters come from a configuration file called as property file. (More on this explained
in the following chapters).

Let's learn by creating some examples.

Example Workflow

Consider we want to load a data from external hive table to an ORC Hive table.

Step 1: DDL for Hive external table (say external.hive)

Create external table external_table
(

name string,

age int,

address string,

zip int

)

row format delimited
fields terminated by ',
stored as textfile

location '/test/abc';

Step 2: DDL for Hive ORC table (say orc.hive)

Create Table orc_table

(

name string, -- Concate value of first name and last name with space as
seperator

yearofbirth int,

age int, -- Current year minus year of birth

@ tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

address string,
zip int

)

STORED AS ORC

Step 3: Hive script to insert data from external table to ORC table (say Copydata.hql)

use ${database name}; -- input from Oozie
insert into table orc_table

select

concat(first_name,' ',last_name) as name,
yearofbirth,

year(from_unixtime) --yearofbirth as age,
address,

zip

from external_table

J

Step 4: Create a workflow to execute all the above three steps. (let’s call it workflow.xml)

<!-- This is a comment -->
<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">
<start to="Create_External_Table" />
<!-Step 1 -->
<action name="Create_External_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/external.hive</script>
</hive>
<ok to="Create_orc_Table" />
<error to="kill_ job" />

</action>

<!-Step 2 -->
<action name="Create_orc_Table">

<hive xmlns="uri:oozie:hive-action:0.4">

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/orc.hive</script>

</hive>

<ok to="Insert_into_Table" />

<error to="kill_job" />

</action>

<!-Step 3 -->

<action name="Insert_into_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/Copydata.hive</script>
<param>database_name</param>
</hive>
<ok to="end" />
<error to="kill_job" />
</action>
<kill name="kill_job">
<message>Job failed</message>
</kill>
<end name="end" />

</workflow-app>

Explanation of the Above Example

Action Nodes in the above example defines the type of job that the node will run. Hive
node inside the action node defines that the action is of type hive. This could also have
been a pig, java, shell action, etc. as per the job you want to run.

Each type of action can have its own type of tags. In the above job we are defining the
job tracker to us, name node details, script to use and the param entity. The Script tag
defines the script we will be running for that hive action. The Param tag defines the values
which we will pass into the hive script. (In this example we are passing database name in
step 3).

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

The above workflow will translate into the following DAG.

action:Create_External_Table

Kill: kill_job

Kill: kill_job

Running the Workflow

A topology runs in a distributed manner, on multiple worker nodes. Storm spreads the
tasks evenly on all the worker nodes. The worker node’s role is to listen for jobs and start
or stop the processes whenever a new job arrives.

Note: The workflow and hive scripts should be placed in HDFS path before running the
workflow.

oozie job --oozie http://host_name:8080/00zie -D
oozie.wf.application.path=hdfs://namenodepath/pathof_workflow_xml/workflow.xml
-run

This will run the workflow once.

To check the status of job you can go to Oozie web console -- http://host_name:8080/

Oozie Web Console - Mozilla Firefox

| Oozie Web Console x| &

T v | By Google #uBe ¥/ 3
BGCBT Documentation
Oozie Web Console

Workflow Jobs | Coordrator Jobs | Bundie Jobs || System Info | Instrumentstion | Sefings

& MJobs Active Jobs DonsJobs Cusiom Fier v Sarver version [4.1.0.220.0-2041)

Juold Name Stais Run User Growp Creaied Started Last Madded Ended
1 0000000-160118021306306-cari-00i W simple-Workfiow RUNNING 0 roat Mo, 18 Jan 2016 025751 GMT Man, 18 Jan 2016 02,5751 GMT Mon, 18 Jan 2016 025755 GMT
' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

By clicking on the job you will see the running job. You can also check the status using
Command Line Interface (We will see this later). The possible states for workflow jobs
are: PREP, RUNNING, SUSPENDED, SUCCEEDED, KILLED and FAILED.

