
 

  



Apache Oozie 

i 

 

About the Tutorial 

Apache Oozie is the tool in which all sort of programs can be pipelined in a desired order 

to work in Hadoop’s distributed environment. Oozie also provides a mechanism to run the 

job at a given schedule. 

This tutorial explains the scheduler system to run and manage Hadoop jobs called Apache 

Oozie. It is tightly integrated with Hadoop stack supporting various Hadoop jobs like Hive, 

Pig, Sqoop, as well as system specific jobs like Java and Shell. 

This tutorial explores the fundamentals of Apache Oozie like workflow, coordinator, bundle 

and property file along with some examples. By the end of this tutorial, you will have 

enough understanding on scheduling and running Oozie jobs on Hadoop cluster in a 

distributed environment. 

Audience 

This tutorial has been prepared for professionals working with Big Data Analytics and want 

to understand about scheduling complex Hadoop jobs using Apache Oozie. 

This tutorial is intended to make you comfortable in getting started with Oozie and does 

not detail each and every function available. For these details, Oozie documentation is the 

best place to visit. 

Prerequisites 

Before proceeding with this tutorial, you must have a conceptual understanding of Cron 

jobs and schedulers. 

Copyright and Disclaimer 

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 

 

 

 

 

 



Apache Oozie 

ii 

 

Table of Contents 

About the Tutorial .................................................................................................................................... i 

Audience .................................................................................................................................................. i 

Prerequisites ............................................................................................................................................ i 

Copyright and Disclaimer ......................................................................................................................... i 

Table of Contents .................................................................................................................................... ii 

1. APACHE OOZIE – INTRODUCTION ........................................................................................ 1 

What is Apache Oozie? ............................................................................................................................ 1 

Oozie Editors ........................................................................................................................................... 2 

2. APACHE OOZIE – WORKFLOW ............................................................................................. 5 

Example Workflow .................................................................................................................................. 5 

Running the Workflow ............................................................................................................................ 8 

Fork and Join Control Node in Workflow ................................................................................................. 9 

Decision Nodes in Workflow ................................................................................................................. 11 

Magic of Property File ........................................................................................................................... 12 

3.   APACHE OOZIE – PROPERTY FILE ....................................................................................... 13 

Property File .......................................................................................................................................... 13 

4.   APACHE OOZIE – COORDINATOR ....................................................................................... 16 

Coordinators ......................................................................................................................................... 16 

Coordinator Job Status .......................................................................................................................... 18 

Parametrization of a Coordinator .......................................................................................................... 19 

5.   APACHE OOZIE – BUNDLE .................................................................................................. 20 

Bundle ................................................................................................................................................... 20 

Bundle Job Status .................................................................................................................................. 20 

 



Apache Oozie 

iii 

 

6.   APACHE OOZIE – CLI AND EXTENSIONS ............................................................................. 22 

Command Line Tools ............................................................................................................................. 22 

Action Extensions .................................................................................................................................. 23 
 



Apache Oozie 

1 

 

In this chapter, we will start with the fundamentals of Apache Oozie. Following is a detailed 

explanation about Oozie along with a few examples and screenshots for better 

understanding. 

What is Apache Oozie? 

Apache Oozie is a scheduler system to run and manage Hadoop jobs in a distributed 

environment. It allows to combine multiple complex jobs to be run in a sequential order 

to achieve a bigger task. Within a sequence of task, two or more jobs can also be 

programmed to run parallel to each other. 

One of the main advantages of Oozie is that it is tightly integrated with Hadoop stack 

supporting various Hadoop jobs like Hive, Pig, Sqoop as well as system-specific jobs like 

Java and Shell. 

Oozie is an Open Source Java Web-Application available under Apache license 2.0. It 

is responsible for triggering the workflow actions, which in turn uses the Hadoop execution 

engine to actually execute the task. Hence, Oozie is able to leverage the existing Hadoop 

machinery for load balancing, fail-over, etc.  

Oozie detects completion of tasks through callback and polling. When Oozie starts a task, 

it provides a unique callback HTTP URL to the task, and notifies that URL when it is 

complete. If the task fails to invoke the callback URL, Oozie can poll the task for 

completion. 

Following three types of jobs are common in Oozie: 

 Oozie Workflow Jobs — These are represented as Directed Acyclic Graphs 

(DAGs) to specify a sequence of actions to be executed. 

 

 Oozie Coordinator Jobs — These consist of workflow jobs triggered by time 

and data availability. 

 

 Oozie Bundle — These can be referred to as a package of multiple coordinator 

and workflow jobs. 

We will look into each of these in detail in the following chapters. 

