A
tutor-laISp DiNt

s

www.tutorialspoint.com

"3 https://www.facebook.com/tutorialspointindia 4 https://twitter.com/tutorialspoint

Apache MXNet

About the Tutonial

Apache MXNet is a powerful open-source deep learning software framework instrument
helping developers build, train, and deploy Deep Learning models. Past few years, from
healthcare to transportation to manufacturing and, in fact, in every aspect of our daily life,
the impact of deep learning has been widespread. Nowadays, deep learning is sought by
companies to solve some hard problems like Face recognition, object detection, Optical
Character Recognition (OCR), Speech Recognition, and Machine Translation.

Audience

This tutorial will be useful for graduates, post-graduates, and research students who either
have an interest in the field of AI, Machine Learning and Deep Learning or have it as a
part of their curriculum. The reader can be a beginner or an advanced learner.

Prerequisites

The reader must have basic knowledge about Artificial Intelligence. He/she should also be
aware about Python language and its functions. If you are new to any of these concepts,
we recommend you take up tutorials concerning these topics before you dig further into
this tutorial.

Copyright & Disclaimer

© Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAGSY LEARMNING

)

mailto:contact@tutorialspoint.com

Apache MXNet

Table of Contents

ADOUL the TULOTTAN c..eeeieiieeee ettt et st b e b e b e e sar e sanesbeesbeesneeneeenneennens ii
LA e 1= o T OO PP U PP SRVt ii
P T B QUISIEES .ttt e s s e e e e s a e e s e e e s rae e e s raeeeeas i
COPYFIBNE & DISCIAIMET ...ttt sttt et e et e st e et e st e e e bt e sabeeeabeesabeeeseesabeeenneesane i
TabIE OFf CONTENES ..ttt st et e s e e st esa e s bt e st e e e bt e sabeeebeesabeeeseesares iii
Apache MXNet — Introductionccoiviiiiiiiiiiiiiii s s s s s s s s s s s s s s s s eees 1
WAt IS IMXINEE? ..ttt st st b e b e bt et s e e bt e s b e b e e b e e b e san e sanesmeesree st enseenneennens 1
WHhY APACNE IMIXINEL? ...ttt et e ettt e e et e e et e e e e e tae e e stbeeeesataeeeessaaeesassaaeessaeeeansassesssasaeasteeeennses 1
VATOUS FEATUIES ...ttt s e s bt s bt et e bt e st e s ae e e bt e s be e b e e b e e st e sabesaeesbeesbeenbeenbeenbeaneeans 1
Latest version IMXINETL 1.6.0 ...ccccuiiiiiiiiiiiiiiiiii it srr e sra e 3
IMProvEMENtS ON EXISTING fEATUIES.cciitiieeecieeeceitee e ctee e e e e eette e e e ette e e e st e e e e ettaeeseabaeeesataeeeensraeeaensaaeessseeanns 3
(0] o110 112 1 o] o 1TSS PP PPRRP 4
Apache MXNet — Installing MXNEetccoviiiiiiiiiiiiiiiiss s s s s s s s s s s s s s s e seees 5
LINUX OS ittt ettt e sttt et e e e s ettt et e e e s aa et e e e e e e e sa s ba b e e e e e e e saaabbaeaeeee s e bt aeaeeeeseanbeaaeeeesenanraaaeeeesanaan 5
Central Processing UNit (CPU)uiiiiieeiieiieecieesiee et e stee et e steeeteesiteeesteesabeeenseesasaeenseesnsaeanseesnsesanseesnsessnseennss 7
IMIACOS .. e s e e st s e e e sba e e e e 9
Central Processing UNIT (CPU) ..ouieiiiiiieecciiee et ettt e e ettt e e e e tte e e etae e e e s tte e e eeastaeesatsaeeeastaseeenssseesasbeeeesssanenannes 11
WWINAOWS OS ..ttt ettt et s b e st e s bt e s bt e e be e sab et s bt e s be e e baesabe s e bae s be s e snne e saeesnneeneis 12
Install with CUDA @nd MKL SUPPOI ..ceiieiiiiiieiee ettt et e e e e sttt e e e e e e seaat e e e e e s s e nntaaeeeaesessasssannaeens 13
Central Processing UNIT (CPU) ..ocuiiiiiiiiee ettt et e e ettt e e e e tte e e etaeeeesttaeeeeasteeestbaeasastaseeansaseesassessesssanesannes 17
Installing MXNet ONn CloOUd N0 DEVICEScccuveeeeiiiieeeiiie e ccieeeesiteeesete e seteeeessteeessneeessaaeeeessseeessnseeeessseeenns 18
INStalliNg MXNEL ON ClOUM .o.eeeieeeiiee ettt e e et e e et e e sttt e e e s s teeessnateeesssaeeeensseeessnnneeesnsseenans 18
INSTAIlING MXNEL ON DBVICES ... uuviiiieiieeieiiiieccieee e sttt e e ettt e e setee e e e st e e eeeteeessseaeesstaeessssseeesnsseeeansseeesansneeesssnenans 19
NATIVE BUIlIA (FrOM SOUICE) weeeiiiiiiiiiieeiee ettt ettt e e ee e e e e e e s ebbb e e e e e e e seeabraeeeeeesesnsbaeaeeeesesnnsrsnneeeens 20
NVIDIA JEESON DEVICES ...ttt a e st s e e e e s ba e e e s b bt e s s asb e s e s eabae e s sanaeeseas 21
Native BUIld (frOM SOUICE) .eeeneeiiee ettt ettt e ettt e e et e e et e e e e aba e e e eateeestbeaaeestaeeeensaeeeensseaans 23

iii

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Apache MXNet — Toolkits and ECOSYStEMcccciiiiiiiiiiiiiiiiiiiiirrrrre e se s e e s s e se s s s s sssssssssseees 25
TOOIKIES ettt ettt ettt et h e b e r e et e b e s he e s b s Rt e b et eae e he e e R e e b e e b e e renanesanenreennee 25
Y ol0 YA K= .4 F PP P PP O PR O PPN 27
Apache MXNet — System Architecture.........ccccviiiiiiiiniiiiiii s 33
IMXINEE IMOQUIES. ...ttt ettt ettt s bt e bt e s bt e e e at e e sabe e bt e e sabe e beeesabeeneeesaneennnes 33
USEr-faCing IMOTQUIESeeiuiiiiiieeiie ettt sttt e st e bt e s bt e e bt e s b e e e bt e s beesbeesbeeeneenane 34
SYSEEM IMIOAUIES ...ttt ettt e e sttt e s st e e e sbae e e e abeeessasaeessasbeeesnsbaeessasaeessnseeesnnsaeesnnnns 34
Apache MXNet — System COMPONENTS ...cccceiiiiiiiiiiiiiiiiiiiirier e e e e e e e s s e s s s sssessssesssesssssessssssssssssssssanns 35
o CTol UL o] T = oV =41 [TP P PRSP O PO P OO PUTORON 35
(0o ¢ 131 =T o = Yol TSSOSO OO PP PRSPPI 35
U 0T T o PPN 35
L0 T =) PP 36
AV 1 2 =TT | PSSP 36
U T T o Lo Y 1 PR 37
(O] o T=1 = o OO UOPPPTPTP ORI 37
(0] o] =} do gl [o1 4= o - [ol T PP TP P TSRO PPPTOPPPRRUP 38
Example for Creating @n OPEIatorcccuiicicieeeeciieeeeciee ettt e e e st e e e et e e e eetaeeeesttaeeesaseeessbeeeaasteeesesaeeesasseeeans 40
Apache MXNet — Unified Operator APL..........cccceiieiiiiiiiiiiiiiceieeeeeseesssesssssesesessssssesssssssssssssssssssssssssssssssnnes 43
] 0] o111 @ o PSPPSR 43
DEIININE SNAPES «.eeei ittt e et e e e et e e e e ttte e e etaeeeesabaeeeebaee e e baaaaestaeeeanseaeeasbaaeaasteeeeanraaeeesreaaans 43
DEfINING FUNCHIONS ... viieeeiiie ettt et e e et e e ettt e e e e ette e e e sabeeeeeabaeeestbeaeestaeaeeassseesassaaeastsseeansaeeesasrenanns 44
B2y T Y [T G = o [=T o P 46
Register SIMPIEOP tO IMXNEL......oii ettt e ree et e et e e e st e e e st e e e saaeeeesstaeesssseeessaeeeensseeesansneeesssnenans 47
SIMPIEOP ON ENVAIZUMENTS .. .eiietiieeiitiieeeiieeeeeitteeesiteeeaseteeesasseeessseeeassteeesaaseeeesasseesassseeesasssssesaseesessenennnnes 48
(2101 o o = =T o Yo @ =T =1 o 1R 49
Apache MXNet — Distributed TraiNiNgcccoiieeeeiciiiiiiercccr e ece e eerees e e e s s e e e snnssssesssesennansssasssnnes 50
[V ToTo [Ty} A @eT 0 o o U1 £=) 4 (o) o JPA SRR 50
KINAS OF PArall@liSImeeeieeeieeteee ettt ettt st st s bt ettt et e e at e sbe e b e e be et e sabesaeesaeenaee 50

iv

tutorialspoint

EIMPLYEAGSY LEARMNING

)

10.

11.

Apache MXNet

Working of distribUted trainingeiiiceiiee e ee e e e e et e e s ener e e e s e e e esteeesensaeeesnreeeans 51
Modes Of DiStriDULEA TraiNiNG.....ccccuiieeeiiiiecceee et eerree e e e et e e e e e e e e streeeesataeesesseeesassaeeassesesansseeessseeaans 53
Apache MXNet — Python Packagescccviiiiiiiiiiiiiiiiiiiiiicciiieiisiniienie s ss s s s ss s s e s ssssssssssssssssssssssnsnnns 54
Important MXNet PYthon PacKagescoiuiiiiiiiiieiiie ettt ettt st e sar e e snee e saneenaees 54
LAY 0 o] = T BT TP P TP PSP ST PPRTOPPTOPRTOP 54
What @re radiENts? ... ittt ettt e be e s bt e sbe e e bt e sbbe s bt e e ebb e e bt e e sate e be e e nnreeneas 54
HOW t0 CalCUIate Gradients?ccouii ittt st e s et e s it e e ae e e sabe s ebe e e saneeneas 55
Automatic Differentiation (QUEOZIAd)ccocviiiieiiiie e e e et e e et e e s eaeae e e saraeeens 56
Using autograd in MXNEL GIUONuiiieiiie et e e e e et e e et e e e st b e e e eara e e snnaeeesnsseeeesraeeenneeas 57
APAChe MXNEL — NDAFTAY ..cceeeeeeiiiiiiiiiiiesesessssssssesessssssesssnsssssssanes 60
Handling data With NDATITAY........coiuiieiciiei ettt e et e e e st e e e e tte e e stbeeeesataeeeesssaeesasbaseanstaeesansaeeessseeeans 60
DN = VA O] oI - | o] o PPN 63
Standard Mathematical OPEratioNnscueeeiiiiiiiiie et st st et e st e sar e sbeesaree s 63
TR o] [ol N 0] o 1= =Y o o O TP P TP PP TSR PPOPPTOPPRO 65
NDATTAY CONTEXTS coeiiiiiiiiiiiee et e e s a e e e s e s b et et e e e s e sar b e et e e e s e asranneeeess 67
NUMPY @rray VS. NDAITAY ..coiiiiiiiiiiiiee ettt e s s ra e et e e e s sraaeeee s 67
Converting NDAIray tO NUMPY ATy .o e e e e e e e e e e eees 68
Minimising iMPact Of DIOCKING CallS.....cccuiiiiiiee e et e e et e e e re e e e ate e e e eaaeeeeareeeens 69
APAChe IMXNEL — GIUONcceeeecciiieceeeeecccer et s ee s e s e enessssesseseennsssssssssseennsssssssssessnnnssssssssssennnnsssssssnnes 72
BIOCKS ...ttt st et st eer e b e e r et e nn e s r et e nnneenees 72
CUSEOM BIOCK ...ttt ettt sttt e b e e s bt e sab e e e ae e e sareeemb e e sabeesaneesareesaree s 74
CUSTOM LAY IS ittt et et e e e e e e et e e e e e e et e e et e e et e ee e et et et et et et et e e e e e e e e aranens 74
[AV oY e 171 o o SR 76
Difference between Block and HybridBIOCKeeeieciiriiciiie ettt e e e e e s e e 77
(OITE oY o gl =1 VZ= g o= =T 1= o 1 SRS 78
Apache MXNet — KVStore and Visualizationcooviieeeeeeiiiiiiiieicccccnsrreereecccss s e s eeees e s s s e e e snnnsssssssenes 80
QYA o] =l o T 1 - =TSRRI 80
Data PUSh-1N @Nd PUI-OULc..iiiiiiieeee ettt et e sas e s ere e smneenees 80

tutorialspoint

EIMPLYEAGSY LEARMNING

)

12,

13.

14,

15.

Apache MXNet

HanNdliNg KEY-ValUB PairS.......cccuuiiiiiiieiiiiie e cciiee e stiee e e stee e et e e e sttt e e e e tte e e snaeeeesataeeesasseeesnssaeeastasesanssesesssennans 83
VAT VY L2 1A o] g T o T Lo - Y= <IN 84
Apache MXNet — Python APl NAArrayccccceeeiiiiiiiiiiiiiiiiiiiiecssanes 86
IVIXNEE.NA@ITAY ¢ttt ettt sttt e s et e st e e s a bt e e at e e sa bt e e ae e e s bt e e bt e e sbe e e e aeeesas e e bt e e smbeenneeesnbeeaneeesaneennes 86
ClSSES ettt ettt ettt e h et s b et e h et s ht e e e h bt e e R bt e e ab e sa b e e e ab e e sa bt e e ab e e sabeeeabeesabeeeaneesabeenareens 87
FUNCtiONS @nd their PAramEtersc.uii ittt ettt e st e e sae e e sbe e e saneeneas 87
NA@ITAY.CONEIID Lttt e e sttt et e st e s b e s bt e e bt e sabeeebeesabe e e st e sabeeeaseesabeeanneenane 89
(aTo F: 0 = 1V o F= TSR 92
(aTo E= 0 2= 1V =Y o [o 3 o FO SR 97
0o E: T 0 = 1V U 1 U UUUPRNt 100
Apache MXNet — Python APl BIUON........cccceeiiiiiiiiccccceeerrerreerrr e s s s s s e s e e s e s e s s s s s s s s sssssssesssssssssnnnnnns 103
F={1UTo) o 10 Y o DO SRR 103
BIUONLININ ottt sttt et e st e et e s a b e e bt e sa bt e e abeesa b e e easeesabeeeabeesabeesaseesabeeeaneesabeesneenate 107
BlUONLIOSS ..ttt ettt ettt et st e et e s a e et e s bt e e bt e e be e e bt e s bt e e bt e s beeebee s beeeneenare 110
BlUON . PAIAMIEBEET ..ttt ettt e ettt e st esa bt e et e e sa b e e e bt e sabe e e bt e s beeeab e e s be e e bt e s beeeneenane 112
Fo{ (Lo] TR A - 11 =T OO PP P P PUPORUPPOTOPPRRTPPRIOt 114
=4 [UTo] W - 1 = F PP 115
Fd[0Te] s W oL = IV Y Lo W =1 = 1Y =1 SRR 116
L4 [0 To] o T UL | 3 URRP P 118
Apache MXNet — Python APl autograd and initializer............ooiiiiiieeecciiiiccccrrrrreececr s 119
L Y= A [V o = - Lo PR PPUPUN 119
MXNEEINTIATIZEN ..ttt e a e e s r e s 122
Apache MXNet — Python APl Symbol.........ccciiiiiiiiiiiiiiiiii e 125
Y Y=Y o o o F= T - SR 125
Y01 oY) F ol ol g1 S 129
3001 o o] I o ¥- 1= LTSRN 132
37001 o o] I oo o] s s J PSSR 134
VT 00] o o] I o -1 YU PUUURN 137

Vi

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

16. Apache MXNet — Python API ModUIeccceeiiiiiiiiiiiiiiiiiciirer s s s s s e s e s s s s s s esseeens 140
ST\, oY IV L LT £ oY== Yo) SR 140
BUucketingModule(SYM_BEN[...]) weeeiiieeeiiie ettt e s e et e e et e e et e e e ae e e e rr e e e entaeeenraeas 144
Module(symbol[,data_names, [abel_Names,...]) ccccioiuieiiiiiiecie e 145
PythonLossModule([name,data_nNames,...]) .iocueceieiieeiie et sre e ae e ste e saae e sreesabeesaraesnaee s 147
PythonModule([data_names,label_Names...]) ..cccuiiiiieiiiiiiece ettt st eae s 148
SequUENtialMOdUIE([IOZEEI]) cuveeiiiieiie ettt ettt e e et e et e et eeaee e beeebeeentaeenseesnbeeenseesnteeaseennee 149

Vii

tutorialspoint

EIMPLYEAEGBYLEARNINTIG

1. Apache MXNet — Introduction

This chapter highlights the features of Apache MXNet and talks about the latest version of
this deep learning software framework.