In the case of an action start failure in a workflow job, depending on the type of failure,
Oozie will attempt automatic retries. It will request a manual retry or it will fail the
workflow job. Oozie can make HTTP callback notifications on action start/end/failure
events and workflow end/failure events. In the case of a workflow job failure, the workflow
job can be resubmitted skipping the previously completed actions. Before doing a
resubmission the workflow application could be updated with a patch to fix a problem in
the workflow application code.

Fork and Join Control Node in Workflow

In scenarios where we want to run multiple jobs parallel to each other, we can use Fork.
When fork is used we have to use Join as an end node to fork. Basically Fork and Join work
together. For each fork there should be a join. As Join assumes all the node are a child of
a single fork.

(We also use fork and join for running multiple independent jobs for proper utilization of
cluster).

In our above example, we can create two tables at the same time by running them parallel
to each other instead of running them sequentially one after other. Such scenarios
perfectly woks for implementing fork.

Let’s see how fork is implemented.

Before running the workflow let’s drop the tables.

Drop table if exist external_table;

Drop table if exist orc_table;

Now let’s see the workflow.

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">

<start to="fork_node" />

<fork name="fork_node">
<path start="Create_External_Table"/>
<path start="Create_orc_Table"/>
</fork>
<action name="Create_External_Table">

<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>

<name-node>hdfs://rootname</name-node>

MPLYEAEYLEARNINEG

w ' tutorialspoint

Apache Oozie

<script>hdfs_path_of_script/external.hive</script>
</hive>
<ok to="join_node" />
<error to="kill job" />
</action>
<action name="Create_orc_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/orc.hive</script>
</hive>
<ok to="join_node" />
<error to="kill_job" />

</action>

<join name="join_node" to="Insert_into_Table"/>

<action name="Insert_into_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/Copydata.hive</script>
<param>database_name</param>
</hive>
<ok to="end" />
<error to="kill_job" />
</action>
<kill name="kill_job">
<message>Job failed</message>
</kill>
<end name="end" />

</workflow-app>

The start node will get to fork and run all the actions mentioned in path for start. All the
individual action nodes must go to join node after completion of its task. Until all the
actions nodes complete and reach to join node the next action after join is not taken.

10

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

Decision Nodes in Workflow

We can add decision tags to check if we want to run an action based on the output of
decision. In the above example, if we already have the hive table we won’t need to create
it again. In such a scenario, we can add a decision tag to not run the Create Table steps
if the table already exists. The updated workflow with decision tags will be as shown in the
following program.

In this example, we will use an HDFS EL Function fs:exists —

boolean fs:exists(String path)

It returns true or false depending on - if the specified path exists or not.

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">
<start to="external_table_exists" />
<decision name="external_table_exists">
<switch>

<case to="Create External Table">${fs:exists('/test/abc') eq
'false'}</case>

<default to="orc_table_exists" />
</switch>
</decision>
<action name="Create_External_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/external.hive</script>
</hive>
<ok to="orc_table_exists" />
<error to="kill_job" />
</action>
<decision name="orc_table_exists">
<switch>

<case
to="Create_orc_Table">${fs:exists('/apps/hive/warehouse/orc_table') eq
'false'}</case>

<default to="Insert_into_Table" />
</switch>
</decision>

<action name="Create_orc_Table">

11

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/orc.hive</script>
</hive>
<ok to="Insert_into_Table" />
<error to="kill_job" />
</action>
<action name="Insert_into_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>xyz.com:8088</job-tracker>
<name-node>hdfs://rootname</name-node>
<script>hdfs_path_of_script/Copydata.hive</script>
<param>database_name</param>
</hive>
<ok to="end" />
<error to="kill_job" />
</action>
<kill name="kill_job">
<message>Job failed</message>
</kill>
<end name="end" />

</workflow-app>

Decision nodes have a switch tag similar to switch case. If the EL translates to success,
then that switch case is executed.