 

 

 

 

 

 

 

1. Apache Oozie – Introduction 



Apache Oozie 

2 

 

A sample workflow with Controls (Start, Decision, Fork, Join and End) and Actions (Hive, 

Shell, Pig) will look like the following diagram: 

 

Workflow will always start with a Start tag and end with an End tag. 

Use-Cases of Apache Oozie 

Apache Oozie is used by Hadoop system administrators to run complex log analysis on 

HDFS. Hadoop Developers use Oozie for performing ETL operations on data in a sequential 

order and saving the output in a specified format (Avro, ORC, etc.) in HDFS. 

In an enterprise, Oozie jobs are scheduled as coordinators or bundles. 

Oozie Editors 

Before we dive into Oozie lets have a quick look at the available editors for Oozie. 

Most of the time, you won’t need an editor and will write the workflows using any popular 

text editors (like Notepad++, Sublime or Atom) as we will be doing in this tutorial. 

But as a beginner it makes some sense to create a workflow by the drag and drop method 

using the editor and then see how the workflow gets generated. Also, to map GUI with 

the actual workflow.xml created by the editor. This is the only section where we will 

discuss about Oozie editors and won’t use it in our tutorial. 

The most popular among Oozie editors is Hue. 

 

 

 

 



Apache Oozie 

3 

 

Hue Editor for Oozie 

This editor is very handy to use and is available with almost all Hadoop vendors’ solutions. 

The following screenshot shows an example workflow created by this editor. 

 

You can drag and drop controls and actions and add your job inside these actions. 

A good resource to learn more on this topic: 

http://gethue.com/new-apache-oozie-workflow-coordinator-bundle-editors/ 

Oozie Eclipse Plugin (OEP) 

Oozie Eclipse plugin (OEP) is an Eclipse plugin for editing Apache Oozie workflows 

graphically. It is a graphical editor for editing Apache Oozie workflows inside Eclipse. 

Composing Apache Oozie workflows is becoming much simpler. It becomes a matter of 

drag-and-drop, a matter of connecting lines between the nodes. 

 

 

 

 

 

 

 

 

 

 

http://gethue.com/new-apache-oozie-workflow-coordinator-bundle-editors/


Apache Oozie 

4 

 

The following screenshots are examples of OEP. 

 

 

To learn more on OEP, you can visit http://oep.mashin.io/ 

Now let’s go to our next lesson and start writing Oozie workflow. 

  

http://oep.mashin.io/
http://oep.mashin.io/home/screenshot02.png?attredirects=0


Apache Oozie 

5 

 

Workflow in Oozie is a sequence of actions arranged in a control dependency DAG (Direct 

Acyclic Graph). The actions are in controlled dependency as the next action can only run 

as per the output of current action. Subsequent actions are dependent on its previous 

action. A workflow action can be a Hive action, Pig action, Java action, Shell action, 

etc. There can be decision trees to decide how and on which condition a job should run. 

A fork is used to run multiple jobs in parallel. Oozie workflows can be parameterized 

(variables like ${nameNode} can be passed within the workflow definition). These 

parameters come from a configuration file called as property file. (More on this explained 

in the following chapters). 

Let’s learn by creating some examples. 

Example Workflow 

Consider we want to load a data from external hive table to an ORC Hive table. 

Step 1: DDL for Hive external table (say external.hive) 

Create external table external_table 

( 

name string, 

age int, 

address string, 

zip int 

)  

row format delimited 

fields terminated by ',' 

stored as textfile 

location '/test/abc'; 

Step 2: DDL for Hive ORC table (say orc.hive) 

Create Table orc_table 

( 

name string,    -- Concate value of first name and last name with space as 

seperator 

yearofbirth int, 

age int,        --  Current year minus year of birth  

 

2. Apache Oozie – Workflow 



Apache Oozie 

6 

 

address string, 

zip int 

) 

STORED AS ORC 

; 

Step 3: Hive script to insert data from external table to ORC table (say Copydata.hql) 

use ${database_name}; -- input from Oozie 

insert into table orc_table  

select  

concat(first_name,' ',last_name) as name, 

yearofbirth, 

year(from_unixtime) --yearofbirth as age, 

address, 

zip 

from external_table 

; 

Step 4: Create a workflow to execute all the above three steps. (let’s call it workflow.xml) 

<!-- This is a comment --> 

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">     

    <start to="Create_External_Table" /> 

<!—Step 1 --> 

    <action name="Create_External_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/external.hive</script> 

        </hive> 

        <ok to="Create_orc_Table" /> 

        <error to="kill_job" /> 

    </action> 

 

<!—Step 2 --> 

    <action name="Create_orc_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

 