What is MXNet?

Apache MXNet is a powerful open-source deep learning software framework instrument
helping developers build, train, and deploy Deep Learning models. Past few years, from
healthcare to transportation to manufacturing and, in fact, in every aspect of our daily life,
the impact of deep learning has been widespread. Nowadays, deep learning is sought by
companies to solve some hard problems like Face recognition, object detection, Optical
Character Recognition (OCR), Speech Recognition, and Machine Translation.

That'’s the reason Apache MXNet is supported by:

e Some big companies like Intel, Baidu, Microsoft, Wolfram Research, etc.
e Public cloud providers including Amazon Web Services (AWS), and Microsoft Azure
¢ Some big research institutes like Carnegie Mellon, MIT, the University of

Washington, and the Hong Kong University of Science & Technology.

Why Apache MXNet?

There are various deep learning platforms like Torch?7, Caffe, Theano, TensorFlow, Keras,
Microsoft Cognitive Toolkit, etc. existed then you might wonder why Apache MXNet? Let’s
check out some of the reasons behind it:

e Apache MXNet solves one of the biggest issues of existing deep learning platforms.
The issue is that in order to use deep learning platforms one must need to learn
another system for a different programming flavor.

e With the help of Apache MXNet developers can exploit the full capabilities of GPUs
as well as cloud computing.

e Apache MXNet can accelerate any numerical computation and places a special
emphasis on speeding up the development and deployment of large-scale DNN
(deep neural networks).

e It provides the users the capabilities of both imperative and symbolic

programming.

Various features

If you are looking for a flexible deep learning library to quickly develop cutting-edge deep
learning research or a robust platform to push production workload, your search ends at
Apache MXNet. It is because of the following features of it:

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

Distributed Training

Whether it is multi-gpu or multi-host training with near-linear scaling efficiency, Apache
MXNet allows developers to make most out of their hardware. MXNet also support
integration with Horovod, which is an open source distributed deep learning framework
created at Uber.

For this integration, following are some of the common distributed APIs defined in
Horovod:

e horovod.broadcast()
¢ horovod.allgather()

e horovod.allreduce()

In this regard, MXNet offer us the following capabilities:

e Device Placement: With the help of MXNet we can easily specify each data
structure (DS).

¢ Automatic Differentiation: Apache MXNet automates the differentiation i.e.
derivative calculations.

e Multi-GPU training: MXNet allows us to achieve scaling efficiency with number of
available GPUs.

¢ Optimized Predefined Layers: We can code our own layers in MXNet as well as

the optimized the predefined layers for speed also.

Hybridization:

Apache MXNet provides its users a hybrid front-end. With the help of the Gluon Python
API it can bridge the gap between its imperative and symbolic capabilities. It can be
done by calling it's hybridize functionality.

Faster computation

The linear operations like tens or hundreds of matrix multiplications are the computational
bottleneck for deep neural nets. To solve this bottleneck MXNet provides:

e Optimized numerical computation for GPUs
e Optimized numerical computation for distributed ecosystems
e Automation of common workflows with the help of which the standard NN can be

expressed briefly.

Language Bindings

MXNet has deep integration into high-level languages like Python and R. It also provides
support for other programming languages such as-

e Scala
e Julia
e Clojure

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

e Java
e C/C++
e Perl

We do not need to learn any new programming language instead MXNet, combined with
hybridization feature, allows an exceptionally smooth transition from Python to
deployment in the programming language of our choice.

Latest version MXNet 1.6.0

Apache Software Foundation (ASF) has released the stable version 1.6.0 of Apache MXNet
on 215t February 2020 under Apache License 2.0. This is the last MXNet release to support
Python 2 as MXNet community voted to no longer support Python 2 in further releases.
Let us check out some of the new features this release brings for its users.

NumPy-Compatible interface

Due to its flexibility and generality, NumPy has been widely used by Machine Learning
practitioners, scientists, and students. But as we know that, these days’ hardware
accelerators like Graphical Processing Units (GPUs) have become increasingly assimilated
into various Machine Learning (ML) toolkits, the NumPy users, to take advantage of the
speed of GPUs, need to switch to new frameworks with different syntax.

With MXNet 1.6.0, Apache MXNet is moving toward a NumPy-compatible programming
experience. The new interface provides equivalent usability as well as expressiveness to
the practitioners familiar with NumPy syntax. Along with that MXNet 1.6.0 also enables
the existing Numpy system to utilize hardware accelerators like GPUs to speed-up large-
scale computations.

Integration with Apache TVM

Apache TVM, an open-source end-to-end deep learning compiler stack for hardware-
backends such as CPUs, GPUs, and specialized accelerators, aims to fill the gap between
the productivity-focused deep-learning frameworks and performance-oriented hardware
backends. With the latest release MXNet 1.6.0, users can leverage Apache(incubating)
TVM to implement high-performance operator kernels in Python programming language.
Two main advantages of this new feature are following:

¢ Simplifies the former C++ based development process.
e Enables sharing the same implementation across multiple hardware backend such
as CPUs, GPUs, etc.

Improvements on existing features

Apart from the above listed features of MXNet 1.6.0, it also provides some improvements
over the existing features. The improvements are as follows:

Grouping element-wise operation for GPU

As we know the performance of element-wise operations is memory-bandwidth and that
is the reason, chaining such operations may reduce overall performance. Apache MXNet

3

tutorialspoint

EIMPLYEAGSY LEARMING

)

Apache MXNet

1.6.0 does element-wise operation fusion, that actually generates just-in-time fused
operations as and when possible. Such element-wise operation fusion also reduces storage
needs and improve overall performance.

Simplifying common expressions

MXNet 1.6.0 eliminates the redundant expressions and simplify the common expressions.
Such enhancement also improves memory usage and total execution time.

Optimizations

MXNet 1.6.0 also provides various optimizations to existing features & operators, which
are as follows:

e Automatic Mixed Precision

e Gluon Fit API

e MKL-DNN

e Large tensor Support

¢ TensorRT integration

e Higher-order gradient support
e Operators

e Operator performance profiler
¢ ONNX import/export

¢ Improvements to Gluon APIs
¢ Improvements to Symbol APIs

e More than 100 bug fixes

tutorialspoint

EIMPLYEAGSY LEARMNING

)

2. Apache MXNet — Installing MXNet

To get started with MXNet, the first thing we need to do, is to install it on our computer.
Apache MXNet works on pretty much all the platforms available, including Windows, Mac,
and Linux.

Linux OS

We can install MXNet on Linux OS in the following ways:

Graphical Processing Unit (GPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when
we are using GPU for processing:

By using Pip method

You can use the following command to install MXNet on your Linus OS:

pip install mxnet

Apache MXNet also offers MKL pip packages, which are much faster when running on intel
hardware. Here for example mxnet-cu101mkl means that:

e The package is built with CUDA/cuDNN
e The package is MKL-DNN enabled
e The CUDA version is 10.1

For other option you can also refer to https://pypi.org/project/mxnet/.

By using Docker

You can find the docker images with MXNet at DockerHub, which is available at
https://hub.docker.com/u/mxnet Let us check out the steps below to install MXNet by
using Docker with GPU:

Step 1: First, by following the docker installation instructions which are available at

https://docs.docker.com/engine/install/ubuntu/. We need to install Docker on our

machine.

Step 2: To enable the usage of GPUs from the docker containers, next we need to install
nvidia-docker-plugin. You <can follow the installation instructions given at
https://github.com/NVIDIA/nvidia-docker/wiki.

Step 3: By using the following command, you can pull the MXNet docker image:

$ sudo docker pull mxnet/python:gpu

@ tutorialspoint

EIMPLYEAGSY LEARMNING

https://pypi.org/project/mxnet/
https://hub.docker.com/u/mxnet
https://docs.docker.com/engine/install/ubuntu/
https://github.com/NVIDIA/nvidia-docker/wiki

Apache MXNet

Now in order to see if mxnet/python docker image pull was successful, we can list docker
images as follows:

$ sudo docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet
with Intel MKL-DNN. Check the commands below:

$ sudo docker pull mxnet/python:1.3.0 cpu_mkl

$ sudo docker images

From source

To build the MXNet shared library from source with GPU, first we need to set up the
environment for CUDA and cuDNN as follows:

e Download and install CUDA toolkit, here CUDA 9.2 is recommended.

e Next download cuDNN 7.1.4.

e Now we need to unzip the file. It is also required to change to the cuDNN root

directory. Also move the header and libraries to local CUDA Toolkit folder as follows:

tar xvzf cudnn-9.2-1linux-x64-v7.1

sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include

sudo cp -P cuda/1ib64/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

sudo ldconfig

After setting up the environment for CUDA and cuDNN, follow the steps below to build the
MXNet shared library from source:

Step 1: First, we need to install the prerequisite packages. These dependencies are

required on Ubuntu version 16.04 or later.

sudo apt-get update

sudo apt-get install -y build-essential git ninja-build ccache libopenblas-dev
libopencv-dev cmake

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Step 2: In this step, we will download MXNet source and configure. First let us clone the

repository by using following command:

git clone -recursive https://github.com/apache/incubator-mxnet.git mxnet

cd mxnet

cp config/linux_gpu.cmake #for build with CUDA

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build
mkdir -p build && cd build
cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet
project root, you will find libmxnet.so which is required to install language
bindings(optional).

Central Processing Unit (CPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when
we are using CPU for processing:

By using Pip method

You can use the following command to install MXNet on your Linus OS:

pip install mxnet

Apache MXNet also offers MKL-DNN enabled pip packages which are much faster, when
running on intel hardware.

pip install mxnet-mkl

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

By using Docker

You can find the docker images with MXNet at DockerHub, which is available at
https://hub.docker.com/u/mxnet. Let us check out the steps below to install MXNet by
using Docker with CPU:

Step 1: First, by following the docker installation instructions which are available at

https://docs.docker.com/engine/install/ubuntu/. We need to install Docker on our

machine.

Step 2: By using the following command, you can pull the MXNet docker image:

$ sudo docker pull mxnet/python

Now, in order to see if mxnet/python docker image pull was successful, we can list docker
images as follows:

$ sudo docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet
with Intel MKL-DNN.

Check the commands below:

$ sudo docker pull mxnet/python:1.3.0 cpu_mkl

$ sudo docker images

From source
To build the MXNet shared library from source with CPU, follow the steps below:

Step 1: First, we need to install the prerequisite packages. These dependencies are

required on Ubuntu version 16.04 or later.

sudo apt-get update

sudo apt-get install -y build-essential git ninja-build ccache libopenblas-dev
libopencv-dev cmake

Step 2: In this step we will download MXNet source and configure. First let us clone the

repository by using following command:

git clone -recursive https://github.com/apache/incubator-mxnet.git mxnet

cd mxnet

cp config/linux.cmake config.cmake

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://hub.docker.com/u/mxnet
https://docs.docker.com/engine/install/ubuntu/

Apache MXNet

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build
mkdir -p build && cd build
cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet
project root, you will find libmxnet.so, which is required to install language
bindings(optional).

MacOS

We can install MXNet on MacOS in the following ways:

Graphical Processing Unit (GPU)

If you plan to build MXNet on MacOS with GPU, then there is NO Pip and Docker method
available. The only method in this case is to build it from source.

From source

To build the MXNet shared library from source with GPU, first we need to set up the
environment for CUDA and cuDNN. You need to follow the NVIDIA CUDA Installation
Guide which is available at https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-
x/index.html and cuDNN Installation Guide, which is available at
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-mac for mac
0s.

Please note that in 2019 CUDA stopped supporting macOS. In fact, future versions of
CUDA may also not support macOS.

Once you set up the environment for CUDA and cuDNN, follow the steps given below to
install MXNet from source on OS X (Mac):

Step 1: As we need some dependencies on OS X, First, we need to install the prerequisite

packages.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-mac

Apache MXNet

xcode-select --install #Install 0S X Developer Tools

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)" #Install
Homebrew

brew install cmake ninja ccache opencv # Install dependencies

We can also build MXNet without OpenCV as opencv is an optional dependency.

Step 2: In this step we will download MXNet source and configure. First let us clone the

repository by using following command:

git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet

cd mxnet

cp config/linux.cmake config.cmake

For a GPU-enabled, it is necessary to install the CUDA dependencies first because when
one tries to build a GPU-enabled build on a machine without GPU, MXNet build cannot
autodetect your GPU architecture. In such cases MXNet will target all available GPU
architectures.

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build
mkdir -p build && cd build
cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet
project root, you will find libmxnet.dylib, which is required to install language
bindings(optional).

10

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://raw.githubusercontent.com/Homebrew/install/master/install

Apache MXNet

Central Processing Unit (CPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when
we are using CPU for processing:

By using Pip method

You can use the following command to install MXNet on your Linus OS

pip install mxnet

By using Docker

You can find the docker images with MXNet at DockerHub, which is available at
https://hub.docker.com/u/mxnet. Let us check out the steps below to install MXNet by
using Docker with CPU:

Step 1: First, by following the docker installation instructions which are available at

https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac we

need to install Docker on our machine.

Step 2: By using the following command, you can pull the MXNet docker image:

$ docker pull mxnet/python

Now in order to see if mxnet/python docker image pull was successful, we can list docker
images as follows:

$ docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet
with Intel MKL-DNN. Check the commands below:

$ docker pull mxnet/python:1.3.0 cpu_mkl

$ docker images

From source

Follow the steps given below to install MXNet from source on OS X (Mac):

Step 1: As we need some dependencies on OS x, first, we need to install the prerequisite

packages.

xcode-select --install #Install 0S X Developer Tools

/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)" #Install
Homebrew

11

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://hub.docker.com/u/mxnet
https://hub.docker.com/u/mxnet
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac
https://raw.githubusercontent.com/Homebrew/install/master/install

Apache MXNet

brew install cmake ninja ccache opencv # Install dependencies

We can also build MXNet without OpenCV as opencyv is an optional dependency.