This node also has a default tag. In case switch tag is not executed, the control moves to
action mentioned in the default tag.

Magic of Property File

Note that in the above example we have fixed the value of job-tracker, name-node, script
and param by writing the exact value. This becomes hard to manage in many scenarios.
This is where a config file (.property file) comes handy.

We will explore more on this in the following chapter.

12

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

3. Apache Oozie — Property File

Oozie workflows can be parameterized. The parameters come from a configuration file
called as property file. We can run multiple jobs using same workflow by using multiple
.property files (one property for each job).

Suppose we want to change the jobtracker url or change the script name or value of a
param.

We can specify a config file (.property) and pass it while running the workflow.

Property File

Variables like ${nameNode} can be passed within the workflow definition. The value of
this variable will be replaced at the run time with the value defined in the ‘.properties’ file.

Following is an example of a property file we will use in our workflow example.

File name -- jobl.properties

proprties

nameNode=hdfs://rootname

jobTracker=xyz.com:8088
script_name_external=hdfs_path_of_script/external.hive
script_name_orc=hdfs_path_of_script/orc.hive
script_name_copy=hdfs_path_of_script/Copydata.hive

database=database_name

Now to use this property file we will have to update the workflow and pass the parameters
in a workflow as shown in the following program.

<!-- This is a comment -->
<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">
<start to="Create_External_Table" />
<action name="Create_External_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<script>${script_name_external}</script>
</hive>
<ok to="Create_orc_Table" />

<error to="kill_job" />

13

M tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

</action>
<action name="Create_orc_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<script>${script_name_orc}</script>
</hive>
<ok to="Insert_into_Table" />
<error to="kill_job" />
</action>
<action name="Insert_into_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<script>${script_name_copy}</script>
<param>${database}</param>
</hive>
<ok to="end" />
<error to="kill_job" />
</action>
<kill name="kill_job">
<message>Job failed</message>
</kill>
<end name="end" />

</workflow-app>

Now to use the property file in this workflow we will have to pass the —config while running
the workflow.

oozie job --oozie http://host_name:8080/00zie --config
edgenode_path/jobl.properties -D
oozie.wf.application.path=hdfs://Namenodepath/pathof_workflow_xml/workflow.xml
-run

Note: The property file should be on the edge node (not in HDFS), whereas the workflow
and hive scripts will be in HDFS.

14

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

At run time, all the parameters in ${} will be replaced by its corresponding value in the
.properties file.

Also a single property file can have more parameters than required in a single workflow
and no error will be thrown. This makes it possible to run more than one workflow by using
the same properties file. But if the property file does not have a parameter required by a
workflow then an error will occur.

15

EIMPLYEAESYLEARMNINEG

w ' tutorialspoint

4. Apache Oozie — Coordinator

Coordinator applications allow users to schedule complex workflows, including workflows
that are scheduled regularly. Oozie Coordinator models the workflow execution triggers in
the form of time, data or event predicates. The workflow job mentioned inside the
Coordinator is started only after the given conditions are satisfied.

Coordinators

As done in the previous chapter for the workflow, let’s learn concepts of coordinators with
an example.

The first two hive actions of the workflow in our example creates the table. We don’t
need these step when we run the workflow in a coordinated manner each time with a given
frequency. So let’s modify the workflow which will then be called by our coordinator.

In a real life scenario, the external table will have a flowing data and as soon as the data
is loaded in the external table, the data will be processed into ORC and from the file.

Modified Workflow:

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">
<start to="Insert_into_Table" />
<action name="Insert_into_Table">
<hive xmlns="uri:oozie:hive-action:0.4">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<script>${script_name_copy}</script>
<param>${database}</param>
</hive>
<ok to="end" />
<error to="kill job" />
</action>
<kill name="kill_ job">
<message>Job failed</message>
</kill>
<end name="end" />

</workflow-app>

16

@ tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

Now let’s write a simple coordinator to use this workflow.