Apache Oozie 

7 

 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/orc.hive</script> 

        </hive> 

        <ok to="Insert_into_Table" /> 

        <error to="kill_job" /> 

    </action> 

 

<!—Step 3 --> 

 

    <action name="Insert_into_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/Copydata.hive</script> 

      <param>database_name</param> 

        </hive> 

        <ok to="end" /> 

        <error to="kill_job" /> 

    </action>  

    <kill name="kill_job"> 

        <message>Job failed</message> 

    </kill> 

    <end name="end" /> 

</workflow-app> 

Explanation of the Above Example 

Action Nodes in the above example defines the type of job that the node will run. Hive 

node inside the action node defines that the action is of type hive. This could also have 

been a pig, java, shell action, etc. as per the job you want to run. 

Each type of action can have its own type of tags. In the above job we are defining the 

job tracker to us, name node details, script to use and the param entity. The Script tag 

defines the script we will be running for that hive action. The Param tag defines the values 

which we will pass into the hive script. (In this example we are passing database name in 

step 3). 

 

 

 



Apache Oozie 

8 

 

The above workflow will translate into the following DAG. 

 

Running the Workflow 

A topology runs in a distributed manner, on multiple worker nodes. Storm spreads the 

tasks evenly on all the worker nodes. The worker node’s role is to listen for jobs and start 

or stop the processes whenever a new job arrives. 

Note: The workflow and hive scripts should be placed in HDFS path before running the 

workflow. 

oozie job --oozie http://host_name:8080/oozie -D 

oozie.wf.application.path=hdfs://namenodepath/pathof_workflow_xml/workflow.xml 

-run 

 
This will run the workflow once. 

 

To check the status of job you can go to Oozie web console -- http://host_name:8080/ 
 

 

 



Apache Oozie 

9 

 

 

By clicking on the job you will see the running job. You can also check the status using 

Command Line Interface (We will see this later). The possible states for workflow jobs 

are: PREP, RUNNING, SUSPENDED, SUCCEEDED, KILLED and FAILED. 

In the case of an action start failure in a workflow job, depending on the type of failure, 

Oozie will attempt automatic retries. It will request a manual retry or it will fail the 

workflow job. Oozie can make HTTP callback notifications on action start/end/failure 

events and workflow end/failure events. In the case of a workflow job failure, the workflow 

job can be resubmitted skipping the previously completed actions. Before doing a 

resubmission the workflow application could be updated with a patch to fix a problem in 

the workflow application code. 

Fork and Join Control Node in Workflow 

In scenarios where we want to run multiple jobs parallel to each other, we can use Fork. 

When fork is used we have to use Join as an end node to fork. Basically Fork and Join work 

together. For each fork there should be a join. As Join assumes all the node are a child of 

a single fork. 

(We also use fork and join for running multiple independent jobs for proper utilization of 

cluster). 

In our above example, we can create two tables at the same time by running them parallel 

to each other instead of running them sequentially one after other. Such scenarios 

perfectly woks for implementing fork. 

Let’s see how fork is implemented. 

Before running the workflow let’s drop the tables. 

Drop table if exist external_table; 

Drop table if exist orc_table; 

 

Now let’s see the workflow. 

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">     

    <start to="fork_node" /> 

 <fork name="fork_node">  

    <path start="Create_External_Table"/>  

    <path start="Create_orc_Table"/>  

    </fork>  

    <action name="Create_External_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

 



Apache Oozie 

10 

 

            <script>hdfs_path_of_script/external.hive</script> 

        </hive> 

        <ok to="join_node" /> 

        <error to="kill_job" /> 

    </action>  

    <action name="Create_orc_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/orc.hive</script> 

        </hive> 

        <ok to="join_node" /> 

        <error to="kill_job" /> 

    </action> 

  

 <join name="join_node" to="Insert_into_Table"/> 

  

    <action name="Insert_into_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/Copydata.hive</script> 

            <param>database_name</param>    

        </hive> 

        <ok to="end" /> 

        <error to="kill_job" /> 

    </action>  

    <kill name="kill_job"> 

        <message>Job failed</message> 

    </kill> 

    <end name="end" /> 

</workflow-app> 

The start node will get to fork and run all the actions mentioned in path for start. All the 

individual action nodes must go to join node after completion of its task. Until all the 

actions nodes complete and reach to join node the next action after join is not taken. 



Apache Oozie 

11 

 

Decision Nodes in Workflow 

We can add decision tags to check if we want to run an action based on the output of 

decision. In the above example, if we already have the hive table we won’t need to create 

it again. In such a scenario, we can add a decision tag to not run the Create Table steps 

if the table already exists. The updated workflow with decision tags will be as shown in the 

following program. 