Step 2: In this step we will download MXNet source and configure. First, let us clone the

repository by using following command:

git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet

cd mxnet

cp config/linux.cmake config.cmake

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build
mkdir -p build && cd build
cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet
project root, you will find libmxnet.dylib, which is required to install language
bindings(optional).

Windows OS

To install MXNet on Windows, following are the prerequisites:

Minimum System Requirements
e Windows 7, 10, Server 2012 R2, or Server 2016
e Visual Studio 2015 or 2017 (any type)
e Python 2.7 or 3.6

e pip

Recommended System Requirements
e Windows 10, Server 2012 R2, or Server 2016

)

12

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

e Visual Studio 2017

e At |least one NVIDIA CUDA-enabled GPU

e MKL-enabled CPU: Intel® Xeon® processor, Intel® Core™ processor family, Intel
Atom® processor, or Intel® Xeon Phi™ processor

e Python 2.7 or 3.6

e pip
Graphical Processing Unit (GPU)

By using Pip method:

If you plan to build MXNet on Windows with NVIDIA GPUs, there are two options for
installing MXNet with CUDA support with a Python package:

Install with CUDA Support
Below are the steps with the help of which, we can setup MXNet with CUDA.

Step 1: First install Microsoft Visual Studio 2017 or Microsoft Visual Studio 2015.

Step 2: Next, download and install NVIDIA CUDA. It is recommended to use CUDA

versions 9.2 or 9.0 because some issues with CUDA 9.1 have been identified in the past.
Step 3: Now, download and install NVIDIA_CUDA_DNN.

Step 4: Finally, by using following pip command, install MXNet with CUDA:

pip install mxnet-cu92

Install with CUDA and MKL Support

Below are the steps with the help of which, we can setup MXNet with CUDA and MKL.
Step 1: First install Microsoft Visual Studio 2017 or Microsoft Visual Studio 2015.

Step 2: Next, download and install intel MKL
Step 3: Now, download and install NVIDIA CUDA.
Step 4: Now, download and install NVIDIA_CUDA_DNN.

Step 5: Finally, by using following pip command, install MXNet with MKL.

pip install mxnet-cu92mkl

From source

To build the MXNet core library from source with GPU, we have the following two options:

13

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Option 1: Build with Microsoft Visual Studio 2017

In order to build and install MXNet yourself by using Microsoft Visual Studio 2017, you
need the following dependencies.

Install/update Microsoft Visual Studio.

e If Microsoft Visual Studio is not already installed on your machine, first download
and install it.

e It will prompt about installing Git. Install it also.

e If Microsoft Visual Studio is already installed on your machine but you want to
update it then proceed to the next step to modify your installation. Here you will

be given the opportunity to update Microsoft Visual Studio as well.

Follow the instructions for opening the Visual Studio Installer available at

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-
2019 to modify Individual components.

In the Visual Studio Installer application, update as required. After that look for and
check VC++ 2017 version 15.4 v14.11 toolset and click Modify.

Now by using the following command, change the version of the Microsoft VS2017 to
v1i4.11:

"C:\Program Files (x86)\Microsoft Visual
Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat" -vcvars_ver=14.11

Next, you need to download and install CMake available at
https://cmake.org/download/ It is recommended to use CMake v3.12.2 which is
available at https://cmake.org/download/ because it is tested with MXNet.

Now, download and run the OpenCV package available at
https://sourceforge.net/projects/opencvlibrary/which will unzip several files. It is up to
you if you want to place them in another directory or not. Here, we will use the path
C:\utils(mkdir C:\utils) as our default path.

Next, we need to set the environment variable OpenCV_DIR to point to the OpenCV build
directory that we have just unzipped. For this open command prompt and type set
OpenCV_DIR=C:\utils\opencv\build.

One important point is that if you do not have the Intel MKL (Math Kernel Library) installed
the you can install it.

Another open source package you can use is OpenBLAS. Here for the further instructions
we are assuming that you are using OpenBLAS.

So, Download the OpenBlas package which is available at
https://sourceforge.net/projects/openblas/files/v0.2.19/0penBLAS-v0.2.19-Win64-
int32.zip/download and unzip the file, rename it to OpenBLAS and put it under C:\utils.

Next, we need to set the environment variable OpenBLAS_HOME to point to the
OpenBLAS directory that contains the include and lib directories. For this open command
prompt and type set OpenBLAS_HOME=C:\utils\OpenBLAS.

14

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://cmake.org/download
https://cmake.org/download/
https://cmake.org/download/
https://sourceforge.net/projects/opencvlibrary/
https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip/download
https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip/download

Apache MXNet

Now, download and install CUDA available at https://developer.nvidia.com/cuda-
downloads?target os=Windows&target arch=x86 64&target version=10&target type=
exelocal. Note that, if you already had CUDA, then installed Microsoft VS2017, you need
to reinstall CUDA now, so that you can get the CUDA toolkit components for Microsoft
VS2017 integration.

Next, you need to download and install cuDNN.

Next, you need to download and install git which is at https://qgitforwindows.org/ also.

Once you have installed all the required dependencies, follow the steps given below to
build the MXNet source code:

Step 1: Open command prompt in windows.

Step 2: Now, by using the following command, download the MXNet source code from
GitHub:

cd C:\

git clone https://github.com/apache/incubator-mxnet.git --recursive

Step 3: Next, verify the following:

DCUDNN_INCLUDE and DCUDNN_LIBRARY environment variables are pointing to
the include folder and cudnn.lib file of your CUDA installed location

C:\incubator-mxnet is the location of the source code you just cloned in the previous
step.

Step 4: Next by using the following command, create a build directory and also go to the

directory, for example:

mkdir C:\incubator-mxnet\build

cd C:\incubator-mxnet\build

Step 5: Now, by using cmake, compile the MXNet source code as follows:

cmake -G "Visual Studio 15 2017 Win64" -T cuda=9.2,host=x64 -DUSE_CUDA=1 -
DUSE_CUDNN=1 -DUSE_NVRTC=1 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_BLAS=open -
DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_LIST=Common -DCUDA_TOOLSET=9.2 -
DCUDNN_INCLUDE=C:\cuda\include -DCUDNN_LIBRARY=C:\cuda\lib\x64\cudnn.lib
"C:\incubator-mxnet"

Step 6: Once the CMake successfully completed, use the following command to compile
the MXNet source code:

msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount

Option 2: Build with Microsoft Visual Studio 2015

In order to build and install MXNet yourself by using Microsoft Visual Studio 2015, you
need the following dependencies.

)

15

tutorialspoint

EIMPLYEAGSY LEARMNING

https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://gitforwindows.org/

Apache MXNet

Install/update Microsoft Visual Studio 2015. The minimum requirement to build MXnet
from source is of Update 3 of Microsoft Visual Studio 2015. You can use Tools ->

Extensions and Updates... | Product Updates menu to upgrade it.

Next, you need to download and installCMake which is available at

https://cmake.org/download/. It is recommended to use CMake v3.12.2 which is at
https://cmake.org/download/, because it is tested with MXNet.

Now, download and run the OpenCV package available at
https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-
3.4.1-vcl4 vcil5.exe which will unzip several files. It is up to you, if you want to place
them in another directory or not.

Next, we need to set the environment variable OpenCV_DIR to point to the OpenCV
build directory that we have just unzipped. For this, open command prompt and type set
OpenCV_DIR=C:\opencv\build\x64\vc14\bin.

One important point is that if you do not have the Intel MKL (Math Kernel Library) installed
the you can install it.

Another open source package you can use is OpenBLAS. Here for the further instructions
we are assuming that you are using OpenBLAS.

So, Download the OpenBLAS package available at

https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/0penBLAS-v0.2.19-
Win64-int32.zip and unzip the file, rename it to OpenBLAS and put it under C:\utils.

Next, we need to set the environment variable OpenBLAS_HOME to point to the OpenBLAS
directory that contains the include and 1ib directories. You can find the directory
in C:\Program files (x86)\OpenBLAS\

Now, download and install CUDA, which is available at https://developer.nvidia.com/cuda-

downloads?target os=Windows&target arch=x86 64&target version=10&target type=
exelocal.

Note that, if you already had CUDA, then installed Microsoft VS2015, you need to reinstall
CUDA now so that, you can get the CUDA toolkit components for Microsoft VS2017
integration.

Next, you need to download and install cuDNN.

Now, we need to Set the environment variable CUDACXX to point to the CUDA
Compiler(C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v9.1\bin\nvcc.exe for example).

Similarly, we also need to set the environment variable CUDNN_ROOT to point to
the cuDNN directory that contains the include, lib and bin directories
(C:\Downloads\cudnn-9.1-windows7-x64-v7\cuda for example).

Once you have installed all the required dependencies, follow the steps given below to
build the MXNet source code:

Step 1: First, download the MXNet source code from GitHub:

16

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://cmake.org/download/
https://cmake.org/download/
https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe
https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe
https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip
https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal

Apache MXNet

cd C:\

git clone https://github.com/apache/incubator-mxnet.git --recursive

Step 2: Next, use CMake to create a Visual Studio in ./build.

Step 3: Now, in Visual Studio, we need to open the solution file,.sln, and compile it.

These commands will produce a library called mxnet.dll in
the ./build/Release/ or ./build/Debug folder

Step 4: Once the CMake successfully completed, use the following command to compile
the MXNet source code

msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount

Central Processing Unit (CPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when
we are using CPU for processing:
By using Pip method

If you plan to build MXNet on Windows with CPUs, there are two options for installing
MXNet using a Python package:

Install with CPUs

Use the following command to install MXNet with CPU with Python:

pip install mxnet

Install with Intel CPUs

As discussed above, MXNet has experimental support for Intel MKL as well as MKL-DNN.
Use the following command to install MXNet with Intel CPU with Python:

pip install mxnet-mkl

By using Docker

You can find the docker images with MXNet at DockerHub, available at
https://hub.docker.com/u/mxnet Let us check out the steps below, to install MXNet by
using Docker with CPU:

Step 1: First, by following the docker installation instructions which can be read at
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac. We
need to install Docker on our machine.

Step 2: By using the following command, you can pull the MXNet docker image:

$ docker pull mxnet/python

17

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://hub.docker.com/u/mxnet
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac

Apache MXNet

Now in order to see if mxnet/python docker image pull was successful, we can list docker
images as follows:

$ docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet
with Intel MKL-DNN.

Check the commands below:

$ docker pull mxnet/python:1.3.0_cpu_mkl

$ docker images

Installing MXNet On Cloud and Devices

This section highlights how to install Apache MXNet on Cloud and on devices. Let us begin
by learning about installing MXNet on cloud.

Installing MXNet On Cloud

You can also get Apache MXNet on several cloud providers with Graphical Processing
Unit (GPU) support. Two other kind of support you can find are as follows:

e GPU/CPU-hybrid support for use cases like scalable inference.

e Factorial GPU support with AWS Elastic Inference.

Following are cloud providers providing GPU support with different virtual machine for
Apache MXNet:

The Alibaba Console

You can create the NVIDIA GPU Cloud Virtual Machine (VM) available at
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-
console.html#launching-nv-cloud-vm-console with the Alibaba Console and use Apache
MXNet.

Amazon Web Services

It also provides GPU support and gives the following services for Apache MXNet:

Amazon SageMaker

It manages training and deployment of Apache MXNet models.

AWS Deep Learning AMI

It provides preinstalled Conda environment for both Python 2 and Python 3 with Apache
MXNet, CUDA, cuDNN, MKL-DNN, and AWS Elastic Inference.

Dynamic Training on AWS

18

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console

Apache MXNet

It provides the training for experimental manual EC2 setup as well as for semi-automated
CloudFormation setup.

You can use NVIDIA VM available at
https://aws.amazon.com/marketplace/pp/B076K31M1S with Amazon web services.

Google Cloud Platform
Google is also providing NVIDIA GPU cloud image which is available at

https://console.cloud.google.com/marketplace/details/nvidia-ngc-

public/nvidia gpu cloud image?pli=1 to work with Apache MXNet.

Microsoft Azure
Microsoft Azure Marketplace is also providing NVIDIA GPU cloud image available at

https://azuremarketplace.microsoft.com/en-

us/marketplace/apps/nvidia.ngc_azure 17 11?tab=Overview to work with Apache
MXNet.

Oracle Cloud

Oracle is also providing NVIDIA GPU <cloud image available at
https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/References/ngcimage.htm to
work with Apache MXNet.

Central Processing Unit (CPU)

Apache MXNet works on every cloud provider's CPU-only instance. There are various
methods to install such as:

e Python pip install instructions.

e Docker instructions.

e Preinstalled option like Amazon Web Services which provides AWS Deep Learning
AMI (having preinstalled Conda environment for both Python 2 and Python 3 with
MXNet and MKL-DNN).

Installing MXNet on Devices

Let us learn how to install MXNet on devices.

Raspberry Pi

You can also run Apache MXNet on Raspberry Pi 3B devices as MXNet also support
Respbian ARM based OS. In order to run MXNet smoothly on the Raspberry Pi3, it is
recommended to have a device that has more than 1 GB of RAM and a SD card with at
least 4GB of free space.

Following are the ways with the help of which you can build MXNet for the Raspberry Pi
and install the Python bindings for the library as well:
19

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

https://aws.amazon.com/marketplace/pp/B076K31M1S
https://console.cloud.google.com/marketplace/details/nvidia-ngc-public/nvidia_gpu_cloud_image?pli=1
https://console.cloud.google.com/marketplace/details/nvidia-ngc-public/nvidia_gpu_cloud_image?pli=1
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview
https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/References/ngcimage.htm

Apache MXNet

Quick installation

The pre-built Python wheel can be used on a Raspberry Pi 3B with Stretch for quick
installation. One of the important issues with this method is that, we need to install several
dependencies to get Apache MXNet to work.

Docker installation

You can follow the docker installation instructions, which is available at
https://docs.docker.com/engine/install/ubuntu/ to install Docker on your machine. For
this purpose, we can install and use Community Edition (CE) also.

Native Build (from source)

In order to install MXNet from source, we need to follow the following two steps:

Step 1
Build the shared library from the Apache MXNet C++ source code

To build the shared library on Raspberry version Wheezy and later, we need the following
dependencies:

e Git: It is required to pull code from GitHub.

e Libblas: It is required for linear algebraic operations.

e Libopencv: It is required for computer vision related operations. However, it is
optional if you would like to save your RAM and Disk Space.

e C++ Compiler: It is required to compiles and builds MXNet source code. Following
are the supported compilers that supports C++ 11:

» G++ (4.8 or later version)
» Clang(3.9-6)

Use the following commands to install the above-mentioned dependencies:

sudo apt-get update

sudo apt-get -y install git cmake ninja-build build-essential g++-4.9 c++-4.9
liblapack*

libblas* libopencv*

libopenblas* python3-dev python-dev virtualenv

Next, we need to clone the MXNet source code repository. For this use the following git
command in your home directory:

git clone https://github.com/apache/incubator-mxnet.git --recursive

cd incubator-mxnet

Now, with the help of following commands, build the shared library:

20

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet-public.s3.amazonaws.com/install/raspbian/mxnet-1.5.0-py2.py3-none-any.whl
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Apache MXNet

mkdir -p build && cd build
cmake \

-DUSE_SSE=0OFF \
-DUSE_CUDA=O0OFF \
-DUSE_OPENCV=0ON \
-DUSE_OPENMP=ON \
-DUSE_MKL_IF_AVAILABLE=OFF \
-DUSE_SIGNAL_HANDLER=ON \

-DCMAKE_BUILD TYPE=Release \

-GNinja ..

ninja -j$(nproc)

Once you execute the above commands, it will start the build process which will take
couple of hours to finish. You will get a file named libmxnet.so in the build directory.
Step 2

Install the supported language-specific packages for Apache MXNet

In this step, we will install MXNet Pythin bindings. To do so, we need to run the following
command in the MXNet directory:

cd python
pip install --upgrade pip
pip install -e .