<coor
name=
18701

<

<time

<

<

<

</coo

dinator-app xmlns="uri:oozie:coordinator:0.2"
"coord_copydata_from_external_orc" frequency="5 * * * *" start="2016-00-

100Z" end="2025-12-31T00:00Z"" timezone="America/Los_Angeles">
controls>
out>1</timeout>

<concurrency>1</concurrency>
<execution>FIFO</execution>
<throttle>1</throttle>
/controls>
action>
<workflow>
<app-path>pathof_workflow_xml/workflow.xml</app-path>
</workflow>
/action>

rdinator-app>

Definiti

ons of the above given code is as follows:

start: It means the start datetime for the job. Starting at this time the actions will
be materialized.

end: The end datetime for the job. When actions will stop being materialized.
timezone: The timezone of the coordinator application.

frequency: The frequency, in minutes, to materialize actions.

Control Information:

timeout: The maximum time, in minutes, that a materialized action will be waiting
for the additional conditions to be satisfied before being discarded. A timeout of 0
indicates that at the time of materialization all the other conditions must be
satisfied, else the action will be discarded. A timeout of 0 indicates that if all the
input events are not satisfied at the time of action materialization, the action should
timeout immediately. A timeout of -1 indicates no timeout, the materialized action
will wait forever for the other conditions to be satisfied. The default value is -1.

concurrency: The maximum number of actions for this job that can be running at
the same time. This value allows to materialize and submit multiple instances of
the coordinator app, and allows operations to catchup on delayed processing. The
default value is 1.

execution: Specifies the execution order if multiple instances of the coordinator
job have satisfied their execution criteria. Valid values are:

o FIFO (oldest first) default.
17

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

o LIFO (newest first).
o LAST_ONLY (discards all older materializations).

(Ref of definitions: http://oozie.apache.org/docs/3.2.0-
incubating/CoordinatorFunctionalSpec.html#a6.3. Synchronous Coordinator Application
Definition)

Above coordinator will run at a given frequency i.e. every 5™ minute of an hour. (Similar
to a cron job).

To run this coordinator, use the following command.

e oOozie job -- oozie http://host_name:8080/00zie --config
edgenode_path/jobl.properties -D

e oozie.wf.application.path=hdfs:
//Namenodepath/pathof_coordinator_xml/coordinator.xml -d "2 minute"" -run-d
“2minute” will ensure that the coordinator starts only after 2 minutes of when the
job was submitted.

The above coordinator will call the workflow which in turn will call the hive script. This
script will insert the data from external table to hive the managed table.

Coordinator Job Status

Similar to the workflow, parameters can be passed to a coordinator also using the
.properties file. These parameters are resolved using the configuration properties of Job
configuration used to submit the coordinator job.

If a configuration property used in the definitions is not provided with the job configuration

used to submit a coordinator job, the value of the parameter will be undefined and the job
submission will fail.

At any time, a coordinator job is in one of the following statuses: PREP, RUNNING,
PREPSUSPENDED, SUSPENDED, PREPPAUSED, PAUSED, SUCCEEDED,
DONWITHERROR, KILLED, FAILED.

Valid coordinator job status transitions are:
e PREP - PREPSUSPENDED | PREPPAUSED | RUNNING | KILLED

¢ RUNNING - SUSPENDED | PAUSED | SUCCEEDED | DONWITHERROR | KILLED |
FAILED

e PREPSUSPENDED - PREP | KILLED
e SUSPENDED - RUNNING | KILLED
e PREPPAUSED - PREP | KILLED

e PAUSED - SUSPENDED | RUNNING | KILLED

18

MPLYEAEYLEARNINEG

w ' tutorialspoint

http://oozie.apache.org/docs/3.2.0-incubating/CoordinatorFunctionalSpec.html#a6.3._Synchronous_Coordinator_Application_Definition
http://oozie.apache.org/docs/3.2.0-incubating/CoordinatorFunctionalSpec.html#a6.3._Synchronous_Coordinator_Application_Definition
http://oozie.apache.org/docs/3.2.0-incubating/CoordinatorFunctionalSpec.html#a6.3._Synchronous_Coordinator_Application_Definition