In this example, we will use an HDFS EL Function fs:exists – 

boolean fs:exists(String path) 

It returns true or false depending on – if the specified path exists or not. 

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">     

    <start to="external_table_exists" /> 

 <decision name="external_table_exists"> 

  <switch> 

   <case to="Create_External_Table">${fs:exists('/test/abc') eq 

'false'}</case> 

   <default to="orc_table_exists" /> 

  </switch> 

 </decision> 

    <action name="Create_External_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/external.hive</script> 

        </hive> 

        <ok to="orc_table_exists" /> 

        <error to="kill_job" /> 

    </action> 

 <decision name="orc_table_exists"> 

  <switch> 

   <case 

to="Create_orc_Table">${fs:exists('/apps/hive/warehouse/orc_table') eq 

'false'}</case> 

   <default to="Insert_into_Table" /> 

  </switch> 

 </decision>   

    <action name="Create_orc_Table"> 

 



Apache Oozie 

12 

 

 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/orc.hive</script> 

        </hive> 

        <ok to="Insert_into_Table" /> 

        <error to="kill_job" /> 

    </action> 

    <action name="Insert_into_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>xyz.com:8088</job-tracker> 

            <name-node>hdfs://rootname</name-node> 

            <script>hdfs_path_of_script/Copydata.hive</script> 

            <param>database_name</param>    

        </hive> 

        <ok to="end" /> 

        <error to="kill_job" /> 

    </action>  

    <kill name="kill_job"> 

        <message>Job failed</message> 

    </kill> 

    <end name="end" /> 

</workflow-app> 

Decision nodes have a switch tag similar to switch case. If the EL translates to success, 

then that switch case is executed. 

This node also has a default tag. In case switch tag is not executed, the control moves to 

action mentioned in the default tag. 

Magic of Property File 

Note that in the above example we have fixed the value of job-tracker, name-node, script 

and param by writing the exact value. This becomes hard to manage in many scenarios. 

This is where a config file (.property file) comes handy. 

We will explore more on this in the following chapter. 



Apache Oozie 

13 

 

Oozie workflows can be parameterized. The parameters come from a configuration file 

called as property file. We can run multiple jobs using same workflow by using multiple 

.property files (one property for each job). 

Suppose we want to change the jobtracker url or change the script name or value of a 

param. 

We can specify a config file (.property) and pass it while running the workflow. 

Property File 

Variables like ${nameNode} can be passed within the workflow definition. The value of 

this variable will be replaced at the run time with the value defined in the ‘.properties’ file. 

Following is an example of a property file we will use in our workflow example. 

File name -- job1.properties 

#  proprties 

nameNode=hdfs://rootname 

jobTracker=xyz.com:8088 

script_name_external=hdfs_path_of_script/external.hive 

script_name_orc=hdfs_path_of_script/orc.hive 

script_name_copy=hdfs_path_of_script/Copydata.hive 

database=database_name 

Now to use this property file we will have to update the workflow and pass the parameters 

in a workflow as shown in the following program. 

<!-- This is a comment --> 

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">     

    <start to="Create_External_Table" /> 

    <action name="Create_External_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>${jobTracker}</job-tracker> 

            <name-node>${nameNode}</name-node> 

            <script>${script_name_external}</script> 

        </hive> 

        <ok to="Create_orc_Table" /> 

        <error to="kill_job" /> 

3.  Apache Oozie – Property File 



Apache Oozie 

14 

 

 

    </action> 

    <action name="Create_orc_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>${jobTracker}</job-tracker> 

            <name-node>${nameNode}</name-node> 

            <script>${script_name_orc}</script> 

        </hive> 

        <ok to="Insert_into_Table" /> 

        <error to="kill_job" /> 

    </action> 

    <action name="Insert_into_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>${jobTracker}</job-tracker> 

            <name-node>${nameNode}</name-node> 

            <script>${script_name_copy}</script> 

            <param>${database}</param>    

        </hive> 

        <ok to="end" /> 

        <error to="kill_job" /> 

    </action>  

    <kill name="kill_job"> 

        <message>Job failed</message> 

    </kill> 

    <end name="end" /> 

</workflow-app> 

Now to use the property file in this workflow we will have to pass the –config while running 

the workflow. 

oozie job --oozie http://host_name:8080/oozie --config 

edgenode_path/job1.properties -D 

oozie.wf.application.path=hdfs://Namenodepath/pathof_workflow_xml/workflow.xml 

–run 

Note: The property file should be on the edge node (not in HDFS), whereas the workflow 

and hive scripts will be in HDFS. 