Alternatively, with the following command, you can also create a whl package installable
with pip:

ci/docker/runtime_functions.sh build wheel python/ $(realpath build)

NVIDIA Jetson Devices

You can also run Apache MXNet on NVIDIA Jetson Devices, such as TX2 or Nano as MXNet
also support the Ubuntu Arch64 based OS. In order to run, MXNet smoothly on the NVIDIA
Jetson Devices, it is necessary to have CUDA installed on your Jetson device.

Following are the ways with the help of which you can build MXNet for NVIDIA Jetson
devices:

e By using a Jetson MXNet pip wheel for Python development

e From source

But, before building MXNet from any of the above-mentioned ways, you need to install
following dependencies on your Jetson devices:

21

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Python Dependencies

In order to use the Python API, we need the following dependencies:

sudo apt update

sudo apt -y install \
build-essential \
git \
graphviz \

libatlas-base-dev \
libopencv-dev \

python-pip

sudo pip install --upgrade \
pip \

setuptools

sudo pip install \
graphviz==0.8.4 \
jupyter \

numpy==1.15.2

Clone the MXNet source code repository

By using the following git command in your home directory, clone the MXNet source code
repository:

git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet

Setup environment variables

Add the following in your .profile file in your home directory:

export PATH=/usr/local/cuda/bin:$PATH
export MXNET_HOME=$HOME/mxnet/
export PYTHONPATH=$MXNET_HOME/python:$PYTHONPATH

Now, apply the change immediately with the following command:

22

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

source .profile

Configure CUDA

Before configuring CUDA, with nvce, you need to check what version of CUDA is running:

nvcc --version

Suppose, if more than one CUDA version is installed on your device or computer and you
want to switch CUDA versions then, use the following and replace the symbolic link to the
version you want:

sudo rm /usr/local/cuda

sudo 1n -s /usr/local/cuda-10.0 /usr/local/cuda

The above command will switch to CUDA 10.0, which is preinstalled on NVIDIA Jetson
device Nano.

Once you done with the above-mentioned prerequisites, you can now install MXNet on
NVIDIA Jetson Devices. So, let us understand the ways with the help of which you can
install MXNet:

By using a Jetson MXNet pip wheel for Python development: If you want to use a
prepared Python wheel then download the following to your Jetson and run it:

e MXNet 1.4.0 (for Python 3) available at
https://docs.docker.com/engine/install/ubuntu/
e MXNet 1.4.0 (for Python 2) available at

https://docs.docker.com/engine/install/ubuntu/

Native Build (from source)

In order to install MXNet from source, we need to follow the following two steps:

Step 1
Build the shared library from the Apache MXNet C++ source code

To build the shared library from the Apache MXNet C++ source code, you can either use
Docker method or do it manually:

Docker method

In this method, you first need to install Docker and able to run it without sudo (which is
also explained in previous steps). Once done, run the following to execute cross-
compilation via Docker:

$MXNET_HOME/ci/build.py -p jetson

Manual

23

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Apache MXNet

In this method, you need to edit the Makefile (with below command) to install the MXNet
with CUDA bindings to leverage the Graphical Processing units (GPU) on NVIDIA Jetson
devices:

cp $MXNET_HOME/make/crosscompile.jetson.mk config.mk

After editing the Makefile, you need to edit config.mk file to make some additional
changes for the NVIDIA Jetson device.

For this, update the following settings:

e Update the CUDA path: USE_CUDA_PATH = /usr/local/cuda
e Add -gencode arch=compute-63, code=sm_62 to the CUDA_ARCH setting.

e Update the NVCC settings: NVCCFLAGS := -m64
e Turn on OpenCV: USE_OPENCV =1

Now to ensure that the MXNet builds with Pascal’s hardware level low precision
acceleration, we need to edit the Mshadow Makefile as follow:

MSHADOW_CFLAGS += -DMSHADOW_USE_PASCAL=1

Finally, with the help of following command you can build the complete Apache MXNet
library:

cd $MXNET_HOME

make -j $(nproc)

Once you execute the above commands, it will start the build process which will take
couple of hours to finish. You will get a file named libmxnet.so in the mxnet/lib

directory.

Step 2
Install the Apache MXNet Python Bindings

In this step, we will install MXNet Python bindings. To do so we need to run the following
command in the MXNet directory:

cd $MXNET_HOME/python

sudo pip install -e .

Once done with above steps, you are now ready to run MXNet on your NVIDIA Jetson
devices TX2 or Nano. It can be verified with the following command:

import mxnet

mxnet._ _version__

It will return the version number if everything is properly working.

24

tutorialspoint

EIMPLYEAGSY LEARMNING

)

3. Apache MXNet — Toolkits and Ecosystem

To support the research and development of Deep Learning applications across many
fields, Apache MXNet provides us a rich ecosystem of toolkits, libraries and many more.
Let us explore them:

ToolKits

Following are some of the most used and important toolkits provided by MXNet:

GluonCVv

As name implies GluonCV is a Gluon toolkit for computer vision powered by MXNet. It
provides implementation of state-of-the-art DL (Deep Learning) algorithms in computer
vision (CV). With the help of GluonCV toolkit engineers, researchers, and students can
validate new ideas and learn CV easily.

Given below are some of the features of GluonCV:

e It trains scripts for reproducing state-of-the-art results reported in latest research.

e More than 170+ high quality pretrained models.

e Embrace flexible development pattern.

e GluonCV is easy to optimize. We can deploy it without retaining heavy weight DL
framework.

e It provides carefully designed APIs that greatly lessen the implementation intricacy.

¢ Community support.

e Easy to understand implementations.

Following are the supported applications by GluonCV toolkit:

e Image Classification

e Object Detection

¢ Semantic Segmentation
e Instance Segmentation
e Pose Estimation

e Video Action Recognition

We can install GluonCV by using pip as follows:

pip install --upgrade mxnet gluoncv

25

@ tutorialspoint

EIMPLYEAGSY LEARMNING

https://pip.pypa.io/en/stable/installing/

Apache MXNet

GluonNLP

As name implies GluonNLP is a Gluon toolkit for Natural Language Processing (NLP)
powered by MXNet. It provides implementation of state-of-the-art DL (Deep Learning)
models in NLP.

With the help of GluonNLP toolkit engineers, researchers, and students can build blocks
for text data pipelines and models. Based on these models, they can quickly prototype the
research ideas and product.

Given below are some of the features of GluonNLP:

e It trains scripts for reproducing state-of-the-art results reported in latest research.
e Set of pretrained models for common NLP tasks.

e It provides carefully designed APIs that greatly lessen the implementation intricacy.
¢ Community support.

o It also provides tutorials to help you get started on new NLP tasks.

Following are the NLP tasks we can implement with GluonNLP toolkit:

e Word Embedding

¢ Language Model

e Machine Translation

e Text Classification

e Sentiment Analysis

e Natural Language Inference
e Text Generation

¢ Dependency Parsing

¢ Named Entity Recognition

¢ Intent Classification and Slot Labeling

We can install GluonNLP by using pip as follows:

pip install --upgrade mxnet gluonnlp

GluonTS

As name implies GluonTS is a Gluon toolkit for Probabilistic Time Series Modeling powered
by MXNet.

It provides the following features:

e State-of-the-art (SOTA) deep learning models ready to be trained.
e The utilities for loading as well as iterating over time-series datasets.

e Building blocks to define your own model.
With the help of GluonTS toolkit engineers, researchers, and students can train and

evaluate any of the built-in models on their own data, quickly experiment with different
solutions, and come up with a solution for their time series tasks.

¥

26

tutorialspoint

EIMPLYEAGSY LEARMNING

https://pip.pypa.io/en/stable/installing/

Apache MXNet

They can also use the provided abstractions and building blocks to create custom time
series models, and rapidly benchmark them against baseline algorithms.

We can install GluonTS by using pip as follows:

pip install gluonts

GluonFR

As name implies, it is an Apache MXNet Gluon toolkit for FR (Face Recognition). It provides
the following features:

e State-of-the-art (SOTA) deep learning models in face recognition.

e The implementation of SoftmaxCrossEntropyLoss, ArcLoss, TripletLoss, RingLoss,
CoslLoss/AMsoftmax, L2-Softmax, A-Softmax, CenterLoss, ContrastivelLoss, and
LGM Loss, etc.

In order to install Gluon Face, we need Python 3.5 or later. We also first need to install
GluonCV and MXNet first as follows:

pip install gluoncv --pre
pip install mxnet-mkl --pre --upgrade
pip install mxnet-cuXXmkl --pre -upgrade # if cuda XX is installed

Once you installed the dependencies, you can use the following command to install
GluonFR:

e From Source

pip install git+https://github.com/THUFuturelLab/gluon-face.git@master

e Pip

pip install gluonfr

Ecosystem

Now let us explore MXNet's rich libraries, packages, and frameworks:

Coach RL

Coach, a Python Reinforcement Learning (RL) framework created by Intel Al lab. It enables
easy experimentation with State-of-the-art RL algorithms. Coach RL supports Apache
MXNet as a back end and allows simple integration of hew environment to solve.

In order to extend and reuse existing components easily, Coach RL very well decoupled
the basic reinforcement learning components such as algorithms, environments, NN
architectures, exploration policies.

Following are the agents and supported algorithms for Coach RL framework:

27

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://pip.pypa.io/en/stable/installing/

Value Optimization Agents

Deep Q Network (DQN)

Double Deep Q Network (DDQN)

Dueling Q Network

Mixed Monte Carlo (MMC)

Persistent Advantage Learning (PAL)
Categorical Deep Q Network (C51)

Quantile Regression Deep Q Network (QR-DQN)
N-Step Q Learning

Neural Episodic Control (NEC)

Normalized Advantage Functions (NAF)

Rainbow

Policy Optimization Agents

Policy Gradients (PG)

Asynchronous Advantage Actor-Critic (A3C)

Deep Deterministic Policy Gradients (DDPG)

Proximal Policy Optimization (PPO)

Clipped Proximal Policy Optimization (CPPO)

Generalized Advantage Estimation (GAE)

Sample Efficient Actor-Critic with Experience Replay (ACER)
Soft Actor-Critic (SAC)

Twin Delayed Deep Deterministic Policy Gradient (TD3)

General Agents

Direct Future Prediction (DFP)

Imitation Learning Agents

Behavioral Cloning (BC)

Conditional Imitation Learning

Hierarchical Reinforcement Learning Agents

Hierarchical Actor Critic (HAC)

Deep Graph Library

Deep Graph Library (DGL), developed by NYU and AWS teams, Shanghai, is a Python
package that provides easy implementations of Graph Neural Networks (GNNs) on top of
MXNet. It also provides easy implementation of GNNs on top of other existing major deep
learning libraries like PyTorch, Gluon, etc.

)

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

28

Apache MXNet

Deep Graph Library is a free software. It is available on all Linux distributions later than
Ubuntu 16.04, macOS X, and Windows 7 or later. It also requires the Python 3.5 version
or later.

Following are the features of DGL:

No Migration cost: There is no migration cost for using DGL as it is built on top of popular
exiting DL frameworks.

Message Passing: DGL provides message passing and it has versatile control over it. The
message passing ranges from low-level operations such as sending along selected edges
to high-level control such as graph-wide feature updates.

Smooth Learning Curve: It is quite easy to learn and use DGL as the powerful user-
defined functions are flexible as well as easy to use.

Transparent Speed Optimization: DGL provides transparent speed optimization by
doing automatic batching of computations and sparse matrix multiplication.

High performance: In order to achieve maximum efficiency, DGL automatically batches
DNN (deep neural networks) training on one or many graphs together.

Easy & friendly interface: DGL provides us easy & friendly interfaces for edge feature
access as well as graph structure manipulation.

InsightFace

InsightFace, a Deep Learning Toolkit for Face Analysis that provides implementation of
SOTA (state-of-the-art) face analysis algorithm in computer vision powered by MXNet. It
provides:

e High-quality large set of pre-trained models.

e State-of-the-art (SOTA) training scripts.

e InsightFace is easy to optimize. We can deploy it without retaining heavy weight
DL framework.

e It provides carefully designed APIs that greatly lessen the implementation intricacy.

e Building blocks to define your own model.

We can install InsightFace by using pip as follows:

pip install --upgrade insightface

Please note that before installing InsightFace, please install the correct MXNet package
according to your system configuration.

Keras-MXNet

As we know that Keras is a high-level Neural Network (NN) API written in Python, Keras-
MXNet provides us a backend support for the Keras. It can run on top of high performance
and scalable Apache MXNet DL framework.

The features of Keras-MXNet are mentioned below:

29

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://pip.pypa.io/en/stable/installing/

Apache MXNet

e Allows users for easy, smooth, and fast prototyping. It all happens through user
friendliness, modularity, and extensibility.

e Supports both CNN (Convolutional Neural Networks) and RNN (Recurrent Neural
Networks) as well as the combination of both also.

e Runs flawlessly on both Central Processing Unit (CPU) and Graphical Processing
Unit (GPU).

e Can run on one or multi GPU.

In order to work with this backend, you first need to install keras-mxnet as follows:

pip install keras-mxnet

Now, if you are using GPUs then install MXNet with CUDA 9 support as follows:

pip install mxnet-cu90

But if you are using CPU-only then install basic MXNet as follows:

pip install mxnet

MXBoard

MXBoard is logging tool, written in Python, that is used to record MXNet data frames and
display in TensorBoard. In other words, the MXBoard is meant to follow the tensorboard-
pytorch API. It supports most of the data types in TensorBoard.

Some of them are mentioned below:
e Graph
e Scalar

e Histogram

e Embedding
e Image

o Text

e Audio

® Precision-Recall Curve

MXFusion

MXFusion is a modular probabilistic programming library with deep learning. MXFusion
allows us to fully exploited modularity, which is a key feature of deep learning libraries,
for probabilistic programming. It is simple to use and provides the users a convenient
interface for designing probabilistic models and applying them to the real-world problems.

MXFusion is verified on Python version 3.4 and more on MacOS and Linux OS. In order to
install MXFusion, we need to first install the following dependencies:

)

30

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

e MXNet >=1.3

e Networkx >= 2.1

With the help of following pip command, you can install MXFusion:

pip install mxfusion

TVM

Apache TVM, an open-source end-to-end deep learning compiler stack for hardware-
backends such as CPUs, GPUs, and specialized accelerators, aims to fill the gap between
the productivity-focused deep-learning frameworks and performance-oriented hardware
backends. With the latest release MXNet 1.6.0, users can leverage Apache(incubating)
TVM to implement high-performance operator kernels in Python programming language.

Apache TVM actually started as a research project at the SAMPL group of Paul G. Allen
School of Computer Science & Engineering, University of Washington and now it is an
effort undergoing incubation at The Apache Software Foundation (ASF) which is driven by
an OSC (open source community) that involves multiple industry as well as academic
institutions under the Apache way.