Apache Oozie

e When a coordinator job is submitted, Oozie parses the coordinator job XML. Oozie then
creates a record for the coordinator with status PREP and returns a unique ID. The
coordinator is also started immediately if the pause time is not set.

e When a user requests to suspend a coordinator job that is in status PREP, Oozie puts
the job in the status PREPSUSPEND. Similarly, when the pause time reaches for a
coordinator job with the status PREP, Oozie puts the job in the status PREPPAUSED.

e Conversely, when a user requests to resume a PREPSUSPEND coordinator job, Oozie
puts the job in status PREP. And when the pause time is reset for a coordinator job
and job status is PREPPAUSED, Oozie puts the job in status PREP.

e When a coordinator job starts, Oozie puts the job in status RUNNING and starts
materializing workflow jobs based on the job frequency.

e When a user requests to kill a coordinator job, Oozie puts the job in status KILLED and
it sends kill to all submitted workflow jobs. If any coordinator action finishes with
not KILLED, Oozie puts the coordinator job into DONEWITHERROR .

e When a user requests to suspend a coordinator job that is in status RUNNING, Oozie
puts the job in status SUSPEND and it suspends all the submitted workflow jobs.

e When pause time reaches for a coordinator job that is in status RUNNING, Oozie puts
the job in status PAUSED.

Conversely, when a user requests to resume a SUSPEND coordinator job, Oozie puts the
job in status RUNNING. And when pause time is reset for a coordinator job and job status
is PAUSED, Oozie puts the job in status RUNNING.

A coordinator job creates workflow jobs (commonly coordinator actions) only for the
duration of the coordinator job and only if the coordinator job is in RUNNING status. If
the coordinator job has been suspended, when resumed it will create all the coordinator
actions that should have been created during the time it was suspended, actions will not
be lost, they will be delayed.

When the coordinator job materialization finishes and all the workflow jobs finish, Oozie
updates the coordinator status accordingly. For example, if all the workflows are
SUCCEEDED, Oozie puts the coordinator job into SUCCEEDED status. However, if any
workflow job finishes with not SUCCEEDED (e.g. KILLED or FAILED or TIMEOUT), then
Oozie puts the coordinator job into DONEWITHERROR. If all coordinator actions
are TIMEDOUT, Oozie puts the coordinator job into DONEWITHERROR.

(Reference: http://oozie.apache.org/docs/)

Parametrization of a Coordinator

The workflow parameters can be passed to a coordinator as well using the .properties
file. These parameters are resolved using the configuration properties of Job configuration
used to submit the coordinator job.

If a configuration property used in the definition is not provided with the job configuration

used to submit a coordinator job, the value of the parameter will be undefined and the job
submission will fail.

19

EIMPLYEAESYLEARHNINEG

w ' tutorialspoint

http://oozie.apache.org/docs/

5. Apache Oozie —Bundle

The Oozie Bundle system allows the user to define and execute a bunch of coordinator
applications often called a data pipeline. There is no explicit dependency among the
coordinator applications in a bundle. However, a user could use the data dependency of
coordinator applications to create an implicit data application pipeline.

The user will be able to start/stop/suspend/resume/rerun in the bundle level resulting in
a better and easy operational control.

Bundle

Let’s extend our workflow and coordinator example to a bundle.