 

 



Apache Oozie 

15 

 

At run time, all the parameters in ${} will be replaced by its corresponding value in the 

.properties file. 

Also a single property file can have more parameters than required in a single workflow 

and no error will be thrown. This makes it possible to run more than one workflow by using 

the same properties file. But if the property file does not have a parameter required by a 

workflow then an error will occur. 

 

 

 

 

  



Apache Oozie 

16 

 

Coordinator applications allow users to schedule complex workflows, including workflows 

that are scheduled regularly. Oozie Coordinator models the workflow execution triggers in 

the form of time, data or event predicates. The workflow job mentioned inside the 

Coordinator is started only after the given conditions are satisfied. 

Coordinators 

As done in the previous chapter for the workflow, let’s learn concepts of coordinators with 

an example. 

The first two hive actions of the workflow in our example creates the table.   We don’t 

need these step when we run the workflow in a coordinated manner each time with a given 

frequency. So let’s modify the workflow which will then be called by our coordinator. 

In a real life scenario, the external table will have a flowing data and as soon as the data 

is loaded in the external table, the data will be processed into ORC and from the file. 

Modified Workflow: 

<workflow-app xmlns="uri:oozie:workflow:0.4" name="simple-Workflow">     

    <start to="Insert_into_Table" /> 

    <action name="Insert_into_Table"> 

        <hive xmlns="uri:oozie:hive-action:0.4"> 

            <job-tracker>${jobTracker}</job-tracker> 

            <name-node>${nameNode}</name-node> 

            <script>${script_name_copy}</script> 

            <param>${database}</param>    

        </hive> 

        <ok to="end" /> 

        <error to="kill_job" /> 

    </action>  

    <kill name="kill_job"> 

        <message>Job failed</message> 

    </kill> 

    <end name="end" /> 

</workflow-app> 

 

 

 

 

4.  Apache Oozie – Coordinator 



Apache Oozie 

17 

 

Now let’s write a simple coordinator to use this workflow. 

<coordinator-app xmlns="uri:oozie:coordinator:0.2" 

name="coord_copydata_from_external_orc" frequency="5 * * * *" start="2016-00-

18T01:00Z" end="2025-12-31T00:00Z"" timezone="America/Los_Angeles"> 

    <controls> 

<timeout>1</timeout> 

        <concurrency>1</concurrency> 

        <execution>FIFO</execution> 

        <throttle>1</throttle> 

    </controls> 

    <action> 

        <workflow> 

            <app-path>pathof_workflow_xml/workflow.xml</app-path> 

        </workflow> 

    </action> 

</coordinator-app> 

Definitions of the above given code is as follows: 

 

 start: It means the start datetime for the job. Starting at this time the actions will 

be materialized. 

  

 end: The end datetime for the job. When actions will stop being materialized.  

 

 timezone: The timezone of the coordinator application. 

 

 frequency: The frequency, in minutes, to materialize actions.  

 

Control Information: 

 

 timeout: The maximum time, in minutes, that a materialized action will be waiting 

for the additional conditions to be satisfied before being discarded. A timeout of 0 

indicates that at the time of materialization all the other conditions must be 

satisfied, else the action will be discarded. A timeout of 0 indicates that if all the 

input events are not satisfied at the time of action materialization, the action should 

timeout immediately. A timeout of -1 indicates no timeout, the materialized action 

will wait forever for the other conditions to be satisfied. The default value is -1. 

 

 concurrency: The maximum number of actions for this job that can be running at 

the same time. This value allows to materialize and submit multiple instances of 

the coordinator app, and allows operations to catchup on delayed processing. The 

default value is 1. 

 

 execution: Specifies the execution order if multiple instances of the coordinator 

job have satisfied their execution criteria. Valid values are: 

o FIFO (oldest first) default. 



Apache Oozie 

18 

 

o LIFO (newest first). 

o LAST_ONLY (discards all older materializations). 

 

(Ref of definitions: http://oozie.apache.org/docs/3.2.0-

incubating/CoordinatorFunctionalSpec.html#a6.3._Synchronous_Coordinator_Application

_Definition) 

 

Above coordinator will run at a given frequency i.e. every 5th minute of an hour. (Similar 

to a cron job). 

 

To run this coordinator, use the following command. 

 

 oozie job -- oozie http://host_name:8080/oozie --config 

edgenode_path/job1.properties -D  

 

 oozie.wf.application.path=hdfs: 

//Namenodepath/pathof_coordinator_xml/coordinator.xml -d "2 minute"` -run-d 

“2minute” will ensure that the coordinator starts only after 2 minutes of when the 

job was submitted. 