Following are the main features of Apache(incubating) TVM:

e Simplifies the former C++ based development process.

e Enables sharing the same implementation across multiple hardware backends such
as CPUs, GPUs, etc.

e TVM provides compilation of DL models in various frameworks such as Kears,
MXNet, PyTorch, Tensorflow, CoreML, DarkNet into minimum deployable modules
on diverse hardware backends.

e It also provides us the infrastructure to automatically generate and optimize tensor

operators with better performance.

XFer

Xfer, a transfer learning framework, is written in Python. It basically takes an MXNet model
and train a meta-model or modifies the model for a new target dataset as well.

In simple words, Xfer is a Python library that allows users to quick and easy transfer of
knowledge stored in DNN (deep neural networks).

Xfer can be used:
e For the classification of data of arbitrary numeric format.
e To the common cases of images or text data.
e As a pipeline that spams from extracting features to training a repurposer (an
object that performs classification in the target task).
Following are the features of Xfer:

e Resource efficiency

31

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://sampl.cs.washington.edu/

Apache MXNet

¢ Data efficiency

e Easy access to neural networks
e Uncertainty modeling

e Rapid prototyping

e Utilities for feature extraction from NN

32

m tutorialspoint

4. Apache MXNet — System Architecture

This chapter will help you in understanding about the MXNet system architecture. Let us
begin by learning about the MXNet Modules.

MXNet Modules

The diagram below is the MXNet system architecture and it shows the major modules and
components of MXNet modules and their interaction.

KVStore Data Loading (I0)

(mxnet:KVStore) (mxnet:Iterator)

T Symbolic

NDArray Symbolic Execution Construction
<

(mxnet::Executor) (mxnet::Symbol)

(mxnet:NDArray)

In the above diagram:

e The modules in blue color boxes are User Facing Modules.

¢ The modules in green color boxes are System Modules.

e Solid arrow represents high dependency, i.e. heavily rely on the interface.

¢ Dotted arrow represents light dependency, i.e. Used data structure for convenience

and interface consistency. In fact, it can be replaced by the alternatives.

Let us discuss more about user facing and system modules.

33

w tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

User-facing Modules

The user-facing modules are as follows:

NDArray: It provides flexible imperative programs for Apache MXNet. They are
dynamic and asynchronous n-dimensional arrays.

KVStore: It acts as interface for efficient parameter synchronization. In KVStore,
KV stands for Key-Value. So, it a key-value store interface.

Data Loading (I0): This user facing module is used for efficient distributed data
loading and augmentation.

Symbol Execution: It is a static symbolic graph executor. It provides efficient
symbolic graph execution and optimization.

Symbol Construction: This user facing module provides user a way to construct

a computation graph i.e. net configuration.

System Modules

The system modules are as follows:

)

Storage Allocator: This system module, as name suggests, allocates and recycle
memory blocks efficiently on host i.e. CPU and different devices i.e. GPUs.
Runtime Dependency Engine: Runtime dependency engine module schedules as
well as executes the operations as per their read/write dependency.

Resource Manager: Resource Manager (RM) system module manages global
resources like the random number generator and temporal space.

Operator: Operator system module consists of all the operators that define static

forward and gradient calculation i.e. backpropagation.

34

tutorialspoint

EIMPLYEAGSY LEARMNING

5. Apache MXNet — System Components

Here, the system components in Apache MXNet are explained in detail. First, we will study
about the execution engine in MXNet.

Execution Engine

Apache MXNet’'s execution engine is very versatile. We can use it for deep learning as well
as any domain-specific problem: execute a bunch of functions following their
dependencies. It is designed in such a way that the functions with dependencies are
serialized whereas, the functions with no dependencies can be executed in parallel.

Core Interface

The API given below is the core interface for Apache MXNet's execution engine:

virtual void PushSync(Fn exec_fun, Context exec_ctx,
std::vector<VarHandle> const& const_vars,

std::vector<VarHandle> const& mutate_vars) = 0;

The above API has the following:

e exec_fun: The core interface API of MXNet allows us to push the function named
exec_fun, along with its context information and dependencies, to the execution
engine.

¢ exec_ctx: The context information in which the above-mentioned function
exec_fun should be executed.

e const_vars: These are the variables that the function reads from.

¢ mutate_vars: These are the variables that are to be modified.

The execution engine provides its user the guarantee that the execution of any two
functions that modify a common variable is serialized in their push order.

Function

Following is the function type of the execution engine of Apache MXNet:

using Fn = std::function<void(RunContext)>;

35

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

In the above function, RunContext contains the runtime information. The runtime
information should be determined by the execution engine. The syntax of RunContext is
as follows:

struct RunContext {
// stream pointer which could be safely cast to
// cudaStream_t* type

void *stream;

};

Below are given some important points about execution engine’s functions:

e All the functions are executed by MXNet’'s execution engine’s internal threads.

e It is not good to push blocking the function to the execution engine because with
that the function will occupy the execution thread and will also reduce the total
throughput.

e For this MXNet provides another asynchronous function as follows:

using Callback = std::function<void()>;

using AsyncFn = std::function<void(RunContext, Callback)>;

e In this AsyncFn function we can pass the heavy part of our threads, but the
execution engine does not consider the function finished until we call the callback

function.

Context

In Context, we can specify the context of the function to be executed within. This usually
includes the following:

e Whether the function should be run on a CPU or a GPU.

e If we specify GPU in the Context, then which GPU to use.

e There is a huge difference between Context and RunContext. Context have the
device type and device id, whereas RunContext have the information that can be

decided only during runtime.

VarHandle

VarHandle, used to specify the dependencies of functions, is like a token (especially
provided by execution engine) we can use to represents the external resources the
function can modify or use.

But the question arises, why we need to use VarHandle? It is because, the Apache MXNet
engine is designed to decoupled from other MXNet modules.

Following are some important points about VarHandle:

¥

36

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

o It is lightweight so to create, delete, or copying a variable incurs little operating
cost.

¢ We need to specify the immutable variables i.e. the variables that will be used in
the const_vars.

¢ We need to specify the mutable variables i.e. the variables that will be modified in
the mutate_vars.

e The rule used by the execution engine to resolve the dependencies among functions
is that the execution of any two functions when one of them modifies at least one
common variable is serialized in their push order.

e For creating a new variable, we can use the NewVar() API.

e For deleting a variable, we can use the PushDelete API.

Let us understand its working with a simple example:

Suppose if we have two functions namely F1 and F2 and they both mutate the variable
namely V2. In that case, F2 is guaranteed to be executed after F1 if F2 is pushed after F1.
On the other side, if F1 and F2 both use V2 then their actual execution order could be
random.

Push and Wait

Push and wait are two more useful API of execution engine.
Following are two important features of Push API:

e All the Push APIs are asynchronous which means that the API call immediately
returns regardless of whether the pushed function is finished or not.
e Push API is not thread safe which means that only one thread should make engine

API calls at a time.

Now if we talk about Wait API, following points represent it:

o If a user wants to wait for a specific function to be finished, he/she should include
a callback function in the closure. Once included, call the function at the end of the
function.

e On the other hand, if a user wants to wait for all functions that involves a certain
variable to finish, he/she should use WaitForVar(var) API.

o If someone wants to wait for all the pushed functions to finish, then use the
WaitForAll () APL.

e Used to specify the dependencies of functions, is like a token.

Operators

Operator in Apache MXNet is a class that contains actual computation logic as well as
auxiliary information and aid the system in performing optimisation.

¥

37

tutorialspoint

EIMPLYEAGSY LEARMNING

Operator Interface

Apache MXNet

Forward is the core operator interface whose syntax is as follows:

virtual void Forward(const OpContext &ctx,

const std

const std:
const std:

const std:

::vector<TBlob> &in_data,
:vector<OpReqType> &req,
:vector<TBlob> &out_data,

:vector<TBlob> &aux_states) = 0;

The structure of OpContext, defined in Forward() is as follows:

struct OpContext {
int is_train;
RunContext run_ctx;

std: :vector<Resource>

requested;

The OpContext describes the state of operator (whether in the train or test phase), which
device the operator should be run on and also the requested resources. two more useful

API of execution engine.

From the above Forward core interface, we can understand the requested resources as

follows:

¢ in_data and out_data represent the input and output tensors.

e req denotes how the result of computation are written into the out_data.

The OpReqType can be defined as:

enum OpReqType {
kNulloOp,
kWriteTo,
kWriteInplace,
kAddTo

}s

As like Forward operator, we can optionally implement the Backward interface as

follows:

virtual void Backward(const OpContext &ctx,

const std::vector<TBlob> &out_grad,

const std::vector<TBlob> &in_data,

const std::vector<TBlob> &out_data,

tutorialspoint

EIMPLYEAGSY LEARMNING

)

38

Apache MXNet

const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,

const std::vector<TBlob> &aux_states);

Various tasks

Operator interface allows the users to do the following tasks:

e User can specify in-place updates and can reduce memory allocation cost

e In order to make it cleaner, the user can hide some internal arguments from
Python.

e User can define the relationship among the tensors and output tensors.

e To perform computation, the user can acquire additional temporary space from the

system.

Operator Property

As we are aware that in Convolutional neural network (CNN), one convolution has several
implementations. To achieve the best performance from them, we might want to switch
among those several convolutions.

That is the reason, Apache MXNet separate the operator semantic interface from the
implementation interface. This separation is done in the form of OperatorProperty class
which consists of the following:

InferShape: The InferShape interface has two purposes as given below:

e First purpose is to tell the system the size of each input and output tensor so that
the space can be allocated before Forward and Backward call.
e Second purpose is to perform a size check to make sure that there is no error

before running.

The syntax is given below:

virtual bool InferShape(mxnet::ShapeVector *in_shape,
mxnet::ShapeVector *out_shape,

mxnet: :ShapeVector *aux_shape) const = 0;

39

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Request Resource: What if your system can manage the computation workspace for
operations like cudnnConvolutionForward? Your system can perform optimizations
such as reuse the space and many more. Here, MXNet easily achieve this with the help of
following two interfaces:

virtual std::vector<ResourceRequest> ForwardResource(
const mxnet::ShapeVector &in_shape) const;
virtual std::vector<ResourceRequest> BackwardResource(

const mxnet::ShapeVector &in_shape) const;

But, what if the ForwardResource and BackwardResource return non-empty arrays?
In that case, the system offers corresponding resources through ctx parameter in the
Forward and Backward interface of Operator.

Backward dependency: Apache MXNet has following two different operator signatures
to deal with backward dependency:

void FullyConnectedForward(TBlob weight, TBlob in_data, TBlob out_data);

void FullyConnectedBackward(TBlob weight, TBlob in_data, TBlob
out_grad, TBlob in_grad);

void PoolingForward(TBlob in_data, TBlob out_data);

void PoolingBackward(TBlob in_data, TBlob out_data, TBlob out_grad,
TBlob in_grad);

Here, the two important points to note:
e The out_data in FullyConnectedForward is not used by FullyConnectedBackward,
and
e PoolingBackward requires all the arguments of PoolingForward.
That is why for FullyConnectedForward, the out_data tensor once consumed could be

safely freed because the backward function will not need it. With the help of this system
got a to collect some tensors as garbage as early as possible.

In place Option: Apache MXNet provides another interface to the users to save the cost
of memory allocation. The interface is appropriate for element-wise operations in which
both input and output tensors have the same shape.

Following is the syntax for specifying the in-place update:

Example for Creating an Operator

With the help of OperatorProperty we can create an operator. To do so, follow the steps
given below:

virtual std::vector<std::pair<int, void*>>
ElewiseOpProperty: :ForwardInplaceOption(

)

40

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

const std::vector<int> &in_data,
const std::vector<void*> &out_data) const {
return { {in_data[@], out_data[@]} };
}

virtual std::vector<std::pair<int, void*>>
ElewiseOpProperty: :BackwardInplaceOption(

const std::vector<int> &out_grad,

const std::vector<int> &in_data,

const std::vector<int> &out_data,

const std::vector<void*> &in_grad) const {

return { {out_grad[@], in_grad[0]} }

Step 1
Create Operator

First implement the following interface in OperatorProperty:

virtual Operator* CreateOperator(Context ctx) const = 0;

The example is given below:

class ConvolutionOp {

public:

void Forward(...) { ... }

void Backward(...) { ... }
}s
class ConvolutionOpProperty : public OperatorProperty {
public:

Operator* CreateOperator(Context ctx) const {

return new ConvolutionOp;

}
}s

Step 2
Parameterize Operator

If you are going to implement a convolution operator, it is mandatory to know the kernel
size, the stride size, padding size, and so on. Why, because these parameters should be
passed to the operator before calling any Forward or backward interface.

For this, we need to define a ConvolutionParam structure as below:

41

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

#include <dmlc/parameter.h>
struct ConvolutionParam : public dmlc::Parameter<ConvolutionParam> {
mxnet::TShape kernel, stride, pad;
uint32_t num_filter, num_group, workspace;

bool no_bias;

}s

Now, we need to put this in ConvolutionOpProperty and pass it to the operator as
follows:

class ConvolutionOp {
public:
ConvolutionOp(ConvolutionParam p): param_(p) {}
void Forward(...) { ... }
void Backward(...) { ... }
private:
ConvolutionParam param_;
¥
class ConvolutionOpProperty : public OperatorProperty {
public:
void Init(const vector<pair<string, string>& kwargs) {
// initialize param_ using kwargs
}
Operator* CreateOperator(Context ctx) const {
return new ConvolutionOp(param_);
}
private:

ConvolutionParam param_;

}s

Step 3
Register the Operator Property Class and the Parameter Class to Apache MXNet

At last, we need to register the Operator Property Class and the Parameter Class to MXNet.
It can be done with the help of following macros:

DMLC_REGISTER_PARAMETER(ConvolutionParam);
MXNET_REGISTER_OP_PROPERTY(Convolution, ConvolutionOpProperty);

In the above macro, the first argument is the name string and the second is the property
class name.

)

42

tutorialspoint

EIMPLYEAGSY LEARMNING

6. Apache MXNet — Unified Operator API

This chapter provides information about the unified operator application programming
interface (API) in Apache MXNet.

SimpleOp

SimpleOp is a new unified operator API which unifies different invoking processes. Once
invoked, it returns to the fundamental elements of operators. The unified operator is
specially designed for unary as well as binary operations. It is because most of the
mathematical operators attend to one or two operands and more operands make the
optimization, related to dependency, useful.

We will be understanding its SimpleOp unified operator working with the help of an
example. In this example, we will be creating an operator functioning as a smooth I1
loss, which is a mixture of I1 and 12 loss. We can define and write the loss as given below:

loss = outside_weight .* f(inside_weight .* (data - label))

grad = outside _weight .* inside weight .* f'(inside_weight .* (data -
label))

Here, in above example,

e .* stands for element-wise multiplication

e f, f' is the smooth I1 loss function which we are assuming is in mshadow.

It looks impossible to implement this particular loss as a unary or binary operator but
MXNet provides its users automatic differentiation in symbolic execution which simplifies
the loss to f and f’ directly. That's why we can certainly implement this particular loss as
a unary operator.

Defining Shapes

As we know MXNet’'s mshadow library requires explicit memory allocation hence we need
to provide all data shapes before any calculation occurs. Before defining functions and
gradient, we need to provide input shape consistency and output shape as follows:

typedef mxnet::TShape (*UnaryShapeFunction)(const mxnet::TShape& src,
const EnvArguments& env);
typedef mxnet::TShape (*BinaryShapeFunction)(const mxnet::TShape& lhs,
const mxnet::TShape& rhs,

const EnvArguments& env);

The function mxnet::Tshape is used to check input data shape and designated output data
shape. In case, if you do not define this function then the default output shape would be

43

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

same as input shape. For example, in case of binary operator the shape of 1hs and rhs is
by default checked as the same.