<bundle-app xmlns='uri:oozie:bundle:0.1"'
name="bundle_copydata_from_external_orc'>

<controls>
<kick-off-time>${kickOffTime}</kick-off-time>
</controls>
<coordinator name='coord_copydata_from_external_orc' >
<app-path>pathof_coordinator_xml</app-path>
<configuration>
<property>
<name>startTimel</name>
<value>time to start</value>
</property>
</configuration>
</coordinator>

</bundle-app>

Kick-off-time: The time when a bundle should start and submit coordinator applications.

There can be more than one coordinator in a bundle.

Bundle Job Status

At any time, a bundle job is in one of the following status: PREP, RUNNING,
PREPSUSPENDED, SUSPENDED, PREPPAUSED, PAUSED, SUCCEEDED, DONWITHERROR,
KILLED, FAILED.

20

@ tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

Valid bundle job status transitions are:
e PREP - PREPSUSPENDED | PREPPAUSED | RUNNING | KILLED

¢ RUNNING - SUSPENDED | PAUSED | SUCCEEDED | DONWITHERROR | KILLED |
FAILED

e PREPSUSPENDED - PREP | KILLED
e SUSPENDED - RUNNING | KILLED
e PREPPAUSED - PREP | KILLED

e PAUSED - SUSPENDED | RUNNING | KILLED

e When a bundle job is submitted, Oozie parses the bundle job XML. Oozie then creates
a record for the bundle with status PREP and returns a unique ID.

e When a user requests to suspend a bundle job that is in PREP state, Oozie puts the
job in status PREPSUSPEND. Similarly, when the pause time reaches for a bundle job
with PREP status, Oozie puts the job in status PREPPAUSED.

e Conversely, when a user requests to resume a PREPSUSPENDED bundle job, Oozie
puts the job in status PREP. And when pause time is reset for a bundle job that is in
PREPPAUSED state, Oozie puts the job in status PREP.

e There are two ways a bundle job could be started. * If kick-off-time (defined in the
bundle xml) reaches. The default value is null, which means starts coordinators NOW.
* If user sends a start request to START the bundle.

¢ When a bundle job starts, Oozie puts the job in status RUNNING and it submits the
all coordinator jobs.

e When a user requests to kill a bundle job, Oozie puts the job in status KILLED and it
sends kill to all submitted coordinator jobs.

e When a user requests to suspend a bundle job that is not in PREP status, Oozie puts
the job in status SUSPEND and it suspends all submitted coordinator jobs.

¢ When pause time reaches for a bundle job that is not in PREP status, Oozie puts the
job in status PAUSED. When the paused time is reset, Oozie puts back the job in
status RUNNING.

When all the coordinator jobs finish, Oozie updates the bundle status accordingly. If all
coordinators reach to the same terminal state, the bundle job status also moves to the
same status. For example, if all coordinators are SUCCEEDED, Oozie puts the bundle job
into SUCCEEDED status. However, if all coordinator jobs don't finish with the same status,
Oozie puts the bundle job into DONEWITHERROR.

21

MPLYEAEYLEARNINEG

w ' tutorialspoint

6. Apache Oozie — CLI and Extensions

By this time, you have a good understanding of Oozie workflows, coordinators and
bundles. In the last part of this tutorial, let’'s touch base some of the other important
concepts in Oozie.

Command Line Tools

We have seen a few commands earlier to run the jobs of workflow, coordinator and bundle.
Oozie provides a command line utility, Oozie, to perform job and admin tasks.

oozie version : show client version

Following are some of the other job operations:

oozie job <OPTIONS> :

-action <arg> coordinator rerun on action ids (requires -rerun);
coordinator log retrieval on action ids (requires -log)

-auth <arg> select authentication type [SIMPLE|KERBEROS]
-change <arg> change a coordinator/bundle job
-config <arg> job configuration file '.xml' or '.properties’

-D <property=value> set/override value for given property

-date <arg> coordinator/bundle rerun on action dates (requires -rerun)
-definition <arg> job definition

-doas <arg> doAs user, impersonates as the specified user

-dryrun Supported in Oozie-2.0 or later versions ONLY - dryrun or
test run a coordinator job, job is not queued