 

The above coordinator will call the workflow which in turn will call the hive script. This 

script will insert the data from external table to hive the managed table. 

Coordinator Job Status 

Similar to the workflow, parameters can be passed to a coordinator also using the 

.properties file. These parameters are resolved using the configuration properties of Job 

configuration used to submit the coordinator job. 

 

If a configuration property used in the definitions is not provided with the job configuration 

used to submit a coordinator job, the value of the parameter will be undefined and the job 

submission will fail. 

At any time, a coordinator job is in one of the following statuses: PREP, RUNNING, 

PREPSUSPENDED, SUSPENDED, PREPPAUSED, PAUSED, SUCCEEDED, 

DONWITHERROR, KILLED, FAILED. 

Valid coordinator job status transitions are: 

 PREP – PREPSUSPENDED | PREPPAUSED | RUNNING | KILLED 

 

 RUNNING – SUSPENDED | PAUSED | SUCCEEDED | DONWITHERROR | KILLED | 

FAILED 

 

 PREPSUSPENDED – PREP | KILLED 

 

 SUSPENDED – RUNNING | KILLED 

 

 PREPPAUSED – PREP | KILLED 

 

 PAUSED – SUSPENDED | RUNNING | KILLED 

http://oozie.apache.org/docs/3.2.0-incubating/CoordinatorFunctionalSpec.html#a6.3._Synchronous_Coordinator_Application_Definition
http://oozie.apache.org/docs/3.2.0-incubating/CoordinatorFunctionalSpec.html#a6.3._Synchronous_Coordinator_Application_Definition
http://oozie.apache.org/docs/3.2.0-incubating/CoordinatorFunctionalSpec.html#a6.3._Synchronous_Coordinator_Application_Definition


Apache Oozie 

19 

 

 When a coordinator job is submitted, Oozie parses the coordinator job XML. Oozie then 

creates a record for the coordinator with status PREP and returns a unique ID. The 

coordinator is also started immediately if the pause time is not set. 

 

 When a user requests to suspend a coordinator job that is in status PREP, Oozie puts 

the job in the status PREPSUSPEND. Similarly, when the pause time reaches for a 

coordinator job with the status PREP, Oozie puts the job in the status PREPPAUSED. 

 

 Conversely, when a user requests to resume a PREPSUSPEND coordinator job, Oozie 

puts the job in status PREP. And when the pause time is reset for a coordinator job 

and job status is PREPPAUSED, Oozie puts the job in status PREP. 

 

 When a coordinator job starts, Oozie puts the job in status RUNNING and starts 

materializing workflow jobs based on the job frequency. 

 

 When a user requests to kill a coordinator job, Oozie puts the job in status KILLED and 

it sends kill to all submitted workflow jobs. If any coordinator action finishes with 

not KILLED, Oozie puts the coordinator job into DONEWITHERROR . 

 

 When a user requests to suspend a coordinator job that is in status RUNNING, Oozie 

puts the job in status SUSPEND and it suspends all the submitted workflow jobs. 

 

 When pause time reaches for a coordinator job that is in status RUNNING, Oozie puts 

the job in status PAUSED. 

Conversely, when a user requests to resume a SUSPEND coordinator job, Oozie puts the 

job in status RUNNING. And when pause time is reset for a coordinator job and job status 

is PAUSED, Oozie puts the job in status RUNNING. 

A coordinator job creates workflow jobs (commonly coordinator actions) only for the 

duration of the coordinator job and only if the coordinator job is in RUNNING status. If 

the coordinator job has been suspended, when resumed it will create all the coordinator 

actions that should have been created during the time it was suspended, actions will not 

be lost, they will be delayed. 

When the coordinator job materialization finishes and all the workflow jobs finish, Oozie 

updates the coordinator status accordingly. For example, if all the workflows are 

SUCCEEDED, Oozie puts the coordinator job into SUCCEEDED status. However, if any 

workflow job finishes with not SUCCEEDED (e.g. KILLED or FAILED or TIMEOUT), then 

Oozie puts the coordinator job into DONEWITHERROR. If all coordinator actions 

are TIMEDOUT, Oozie puts the coordinator job into DONEWITHERROR. 

(Reference:  http://oozie.apache.org/docs/) 

Parametrization of a Coordinator 

The workflow parameters can be passed to a coordinator as well using the .properties 

file. These parameters are resolved using the configuration properties of Job configuration 

used to submit the coordinator job. 