Now let’'s move on to our smooth 11 loss example. For this, we need to define an XPU
to cpu or gpu in the header implementation smooth_Il1_unary-inl.h. The reason is to
reuse the same code in smooth_Il1_unary.cc and smooth_Il1_unary.cu.

#include <mxnet/operator_util.h>
#if defined(__ CUDACC_)
#tdefine XPU gpu
#else
#tdefine XPU cpu
#endif

As in our smooth 11 loss example, the output has the same shape as the source, we can
use the default behavior. It can be written as follows:

inline mxnet::TShape SmoothL1Shape_(const mxnet::TShape& src,
const EnvArguments& env) {

return mxnet::TShape(src);

Defining Functions

We can create a unary or binary function with one input as follows:

typedef void (*UnaryFunction)(const TBlob& src,

const EnvArguments& env,
TBlob* ret,
OpReqType req,
RunContext ctx);

typedef void (*BinaryFunction)(const TBlob& lhs,
const TBlob& rhs,
const EnvArguments& env,
TBlob* ret,
OpReqType req,

RunContext ctx);

Following is the RunContext ctx struct which contains the information needed during
runtime for execution:

struct RunContext {

a4

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

void *stream; // the stream of the device, can be NULL or
Stream<gpu>* in GPU mode

template<typename xpu> inline mshadow: :Stream<xpu>* get_stream() //
get mshadow stream from Context

} // namespace mxnet

Now, let's see how we can write the computation results in ret.

enum OpReqType {
kNullOp, // no operation, do not write anything
kWriteTo, // write gradient to provided space
kWriteInplace, // perform an in-place write

kAddTo // add to the provided space
s

Now, let's move on to our smooth 11 loss example. For this, we will use UnaryFunction
to define the function of this operator as follows:

template<typename xpu>
void SmoothL1Forward_(const TBlob& src,
const EnvArguments& env,
TBlob *ret,
OpReqType req,
RunContext ctx) {
using namespace mshadow;
using namespace mshadow: :expr;
mshadow: : Stream<xpu> *s = ctx.get stream<xpu>();
real_t sigma2 = env.scalar * env.scalar;
MSHADOW_TYPE_SWITCH(ret->type flag , DType, {
mshadow: : Tensor<xpu, 2, DType> out = ret->get<xpu, 2, DType>(s);
mshadow: : Tensor<xpu, 2, DType> in = src.get<xpu, 2, DType>(s);
ASSIGN DISPATCH(out, req,

F<mshadow_op::smooth_11 loss>(in,
ScalarExp<DType>(sigma2)));

})s

45

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Defining Gradients

Except Input, TBlob, and OpReqType are doubled, Gradients functions of binary
operators have similar structure. Let’s check out below, where we created a gradient
function with various types of input:

// depending only on out_grad

typedef void (*UnaryGradFunctionT®)(const OutputGrad& out_grad,
const EnvArguments& env,
TBlob* in_grad,
OpReqType req,
RunContext ctx);

// depending only on out_value

typedef void (*UnaryGradFunctionTl)(const OutputGrad& out_grad,
const OutputValue& out_value,
const EnvArguments& env,
TBlob* in_grad,
OpReqType req,

RunContext ctx);

// depending only on in_data

typedef void (*UnaryGradFunctionT2)(const OutputGrad& out_grad,
const Input@& in_datao@,
const EnvArguments& env,
TBlob* in_grad,
OpReqType req,

RunContext ctx);

As defined above Input0O, Input, OutputValue, and OutputGrad all share the structure
of GradientFunctionArgument. It is defined as follows:

struct GradFunctionArgument {

TBlob data;
}

Now let’'s move on to our smooth I1 loss example. For this to enable the chain rule of
gradient we need to multiply out_grad from the top to the result of in_grad.

template<typename xpu>
void SmoothL1BackwardUseIn_(const OutputGrad& out_grad,
const Input@& in_datao,

const EnvArguments& env,

46

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

TBlob *in_grad,
OpReqType req,
RunContext ctx) {
using namespace mshadow;
using namespace mshadow: :expr;
mshadow: : Stream<xpu> *s = ctx.get_stream<xpu>();
real_t sigma2 = env.scalar * env.scalar;
MSHADOW_TYPE_SWITCH(in_grad->type_flag , DType, {

mshadow: : Tensor<xpu, 2, DType> src = in_data@.data.get<xpu, 2,
DType>(s);

mshadow: : Tensor<xpu, 2, DType> ograd
DType>(s);

out_grad.data.get<xpu, 2,

mshadow: : Tensor<xpu, 2, DType> igrad = in_grad->get<xpu, 2, DType>(s);
ASSIGN_DISPATCH(igrad, req,

ograd * F<mshadow_op::smooth_11 gradient>(src,
ScalarExp<DType>(sigma2)));

})s

Register SimpleOp to MXNet

Once we created the shape, function, and gradient, we need to restore them into both an
NDArray operator as well as into a symbolic operator. For this, we can use the registration
macro as follows:

MXNET_REGISTER_SIMPLE_OP(Name, DEV)
.set_shape_function(Shape)
.set_function(DEV::kDevMask, Function<XPU>, SimpleOpInplaceOption)
.set_gradient(DEV: :kDevMask, Gradient<XPU>, SimpleOpInplaceOption)

.describe("description");

The SimpleOpInplaceOption can be defined as follows:

enum SimpleOpInplaceOption {
kNoInplace, // do not allow inplace in arguments
kInplaceInOut, // allow inplace in with out (unary)
kInplaceOutIn, // allow inplace out_grad with in_grad (unary)
kInplaceLhsOut, // allow inplace left operand with out (binary)

kInplaceOutLhs // allow inplace out_grad with lhs_grad (binary)

47

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

};

Now let’s move on to our smooth I1 loss example. For this, we have a gradient function
that relies on input data so that the function cannot be written in place.

MXNET_REGISTER_SIMPLE_OP(smooth 11, XPU)

.set_function(XPU::kDevMask, SmoothL1Forward <XPU>, kNoInplace)
.set_gradient(XPU: :kDevMask, SmoothL1BackwardUseIn_<XPU>, kInplaceOutIn)
.set_enable_scalar(true)

.describe("Calculate Smooth L1 Loss(lhs, scalar)");

SimpleOp on EnvArguments

As we know some operations might need the following:
e A scalar as input such as a gradient scale
e A set of keyword arguments controlling behavior
e A temporary space to speed up calculations.

The benefit of using EnvArguments is that it provides additional arguments and resources
to make calculations more scalable and efficient.

Example

First let’s define the struct as below:

struct EnvArguments {
real_t scalar; // scalar argument, if enabled

std::vector<std::pair<std::string, std::string> > kwargs; // keyword
arguments

std: :vector<Resource> resource; // pointer to the resources requested

}s

Next, we need to request additional resources like mshadow::Random<xpu> and
temporary memory space from EnvArguments.resource. It can be done as follows:

struct ResourceRequest {
enum Type { // Resource type, indicating what the pointer type is
kRandom, // mshadow::Random<xpu> object
kTempSpace // A dynamic temp space that can be arbitrary size
}s5
Type type; // type of resources
}s

48

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Now, the registration will request the declared resource request from
mxnet::ResourceManager. After that, it will place the resources in
std::vector<Resource> resource in EnvAgruments.

We can access the resources with the help of following code:

auto tmp_space_res = env.resources[0].get_space(some_shape, some_stream);

auto rand_res = env.resources[@].get_random(some_stream);

If you see in our smooth I1 loss example, a scalar input is needed to mark the turning
point of a loss function. That's why in the registration process, we use
set_enable_scalar(true), and env.scalar in function and gradient declarations.

Building Tensor Operation

Here the question arises that why we need to craft tensor operations? The reasons are as
follows:

e Computation utilizes the mshadow library and we sometimes do not have functions
readily available.
e If an operation is not done in an element-wise way such as softmax loss and

gradient.

Example

Here, we are using the above smooth |1 loss example. We will be creating two mappers
namely the scalar cases of smooth |1 loss and gradient:

namespace mshadow_op {
struct smooth_11 loss {
// a is x, b is sigma2
MSHADOW_XINLINE static real_t Map(real_t a, real t b) {
if (a > 1.ef / b) {
return a - 0.5f / b;
} else if (a < -1.0f / b) {
return -a - 0.5f / b;
} else {

return 0.5f * a * a * b;

}s

49

tutorialspoint

EIMPLYEAGSY LEARMNING

)

7. Apache MXNet — Distributed Training

This chapter is about the distributed training in Apache MXNet. Let us start by
understanding what are the modes of computation in MXNet.

Modes of Computation

MXNet, a multi-language ML library, offers its users the following two modes of
computation:

Imperative mode

This mode of computation exposes an interface like NumPy API. For example, in MXNet,
use the following imperative code to construct a tensor of zeros on both CPU as well as
GPU:

import mxnet as mx
tensor_cpu = mx.nd.zeros((100,), ctx=mx.cpu())

tensor_gpu= mx.nd.zeros((100,), ctx=mx.gpu(0))

As we see in the above code, MXNets specifies the location where to hold the tensor, either
in CPU or GPU device. In above example, it is at location 0. MXNet achieve incredible
utilisation of the device, because all the computations happen lazily instead of
instantaneously.

Symbolic mode

Although the imperative mode is quite useful, but one of the drawbacks of this mode is its
rigidity, i.e. all the computations need to be known beforehand along with pre-defined
data structures.

On the other hand, Symbolic mode exposes a computation graph like TensorFlow. It
removes the drawback of imperative API by allowing MXNet to work with symbols or
variables instead of fixed/pre-defined data structures. Afterwards, the symbols can be
interpreted as a set of operations as follows:

import mxnet as mx
X = mx.sym.Variable(“X”)
y = mx.sym.Variable(“Y”)
z = (x+y)
m = z/100

Kinds of Parallelism

Apache MXNet supports distributed training. It enables us to leverage multiple machines
for faster as well as effective training.

50

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

Following are the two ways in which, we can distribute the workload of training a NN across
multiple devices, CPU or GPU device:

Data Parallelism

In this kind of parallelism, each device stores a complete copy of the model and works
with a different part of the dataset. Devices also update a shared model collectively. We
can locate all the devices on a single machine or across multiple machines.

Model Parallelism

It is another kind of parallelism, which comes handy when models are so large that they
do not fit into device memory. In model parallelism, different devices are assigned the
task of learning different parts of the model. The important point here to note is that
currently Apache MXNet supports model parallelism in a single machine only.

Working of distributed training

The concepts given below are the key to understand the working of distributed training in
Apache MXNet:

Types of processes

Processes communicates with each other to accomplish the training of a model. Apache
MXNet has the following three processes:

Worker

The job of worker node is to perform training on a batch of training samples. The Worker
nodes will pull weights from the server before processing every batch. The Worker nodes
will send gradients to the server, once the batch is processed.

Server

MXNet can have multiple servers for storing the model’s parameters and to communicate
with the worker nodes.

Scheduler

The role of the scheduler is to set up the cluster, which includes waiting for messages that
each node has come up and which port the node is listening to. After setting up the cluster,
the scheduler lets all the processes know about every other node in the cluster. It is
because the processes can communicate with each other. There is only one scheduler.

KV Store

KV stores stands for Key-Value store. It is critical component used for multi-device
training. It is important because, the communication of parameters across devices on
single as well as across multiple machines is transmitted through one or more servers with
a KVStore for the parameters. Let’s understand the working of KVStore with the help of
following points:

e Each value in KVStore is represented by a key and a value.

51

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

e FEach parameter array in the network is assigned a key and the weights of that
parameter array is referred by value.
e After that, the worker nodes push gradients after processing a batch. They also

pull updated weights before processing a new batch.

The notion of KVStore server exists only during distributed training and the distributed
mode of it is enabled by calling mxnet.kvstore.create function with a string argument
containing the word dist:

kv = mxnet.kvstore.create(‘dist_sync’)

Distribution of Keys

It is not necessary that, all the servers store all the parameters array or keys, but they
are distributed across different servers. Such distribution of keys across different servers
is handled transparently by the KVStore and the decision of which server stores a specific
key is made at random.

KVStore, as discussed above, ensures that whenever the key is pulled, its request is sent
to that server, which has the corresponding value. What if the value of some key is large?
In that case, it may be shared across different servers.

Split training data

As being the users, we want each machine to be working on different parts of the dataset,
especially, when running distributed training in data parallel mode. We know that, to split
a batch of samples provided by the data iterator for data parallel training on a single
worker we can use mxnet.gluon.utils.split_and_load and then, load each part of the
batch on the device which will process it further.

On the other hand, in case of distributed training, at beginning we need to divide the
dataset into n different parts so that every worker gets a different part. Once got, each
worker can then use split_and_load to again divide that part of the dataset across
different devices on a single machine. All this happen through data iterator.
mxnet.io.MNISTIterator and mxnet.io.ImageRecordIter are two such iterators in
MXNet that support this feature.

Weights updating
For updating the weights, KVStore supports following two modes:
¢ First method aggregates the gradients and updates the weights by using those
gradients.

e In the second method the server only aggregates gradients.

If you are using Gluon, there is an option to choose between above stated methods by
passing update_on_kvstore variable. Let’s understand it by creating the trainer object
as follows:

trainer = gluon.Trainer(net.collect_params(), optimizer='sgd',

optimizer_params={'learning_rate': opt.1lr,

52

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

'wd': opt.wd,

"momentum’: opt.momentum,

"'multi_precision': True},
kvstore=kv,

update_on_kvstore=True)

Modes of Distributed Training

If the KVStore creation string contains the word dist, it means the distributed training is
enabled. Following are different modes of distributed training that can be enabled by using
different types of KVStore:

dist_sync

As name implies, it denotes synchronous distributed training. In this, all the workers use
the same synchronized set of model parameters at the start of every batch.

The drawback of this mode is that, after each batch the server should have to wait to
receive gradients from each worker before it updates the model parameters. This means
that if a worker crashes, it would halt the progress of all workers.

dist_async

As name implies, it denotes synchronous distributed training. In this, the server receives
gradients from one worker and immediately updates its store. Server uses the updated
store to respond to any further pulls.

The advantage, in comparison of dist_sync mode, is that a worker who finishes
processing a batch can pull the current parameters from server and start the next batch.
The worker can do so, even if the other worker has not yet finished processing the earlier
batch. It is also faster than dist_sync mode because, it can take more epochs to converge
without any cost of synchronization.

dist_sync_device

This mode is same as dist_sync mode. The only difference is that, when there are multiple
GPUs being used on every node dist_sync_device aggregates gradients and updates
weights on GPU whereas, dist_sync aggregates gradients and updates weights on CPU
memory.

It reduces expensive communication between GPU and CPU. That is why, it is faster than
dist_sync. The drawback is that it increases the memory usage on GPU.

dist_async_device

This mode works same as dist_sync_device mode, but in asynchronous mode.

53

tutorialspoint

EIMPLYEAGSY LEARMNING

)

8. Apache MXNet — Python Packages

In this chapter we will learn about the Python Packages available in Apache MXNet.