-info <arg> info of a job

-kill <arg> kill a job

-len <arg> number of actions (default TOTAL ACTIONS, requires -info)
-localtime use local time (default GMT)

-log <arg> job log

-nocleanup do not clean up output-events of the coordinator rerun

actions (requires -rerun)

-offset <arg> job info offset of actions (default 'l', requires -info)
-oozie <arg> Oozie URL

-refresh re-materialize the coordinator rerun actions (requires -
rerun)

22

@ tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

-rerun <arg> rerun a job (coordinator requires -action or -date; bundle
requires -coordinator or -date)

-resume <arg> resume a job

-run run a job

-start <arg> start a job

-submit submit a job

-suspend <arg> suspend a job

-value <arg> new endtime/concurrency/pausetime value for changing a

coordinator job; new pausetime value for changing a bundle job

-verbose verbose mode

To check the status of the job, following commands can be used.

-auth <arg> select authentication type [SIMPLE|KERBEROS]
-doas <arg> doAs user, impersonates as the specified user.
-filter <arg> user=<U>; name=<N>; group=<G>; status=<S>;

-jobtype <arg> job type ('Supported in Oozie-2.0 or later versions ONLY -
coordinator' or 'wf' (default))

-len <arg> number of jobs (default '100")
-localtime use local time (default GMT)
-offset <arg> jobs offset (default '1")
-oozie <arg> Oozie URL

-verbose verbose mode

For example: To check the status of the Oozie system you can run the following command:

oozie admin -oozie http://localhost:8080/00zie -status

Validating a Workflow XML -

oozie validate myApp/workflow.xml

It performs an XML Schema validation on the specified workflow XML file.

Action Extensions

We have seen hive extensions. Similarly, Oozie provides more action extensions few of
them are as below:

Email Action

The email action allows sending emails in Oozie from a workflow application. An email
action must provide to addresses, cc addresses (optional), a subject and a body. Multiple
recipients of an email can be provided as comma separated addresses.

23

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

All the values specified in the email action can be parameterized (templated) using EL
expressions.

Example:

<workflow-app name="sample-wf" xmlns="uri:oozie:workflow:0.1">

<action name="an-email">

<email xmlns="uri:oozie:email-action:0.1">
<to>julie@xyz.com,max@abc.com</to>
<cc>jax@xyz.com</cc>
<subject>Email notifications for ${wf:id()}</subject>
<body>The wf ${wf:id()} successfully completed.</body>

</email>

<ok to="main_job"/>

<error to="kill_job"/>

</action>

</workflow-app>

Shell Action

The shell action runs a Shell command. The workflow job will wait until the Shell command
completes before continuing to the next action.

To run the Shell job, you have to configure the shell action with the =job-tracker=,
name-node and Shell exec elements as well as the necessary arguments and
configuration. A shell action can be configured to create or delete HDFS directories before
starting the Shell job.

The shell launcher configuration can be specified with a file, using the job-xml element,
and inline, using the configuration elements.

Example:

How to run any shell script?

<workflow-app xmlns='uri:oozie:workflow:0.3' name='shell-wf'>
<start to='shelll' />
<action name='shelll'>
<shell xmlns="uri:oozie:shell-action:0.1">
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>

<file>path_of_file_name</file>

24

w ' tutorialspoint

EIMPLYEAESYLEARMNINEG

Apache Oozie

</shell>
<ok to="end" />
<error to="fail" />
</action>
<kill name="fail">

<message>Script failed, error
message[${wf:errorMessage(wf:lastErrorNode())}]</message>

</kill>
<end name='end' />

</workflow-app>

Similarly, we can have many more actions like ssh, sqoop, java action, etc.

Additional Resources

Oozie official documentation website is the best resource to understand Oozie in detail.

25

MPLYEAEYLEARNINEG

w ' tutorialspoint