 

If a configuration property used in the definition is not provided with the job configuration 

used to submit a coordinator job, the value of the parameter will be undefined and the job 

submission will fail. 
 

http://oozie.apache.org/docs/


Apache Oozie 

20 

 

The Oozie Bundle system allows the user to define and execute a bunch of coordinator 

applications often called a data pipeline. There is no explicit dependency among the 

coordinator applications in a bundle. However, a user could use the data dependency of 

coordinator applications to create an implicit data application pipeline. 

The user will be able to start/stop/suspend/resume/rerun in the bundle level resulting in 

a better and easy operational control. 

Bundle 

Let’s extend our workflow and coordinator example to a bundle. 

<bundle-app xmlns='uri:oozie:bundle:0.1' 

name='bundle_copydata_from_external_orc'>  

  <controls> 

       <kick-off-time>${kickOffTime}</kick-off-time> 

  </controls> 

   <coordinator name='coord_copydata_from_external_orc' > 

       <app-path>pathof_coordinator_xml</app-path> 

       <configuration> 

         <property> 

              <name>startTime1</name> 

              <value>time to start</value> 

          </property> 

      </configuration> 

   </coordinator> 

</bundle-app> 

Kick-off-time: The time when a bundle should start and submit coordinator applications. 

There can be more than one coordinator in a bundle. 

Bundle Job Status 

At any time, a bundle job is in one of the following status: PREP, RUNNING, 

PREPSUSPENDED, SUSPENDED, PREPPAUSED, PAUSED, SUCCEEDED, DONWITHERROR, 

KILLED, FAILED. 

 

 

5.  Apache Oozie – Bundle 



Apache Oozie 

21 

 

Valid bundle job status transitions are: 

 PREP – PREPSUSPENDED | PREPPAUSED | RUNNING | KILLED 

 

 RUNNING – SUSPENDED | PAUSED | SUCCEEDED | DONWITHERROR | KILLED | 

FAILED 

 

 PREPSUSPENDED – PREP | KILLED 

 

 SUSPENDED – RUNNING | KILLED 

 

 PREPPAUSED – PREP | KILLED 

 

 PAUSED – SUSPENDED | RUNNING | KILLED 

 

 

 When a bundle job is submitted, Oozie parses the bundle job XML. Oozie then creates 

a record for the bundle with status PREP and returns a unique ID. 

 

 When a user requests to suspend a bundle job that is in PREP state, Oozie puts the 

job in status PREPSUSPEND. Similarly, when the pause time reaches for a bundle job 

with PREP status, Oozie puts the job in status PREPPAUSED. 

 

 Conversely, when a user requests to resume a PREPSUSPENDED bundle job, Oozie 

puts the job in status PREP. And when pause time is reset for a bundle job that is in 

PREPPAUSED state, Oozie puts the job in status PREP. 

 

 There are two ways a bundle job could be started. * If kick-off-time (defined in the 

bundle xml) reaches. The default value is null, which means starts coordinators NOW. 

* If user sends a start request to START the bundle. 

 

 When a bundle job starts, Oozie puts the job in status RUNNING and it submits the 

all coordinator jobs. 

 

 When a user requests to kill a bundle job, Oozie puts the job in status KILLED and it 

sends kill to all submitted coordinator jobs. 

 

 When a user requests to suspend a bundle job that is not in PREP status, Oozie puts 

the job in status SUSPEND and it suspends all submitted coordinator jobs. 

 

 When pause time reaches for a bundle job that is not in PREP status, Oozie puts the 

job in status PAUSED. When the paused time is reset, Oozie puts back the job in 

status RUNNING. 

When all the coordinator jobs finish, Oozie updates the bundle status accordingly. If all 

coordinators reach to the same terminal state, the bundle job status also moves to the 

same status. For example, if all coordinators are SUCCEEDED, Oozie puts the bundle job 

into SUCCEEDED status. However, if all coordinator jobs don't finish with the same status, 

Oozie puts the bundle job into DONEWITHERROR. 

 

 



Apache Oozie 

22 

 

By this time, you have a good understanding of Oozie workflows, coordinators and 

bundles. In the last part of this tutorial, let’s touch base some of the other important 

concepts in Oozie. 

Command Line Tools 

We have seen a few commands earlier to run the jobs of workflow, coordinator and bundle. 