Important MXNet Python packages

MXNet has the following important Python packages which we will be discussing one by
one:

e Autograd (Automatic Differentiation)

e NDArray
e KVStore
e Gluon

e Visualization

First let us start with Autograd Python package for Apache MXNet.

Autograd

Autograd stands for automatic differentiation used to backpropagate the gradients
from the loss metric back to each of the parameters. Along with backpropagation it uses
a dynamic programming approach to efficiently calculate the gradients. It is also called
reverse mode automatic differentiation. This technique is very efficient in ‘fan-in’ situations
where, many parameters effect a single loss metric.

What are gradients?

Gradients are the fundamentals to the process of neural network training. They basically
tell us how to change the parameters of the network to improve its performance.

As we know that, neural networks (NN) are composed of operators such as sums, product,
convolutions, etc. These operators, for their computations, use parameters such as the
weights in convolution kernels. We should have to find the optimal values for these
parameters and gradients shows us the way and lead us to the solution as well.

54

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

A
loss

v

Qt param

We are interested in the effect of changing a parameter on performance of the network
and gradients tell us, how much a given variable increases or decreases when we change
a variable it depends on. The performance is usually defined by using a loss metric that
we try to minimise. For example, for regression we might try to minimise L2 loss between
our predictions and exact value, whereas for classification we might minimise the cross-
entropy loss.

Once we calculate the gradient of each parameter with reference to the loss, we can then
use an optimiser, such as stochastic gradient descent.

How to calculate gradients?

We have the following options to calculate gradients:

¢ Symbolic Differentiation: The very first option is Symbolic Differentiation, which
calculates the formulas for each gradient. The drawback of this method is that, it
will quickly lead to incredibly long formulas as the network get deeper and
operators get more complex.

¢ Finite Differencing: Another option is, to use finite differencing which try slight
differences on each parameter and see how the loss metric responds. The drawback
of this method is that, it would be computationally expensive and may have poor

numerical precision.

55

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Apache MXNet

¢ Automatic differentiation: The solution to the drawbacks of the above methods
is, to use automatic differentiation to backpropagate the gradients from the loss
metric back to each of the parameters. Propagation allows us a dynamic
programming approach to efficiently calculate the gradients. This method is also

called reverse mode automatic differentiation.

Automatic Differentiation (autograd)

Here, we will understand in detail the working of autograd. It basically works in following
two stages:

Stage 1: This stage is called ‘Forward Pass’ of training. As hame implies, in this stage
it creates the record of the operator used by the network to make predictions and calculate

the loss metric.

Stage 2: This stage is called ‘Backward Pass’ of training. As name implies, in this stage
it works backwards through this record. Going backwards, it evaluates the partial

derivatives of each operator, all the way back to the network parameter.

Stagel: Forward Pass

v

x
Ss07 1
G

a

Stage2: Backward Pass of gradients

Advantages of autograd

Following are the advantages of using Automatic Differentiation (autograd):

56

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Flexible: Flexibility, that it gives us when defining our network, is one of the huge
benefits of using autograd. We can change the operations on every iteration. These
are called the dynamic graphs, which are much more complex to implement in
frameworks requiring static graph. Autograd, even in such cases, will still be able
to backpropagate the gradients correctly.

Automatic: Autograd is automatic, i.e. the complexities of the backpropagation
procedure are taken care of by it for you. We just need to specify what gradients
we are interested in calculating.

Efficient: Autogard calculates the gradients very efficiently.

Can use native Python control flow operators: We can use the native Python
control flow operators such as if condition and while loop. The autograd will still

be able to backpropagate the gradients efficiently and correctly.

Using autograd in MXNet Gluon

Here, with the help of an example, we will see how we can use autograd in MXNet Gluon.

Implementation Example

In the following example, we will implement the regression model having two layers. After
implementing, we will use autograd to automatically calculate the gradient of the loss with

reference to each of the weight parameters:

First import the autogrard and other required packages as follows:

from mxnet import autograd

import mxnet as mx

from mxnet.gluon.nn import HybridSequential, Dense

from mxnet.gluon.loss import L2Loss

Now, we need to define the network as follows:

N_net = HybridSequential()
N_net.add(Dense(units=3))
N_net.add(Dense(units=1))

N_net.initialize()

Now we need to define the loss as follows:

loss_function = L2Loss()

Next, we need to create the dummy data as follows:

x = mx.nd.array([[0.5, ©.9]])

tutorialspoint

EIMPLYEAGSY LEARMNING

)

57

Apache MXNet

y = mx.nd.array([[1.5]])

Now, we are ready for our first forward pass through the network. We want autograd to
record the computational graph so that we can calculate the gradients. For this, we need
to run the network code in the scope of autograd.record context as follows:

with autograd.record():
y_hat = N_net(x)

loss = loss_function(y_hat, y)

Now, we are ready for the backward pass, which we start by calling the backward method
on the quantity of interest. The quatity of interest in our example is loss because we are
trying to calculate the gradient of loss with reference to the parameters:

loss.backward()

Now, we have gradients for each parameter of the network, which will be used by the
optimiser to update the parameter value for improved performance. Let’s check out the
gradients of the 15t layer as follows:

N_net[0@].weight.grad()

Output

The output is as follows:

[[-0.00470527 -0.00846948]
[-0.03640365 -0.06552657]
[©.00800354 0.01440637]]

<NDArray 3x2 @cpu(@)>

Complete implementation example

Given below is the complete implementation example.

from mxnet import autograd

import mxnet as mx

from mxnet.gluon.nn import HybridSequential, Dense
from mxnet.gluon.loss import L2Loss

N_net = HybridSequential()
N_net.add(Dense(units=3))
N_net.add(Dense(units=1))

N_net.initialize()

loss_function = L2Loss()

X

mx.nd.array([[0.5, ©.9]])

mx.nd.array([[1.5]])

)

y

ul
(0]

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

with autograd.record():

y_hat = N_net(x)

loss = loss_function(y_hat, y)
loss.backward()

N_net[0@].weight.grad()

59

m tutorialspoint

9. Apache MXNet — NDArray

In this chapter, we will be discussing about MXNet's multi-dimensional array format called
ndarray.

Handling data with NDArray

First, we are going see how we can handle data with NDArray. Following are the
prerequisites for the same:

Prerequisites

To understand how we can handle data with this multi-dimensional array format, we need
to fulfil the following prerequisites:

¢ MXNet installed in a Python environment

e Python 2.7.x or Python 3.x

Implementation Example

Let us understand the basic functionality with the help of an example given below:

First, we need to import MXNet and ndarray from MXNet as follows:

import mxnet as mx

from mxnet import nd

Once we import the necessary libraries, we will go with the following basic functionalities:

A simple 1-D array with a python list

x = nd.array([1,2,3,4,5,6,7,8,9,10])

print(x)

Output

The output is as mentioned below:

[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
<NDArray 10 @cpu(®0)>

A 2-D array with a python list

y = nd.array([[1,2,3,4,5,6,7,8,9,10], [1,2,3,4,5,6,7,8,9,10],
[1,2,3,4,5,6,7,8,9,10]])

60

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

print(y)

Output

The output is as stated below:

[[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]]

<NDArray 3x10 @cpu(0)>

Creating an NDArray without any initialisation

Here, we will create a matrix with 3 rows and 4 columns by using .empty function. We
will also use .full function, which will take an additional operator for what value you want

to fill in the array.

x = nd.empty((3, 4))
print(x)

x = nd.full((3,4), 8)
print(x)

Output

The output is given below:

[[©.000e+00 ©.000e+00 0.000e+00 0.000e+00]
[0.000e+00 ©.000e+00 2.887e-42 0.000e+00]
[0.000e+00 ©.000e+00 0.000e+00 0.000e+00]]

<NDArray 3x4 @cpu(@)>

[[8. 8. 8. 8.]
[8. 8. 8. 8.]
[8. 8. 8. 8.]]
<NDArray 3x4 @cpu(0)>

Matrix of all zeros with the .zeros function

x = nd.zeros((3, 8))

print(x)

Output

The output is as follows:

[[6. 0. 0. @. 8. 0. 0. 0.]

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

[6. 0. 0. 0. 0. 0. 0. 0.]
[6. 0. 0. 0. 0. 0. 0. 0.]]
<NDArray 3x8 @cpu(0)>

Matrix of all ones with the .ones function

x = nd.ones((3, 8))
print(x)

Output

The output is mentioned below:

[[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1. 1. 1. 1.]]
<NDArray 3x8 @cpu(@)>

Creating array whose values are sampled randomly

y = nd.random_normal(@, 1, shape=(3, 4))
print(y)

Output

The output is given below:

[[1.2673576 -2.0345826 -0.32537818 -1.4583491]
[-0.11176403 1.3606371 -0.7889914 -0.17639421]
[-©.2532185 -0.42614475 -0.12548696 1.4022992]]

<NDArray 3x4 @cpu(0)>

Finding dimension of each NDArray

y.shape

Output

The output is as follows:

(3, 4)

Finding the size of each NDArray

y.size

tutorialspoint

EIMPLYEAGSY LEARMNING

)

62

Apache MXNet

Output

12

Finding the datatype of each NDArray

y.dtype

Output

numpy .float32

NDArray Operations

In this section, we will introduce you to MXNet's array operations. NDArray support large
number of standard mathematical as well as In-place operations.

Standard Mathematical Operations

Following are standard mathematical operations supported by NDArray:

Element-wise addition

First, we need to import MXNet and ndarray from MXNet as follows:

import mxnet as mx

from mxnet import nd

x = nd.ones((3, 5))

y = nd.random_normal(@, 1, shape=(3, 5))
print('x=", x)

print('y=", y)

X =X+Yy

print('x = x +y, x=", x)

Output

The output is given herewith:

X=
[[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]
[1. 1. 1. 1. 1.]]
<NDArray 3x5 @cpu(0)>
y=
[[-1.0554522 -1.3118273 -0.14674698 ©0.641493 -0.73820823]

63

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

[2.031364 0.5932667 0.10228804 1.179526 -0.5444829]
[-0.34249446 1.1086396 1.2756858 -1.8332436 -0.5289873]]

<NDArray 3x5 @cpu(@)>

X =X +Yy, X=

[[-0.05545223 -0.3118273 ©.853253 1.6414931 0.26179177]
[3.031364 1.5932667 1.102288 2.1795259 0.4555171]
[©.6575055 2.1086397 2.2756858 -0.8332436 0.4710127]]

<NDArray 3x5 @cpu(@)>

Element-wise multiplication

nd.array([1, 2, 3, 4])
nd.array([2, 2, 2, 1])

X
I

<
I

X *y

Output

You will see the following output:

[2. 4. 6. 4.]
<NDArray 4 @cpu(0)>

Exponentiation

nd.exp(x)

Output

When you run the code, you will see the following output:

[2.7182817 7.389056 20.085537 54.59815]
<NDArray 4 @cpu(0)>

Matrix transpose to compute matrix-matrix product

nd.dot(x, y.T)

Output

Given below is the output of the code:

[16.]
<NDArray 1 @cpu(0)>

tutorialspoint

EIMPLYEAGSY LEARMNING

)

64

Apache MXNet

Inplace Operations

Every time, in the above example, we ran an operation, we allocated a new memory to
host its result.

For example, if we write A = A+B, we will dereference the matrix that A used to point to
and instead point it at the newly allocated memory. Let us understand it with the example
given below, using Python’s id() function:

print('y=", y)
print('id(y):", id(y))

y =y + X

print('after y=y+x, y=', y)
print('id(y):", id(y))

Output

Upon execution, you will receive the following output:

y=
[2. 2. 2. 1.]
<NDArray 4 @cpu(0)>
id(y): 2438905634376
after y=y+x, y=

[3. 4. 5. 5.]
<NDArray 4 @cpu(®@)>
id(y): 2438905685664

In fact, we can also assign the result to a previously allocated array as follows:

print('x="', X)

z = nd.zeros_like(x)

print('z is zeros_like x, z=', z)
print('id(z):', id(z))
print('y=", y)

z[:] =x+y

print('z[:] = x +vy, z=', z)

print('id(z) is the same as before:', id(z))

Output

The output is shown below:

[1. 2. 3. 4.]

65

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

<NDArray 4 @cpu(0)>
z is zeros_like x, z=

[0. 0. 0. 0.]

<NDArray 4 @cpu(0)>

id(z): 2438905790760
y=

[3. 4. 5. 5.]
<NDArray 4 @cpu(®@)>
z[:] = x +y, z=

[4. 6. 8. 9.]
<NDArray 4 @cpu(0)>

id(z) is the same as before:

2438905790760

From the above output, we can see that x+y will still allocate a temporary buffer to store
the result before copying it to z. So now, we can perform operations in-place to make
better use of memory and to avoid temporary buffer. To do this, we will specify the out
keyword argument every operator support as follows:

print('x="', x, 'is in id(x):"'
print('y="', y, 'is in id(y):'

print('z=', z, 'is in id(z):’

nd.elemwise_add(x, y, out=z)

, 1d(x))
» id(y))
, 1d(2))

print('after nd.elemwise_add(x, y, out=z), x=', X,

print('after nd.elemwise_add(x, y, out=z), y=', vy,

print('after nd.elemwise_add(x, y, out=z), z=', z,

'is in id(x):"', id(x))

'is in id(y):', id(y))
'is in id(z):', id(z))

Output

On executing the above program, you will get the following result:

X=

[1. 2. 3. 4.]

<NDArray 4 @cpu(®)> is in id(x): 2438905791152

y:
[3. 4. 5. 5.]

<NDArray 4 @cpu(®)> is in id(y): 2438905685664

=

[4. 6. 8. 9.]

<NDArray 4 @cpu(®)> is in id(z): 2438905790760

)

tutorialspoint

EIMPLYEAGSY LEARRMI

NG

66

Apache MXNet

after nd.elemwise_add(x, y, out=z), x=
[1. 2. 3. 4.]
<NDArray 4 @cpu(®)> is in id(x): 2438905791152

after nd.elemwise_add(x, y, out=z), y=

[3. 4. 5. 5.]

<NDArray 4 @cpu(®)> is in id(y): 2438905685664
after nd.elemwise_add(x, y, out=z), z=

[4. 6. 8. 9.]

<NDArray 4 @cpu(®)> is in id(z): 2438905790760

NDArray Contexts

In Apache MXNet, each array has a context and one context could be the CPU, whereas
other contexts might be several GPUs. The things can get even worst, when we deploy the
work across multiple servers. That's why, we need to assign arrays to contexts
intelligently. It will minimise the time spent transferring data between devices.

For example, try initialising an array as follows:

from mxnet import nd
z = nd.ones(shape=(3,3), ctx=mx.cpu(0))
print(z)

Output

When you execute the above code, you should see the following output:

[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

<NDArray 3x3 @cpu(@)>

We can copy the given NDArray from one context to another context by using the
copyto() method as follows:

X_gpu = x.copyto(gpu(9))
print(x_gpu)

NumPy array vs. NDArray

We all the familiar with NumPy arrays but Apache MXNet offers its own array
implementation named NDArray. Actually, it was initially designed to be similar to NumPy
but there is a key difference:

67

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

The key difference is in the way calculations are executed in NumPy and NDArray. Every
NDArray manipulation in MXNet is done in asynchronous and non-blocking way, which
means that, when we write code like c = a * b, the function is pushed to the Execution
Engine, which will start the calculation.

Here, a and b both are NDArrays. The benefit of using it is that, the function immediately
returns back, and the user thread can continue execution despite the fact that the previous
calculation may not have been completed yet.