Oozie provides a command line utility, Oozie, to perform job and admin tasks.  

oozie version : show client version 

Following are some of the other job operations: 

oozie job <OPTIONS> : 

-action <arg>     coordinator rerun on action ids (requires -rerun); 

coordinator log retrieval on action ids (requires -log) 

-auth <arg>       select authentication type [SIMPLE|KERBEROS] 

-change <arg>     change a coordinator/bundle job 

-config <arg>     job configuration file '.xml' or '.properties' 

-D <property=value>   set/override value for given property 

-date <arg>       coordinator/bundle rerun on action dates (requires -rerun) 

-definition <arg>     job definition 

-doas <arg>       doAs user, impersonates as the specified user 

-dryrun           Supported in Oozie-2.0 or later versions ONLY - dryrun or 

test run a coordinator job, job is not queued 

-info <arg>       info of a job 

-kill <arg>       kill a job 

-len <arg>        number of actions (default TOTAL ACTIONS, requires -info) 

-localtime        use local time (default GMT) 

-log <arg>        job log 

-nocleanup        do not clean up output-events of the coordinator rerun 

actions (requires -rerun) 

-offset <arg>     job info offset of actions (default '1', requires -info) 

-oozie <arg>      Oozie URL 

-refresh          re-materialize the coordinator rerun actions (requires -

rerun) 

 

6.  Apache Oozie – CLI and Extensions 



Apache Oozie 

23 

 

-rerun <arg>      rerun a job (coordinator requires -action or -date; bundle 

requires -coordinator or -date) 

-resume <arg>     resume a job 

-run              run a job 

-start <arg>      start a job 

-submit           submit a job 

-suspend <arg>    suspend a job 

-value <arg>      new endtime/concurrency/pausetime value for changing a 

coordinator job; new pausetime value for changing a bundle job 

-verbose          verbose mode 

To check the status of the job, following commands can be used. 

-auth <arg>    select authentication type [SIMPLE|KERBEROS] 

-doas <arg>    doAs user, impersonates as the specified user. 

-filter <arg>    user=<U>; name=<N>; group=<G>; status=<S>; ... 

-jobtype <arg>   job type ('Supported in Oozie-2.0 or later versions ONLY - 

coordinator' or 'wf' (default)) 

-len <arg>    number of jobs (default '100') 

-localtime    use local time (default GMT) 

-offset <arg>    jobs offset (default '1') 

-oozie <arg>     Oozie URL 

-verbose     verbose mode 

For example: To check the status of the Oozie system you can run the following command: 

oozie admin -oozie http://localhost:8080/oozie -status 

Validating a Workflow XML – 

oozie validate myApp/workflow.xml 

It performs an XML Schema validation on the specified workflow XML file. 

Action Extensions 

We have seen hive extensions. Similarly, Oozie provides more action extensions few of 

them are as below: 

Email Action 

The email action allows sending emails in Oozie from a workflow application. An email 

action must provide to addresses, cc addresses (optional), a subject and a body. Multiple 

recipients of an email can be provided as comma separated addresses. 



Apache Oozie 

24 

 

All the values specified in the email action can be parameterized (templated) using EL 

expressions. 

Example: 

<workflow-app name="sample-wf" xmlns="uri:oozie:workflow:0.1"> 

    ... 

    <action name="an-email"> 

        <email xmlns="uri:oozie:email-action:0.1"> 

            <to>julie@xyz.com,max@abc.com</to> 

            <cc>jax@xyz.com</cc> 

            <subject>Email notifications for ${wf:id()}</subject> 

            <body>The wf ${wf:id()} successfully completed.</body> 

        </email> 

        <ok to="main_job"/> 

        <error to="kill_job"/> 

    </action> 

    ... 

</workflow-app> 

Shell Action 

The shell action runs a Shell command. The workflow job will wait until the Shell command 

completes before continuing to the next action. 

To run the Shell job, you have to configure the shell action with the =job-tracker=, 

name-node and Shell exec elements as well as the necessary arguments and 

configuration. A shell action can be configured to create or delete HDFS directories before 

starting the Shell job. 

The shell launcher configuration can be specified with a file, using the job-xml element, 

and inline, using the configuration elements. 

Example: 

How to run any shell script? 

<workflow-app xmlns='uri:oozie:workflow:0.3' name='shell-wf'> 

    <start to='shell1' /> 

    <action name='shell1'> 

        <shell xmlns="uri:oozie:shell-action:0.1"> 

            <job-tracker>${jobTracker}</job-tracker> 

            <name-node>${nameNode}</name-node> 

            <file>path_of_file_name</file> 

 



Apache Oozie 

25 

 

        </shell> 

        <ok to="end" /> 

        <error to="fail" /> 

    </action> 

    <kill name="fail"> 

        <message>Script failed, error 

message[${wf:errorMessage(wf:lastErrorNode())}]</message> 

    </kill> 

    <end name='end' /> 

</workflow-app> 

Similarly, we can have many more actions like ssh, sqoop, java action, etc. 

Additional Resources 

Oozie official documentation website is the best resource to understand Oozie in detail. 

 

 