Working of Execution Engine

If we talk about the working of execution engine, it builds the computation graph. The
computation graph may reorder or combine some calculations, but it always honors
dependency order.

For example, if there are other manipulation with ‘X’ done later in the programming code,
the Execution Engine will start doing them once the result of X’ is available. Execution
engine will handle some important works for the users, such as writing of callbacks to start
execution of subsequent code.

In Apache MXNet, with the help of NDArray, to get the result of computation we only need
to access the resulting variable. The flow of the code will be blocked until the computation
results are assigned to the resulting variable. In this way, it increases code performance
while still supporting imperative programming mode.

Converting NDArray to NumPy Array

Let us learn how can we convert NDArray to NumPy Array in MXNet.

Combining higher-level operator with the help of few lower-level operators

Sometimes, we can assemble a higher-level operator by using the existing operators. One
of the best examples of this is, the np.full_like() operator, which is not there in NDArray
API. It can easily be replaced with a combination of existing operators as follows:

from mxnet import nd

import numpy as np

np_x = np.full like(a=np.arange(7, dtype=int), fill value=15)
nd_x = nd.ones(shape=(7,)) * 15

np.array_equal(np_x, nd_x.asnumpy())

Output

We will get the output similar as follows:

True

Finding similar operator with different name and/or signature

Among all the operators, some of them have slightly different name, but they are similar
in the terms of functionality. An example of this is nd.ravel_index() with np.ravel()
functions. In the same way, some operators may have similar names, but they have
different signatures. An example of this is np.split() and nd.split() are similar.

68

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Let's understand it with the following programming example:

def pad_arrayl23(data, max_length):

data_expanded = data.reshape(1l, 1, 1, data.shape[©@])

data_padded = nd.pad(data_expanded,
mode="'constant’',

pad_width=[0, 0, @0, @0, @0, 0, 0, max_length -
data.shape[9]],

constant_value=0)

data_reshaped_back = data_padded.reshape(max_length)
return data_reshaped_back

pad_arrayl23(nd.array([1, 2, 3]), max_length=10)

Output

The output is stated below:

[1. 2. 3. 0. 0. 0. 0. 0. 0. 0.]
<NDArray 10 @cpu(0)>

Minimising impact of blocking calls

In some of the cases, we have to use either .asnumpy() or .asscalar() methods, but
this will force MXNet to block the execution, until the result can be retrieved. We can
minimise the impact of a blocking call by calling .asnumpy() or. asscalar() methods in
the moment, when we think the calculation of this value is already done.

Implementation Example

from __ future__ import print_function
import mxnet as mx

from mxnet import gluon, nd, autograd
from mxnet.ndarray import NDArray
from mxnet.gluon import HybridBlock

import numpy as np

class LossBuffer(object):

69

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Simple buffer for storing loss value
def __init__ (self):

self. loss = None

def new_loss(self, loss):
ret = self. loss
self. loss = loss

return ret

@property
def loss(self):

return self. loss

net = gluon.nn.Dense(10)

ce = gluon.loss.SoftmaxCELoss()

net.initialize()

data = nd.random.uniform(shape=(1024, 100))

label = nd.array(np.random.randint(e, 10, (1024,)), dtype='int32')
train_dataset = gluon.data.ArrayDataset(data, label)

train_data = gluon.data.DatalLoader(train_dataset, batch_size=128, shuffle=True,
num_workers=2)

trainer = gluon.Trainer(net.collect_params(), optimizer="sgd')
loss_buffer = LossBuffer()
for data, label in train_data:
with autograd.record():
out = net(data)
This call saves new loss and returns previous loss
prev_loss = loss_buffer.new_loss(ce(out, label))
loss_buffer.loss.backward()
trainer.step(data.shape[0])
if prev_loss is not None:

print("Loss: {}".format(np.mean(prev_loss.asnumpy())))

Output

The output is cited below:

Loss: 2.3373236656188965

70

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Loss: 2.3656985759735107
Loss: 2.3613128662109375
Loss: 2.3197104930877686
Loss: 2.3054862022399902
Loss: 2.329197406768799
Loss: 2.318927526473999

71

w \tutorialspoint

EIMPLYEAEGBYLEARNINTIG

10. Apache MXNet — Gluon

Another most important MXNet Python package is Gluon. In this chapter, we will be
discussing this package. Gluon provides a clear, concise, and simple API for DL projects.
It enables Apache MXNet to prototype, build, and train DL models without forfeiting the
training speed.

Blocks

Blocks form the basis of more complex network designs. In a neural network, as the
complexity of neural network increases, we need to move from designing single to entire
layers of neurons. For example, NN design like ResNet-152 have a very fair degree of
regularity by consisting of blocks of repeated layers.

Example

In the example given below, we will write code a simple block, namely block for a
multilayer perceptron.

from mxnet import nd

from mxnet.gluon import nn

x = nd.random.uniform(shape=(2, 20))

N_net = nn.Sequential()
N_net.add(nn.Dense(256, activation='relu'))
N_net.add(nn.Dense(10))

N_net.initialize()

N_net(x)

Output

This produces the following output:

[[©.09543004 ©.04614332 -0.00286655 -0.07790346 -0.05130241 ©0.02942038
0.08696645 -0.0190793 -0.04122177 ©.05088576]
[0.0769287 ©.03099706 ©0.00856576 -0.044672 -0.06926838 0.09132431
0.06786592 -0.06187843 -0.03436674 0.04234696]]
<NDArray 2x10 @cpu(0)>

Steps needed to go from defining layers to defining blocks of one or more layers:
Step 1: Block take the data as input.

Step 2: Now, blocks will store the state in the form of parameters. For example, in the
above coding example the block contains two hidden layers and we need a place to store
parameters for it.

72

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

Step 3: Next block will invoke the forward function to perform forward propagation. It is
also called forward computation. As a part of first forward call, blocks initialize the
parameters in a lazy fashion.

Step 4: At last the blocks will invoke backward function and calculate the gradient with
reference to their input. Typically, this step is performed automatically.

Sequential Block

A sequential block is a special kind of block in which the data flows through a sequence of
blocks. In this, each block applied to the output of one before with the first block being
applied on the input data itself.

Let us see how sequential class works:

from mxnet import nd
from mxnet.gluon import nn
class MySequential(nn.Block):
def __init__ (self, **kwargs):

super(MySequential, self). init__ (**kwargs)

def add(self, block):
self. children[block.name] = block
def forward(self, x):
for block in self._ children.values():
x = block(x)
return x
x = nd.random.uniform(shape=(2, 20))
N_net = MySequential()
N_net.add(nn.Dense(256, activation
="relu'))
N_net.add(nn.Dense(10))
N_net.initialize()

N_net(x)

Output

The output is given herewith:

[[©.09543004 ©0.04614332 -0.00286655 -0.07790346 -0.05130241 0.02942038
0.08696645 -0.0190793 -0.04122177 ©.05088576]
[©.0769287 0.03099706 0.00856576 -0.044672 -0.06926838 0.09132431
0.06786592 -0.06187843 -0.03436674 0.04234696]]
<NDArray 2x10 @cpu(0)>

73

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Custom Block

We can easily go beyond concatenation with sequential block as defined above. But, if we
would like to make customisations then the Block class also provides us the required
functionality. Block class has a model constructor provided in nn module. We can inherit
that model constructor to define the model we want.

In the following example, the MLP class overrides the ___init___ and forward functions of
the Block class.

Let us see how it works.

class MLP(nn.Block):

def __init__ (self, **kwargs):
super(MLP, self). init__ (**kwargs)
self.hidden = nn.Dense(256, activation='relu') # Hidden layer

self.output = nn.Dense(10) # Output layer

def forward(self, x):
hidden_out = self.hidden(x)
return self.output(hidden_out)
X = nd.random.uniform(shape=(2, 20))
N_net = MLP()
N_net.initialize()

N_net(x)

Output

When you run the code, you will see the following output:

[[0.07787763 ©0.00216403 ©.01682201 ©0.03059879 -0.00702019 0.01668715
0.04822846 ©.0039432 -0.09300035 -0.04494302]
[©.08891078 -0.00625484 -0.01619131 ©0.0380718 -0.01451489 0.02006172
0.0303478 0.02463485 -0.07605448 -0.04389168]]
<NDArray 2x10 @cpu(0)>

Custom Layers

Apache MXNet’'s Gluon API comes with a modest number of pre-defined layers. But still at
some point, we may find that a new layer is needed. We can easily add a new layer in
Gluon API. In this section, we will see how we can create a new layer from scratch.

The Simplest Custom Layer

)

74

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

To create a new layer in Gluon API, we must have to create a class inherits from the Block
class which provides the most basic functionality. We can inherit all the pre-defined layers
from it directly or via other subclasses.

For creating the new layer, the only instance method needed to be implemented is
forward (self, x). This method defines, what exactly our layer is going to do during
forward propagation. As discussed earlier also, the back-propagation pass for blocks will
be done by Apache MXNet itself automatically.

Example

In the example below, we will be defining a new layer. We will also implement forward()
method to normalise the input data by fitting it into a range of [0, 1].

from __ future__ import print_function

import mxnet as mx

from mxnet import nd, gluon, autograd

from mxnet.gluon.nn import Dense

mx.random.seed (1)

class NormalizationLayer(gluon.Block):
def __init_ (self):

super(NormalizationLayer, self).__init_ ()

def forward(self, x):
return (x - nd.min(x)) / (nd.max(x) - nd.min(x))
X = nd.random.uniform(shape=(2, 20))
N_net = NormalizationLayer()
N_net.initialize()

N_net(x)

Output

On executing the above program, you will get the following result:

[[0.5216355 ©.03835821 0.02284337 0.5945146 ©.17334817 0©.69329053
0.7782702 1. 0.5508242 0. 0.07058554 0.3677264
0.4366546 0.44362497 0.7192635 0.37616986 0.6728799 0.7032008

0.46907538 0.63514024]

[0.9157533 ©.7667402 ©.08980197 ©.03593295 0.16176797 0.27679572
0.07331014 0.3905285 0.6513384 0.02713427 0©.05523694 0.12147208
0.45582628 0.8139887 0.91629887 0.36665893 0.07873632 0.78268915
0.63404864 0.46638715]]

75

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

<NDArray 2x20 @cpu(0)>

Hybridisation

It may be defined as a process used by Apache MXNet's to create a symbolic graph of a
forward computation. Hybridisation allows MXNet to upsurge the computation performance
by optimising the computational symbolic graph. Rather than directly inheriting from
Block, in fact, we may find that while implementing existing layers a block inherits from
a HybridBlock.

Following are the reasons for this:

e Allows us to write custom layers: HybridBlock allows us to write custom layers
that can further be used in imperative and symbolic programming both.
¢ Increase computation performance: HybridBlock optimise the computational

symbolic graph which allows MXNet to increase computation performance.

Example

In this example, we will be rewriting our example layer, created above, by using

HybridBlock:

class NormalizationHybridLayer(gluon.HybridBlock):
def __init__ (self):

super(NormalizationHybridLayer, self)._ init ()

def hybrid_forward(self, F, x):

return F.broadcast_div(F.broadcast_sub(x, F.min(x)),
(F.broadcast_sub(F.max(x), F.min(x))))

layer_hybd = NormalizationHybridLayer()
layer_hybd(nd.array([1, 2, 3, 4, 5, 6], ctx=mx.cpu()))

Output

The output is stated below:

[6. ©.2 0.4 0.6 0.81.]
<NDArray 6 @cpu(0)>

Hybridisation has nothing to do with computation on GPU and one can train hybridised as
well as non-hybridised networks on both CPU and GPU.

76

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Difference between Block and HybridBlock

If we will compare the Block Class and HybridBlock, we will see that HybridBlock
already has its forward() method implemented. HybridBlock defines a
hybrid_forward() method that needs to be implemented while creating the layers. F
argument creates the main difference between forward() and hybrid_forward(). In
MXNet community, F argument is referred to as a backend. F can either refer to
mxnet.ndarray API (used for imperative programming) or mxnet.symbol API (used
for Symbolic programming).

How to add custom layer to a network?

Instead of using custom layers separately, these layers are used with predefined layers.
We can use either Sequential or HybridSequential containers to from a sequential
neural network. As discussed earlier also, Sequential container inherit from Block and
HybridSequential inherit from HybridBlock respectively.

Example

In the example below, we will be creating a simple neural network with a custom layer.
The output from Dense (5) layer will be the input of NormalizationHybridLayer. The
output of NormalizationHybridLayer will become the input of Dense (1) layer.

net = gluon.nn.HybridSequential()

with net.name_scope():
net.add(Dense(5))
net.add(NormalizationHybridLayer())
net.add(Dense(1))

net.initialize(mx.init.Xavier(magnitude=2.24))
net.hybridize()

input = nd.random_uniform(low=-10, high=10, shape=(10, 2))
net(input)

Output

You will see the following output:

[[-1.1272651]
[-1.2299833]
[-1.0662932]
[-1.1805027]
[-1.3382034]
[-1.2081106]

[-1.1263978]

77

tutorialspoint

EIMPLYEAGSY LEARMING

)

Apache MXNet

[-1.2524893]

[-1.1044774]

[-1.316593]]
<NDArray 10x1 @cpu(®)>

Custom layer parameters

In a neural network, a layer has a set of parameters associated with it. We sometimes
refer them as weights, which is internal state of a layer. These parameters play different
roles:

¢ Sometimes these are the ones that we want to learn during backpropagation step.

e Sometimes these are just constants we want to use during forward pass.

If we talk about the programming concept, these parameters (weights) of a block are
stored and accessed via ParameterDict class which helps in initialisation, updation,
saving, and loading of them.

Example

In the example below, we will be defining two following sets of parameters:

e Parameter weights: This is trainable, and its shape is unknown during
construction phase. It will be inferred on the first run of forward propagation.
e Parameter scale: This is a constant whose value doesn’t change. As opposite to

parameter weights, its shape is defined during construction.

class NormalizationHybridLayer(gluon.HybridBlock):
def __init__ (self, hidden_units, scales):

super(NormalizationHybridLayer, self).__init_ ()

with self.name_scope():

self.weights = self.params.get('weights’,

shape=(hidden_units, 0),

allow_deferred_init=True)

self.scales = self.params.get('scales’,
shape=scales.shape,
init=mx.init.Constant(scales.asnumpy()),

differentiable=False)

N
[e.2]

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

def hybrid_forward(self, F, x, weights, scales):
normalized_data = F.broadcast_div(F.broadcast_sub(x, F.min(x)),
(F.broadcast_sub(F.max(x), F.min(x))))

weighted_data = F.FullyConnected(normalized_data, weights,
num_hidden=self.weights.shape[@], no_bias=True)

scaled_data = F.broadcast_mul(scales, weighted_data)

return scaled_data

79

tutorialspoint

EIMPLYEAGSY LEARMNING

11. Apache MXNet — KVStore and Visualization

This chapter deals with the python packages KVStore and visualization.

KVStore package

KV stores stands for Key-Value store. It is critical component used for multi-device
training. It is important because, the communication of parameters across devices on
single as well as across multiple machines is transmitted through one or more servers with
a KVStore for the parameters.

Let us understand the working of KVStore with the help of following points:

e Each value in KVStore is represented by a key and a value.

e Each parameter array in the network is assigned a key and the weights of that
parameter array is referred by value.

e After that, the worker nodes push gradients after processing a batch. They also

pull updated weights before processing a new batch.

In simple words, we can say that KVStore is a place for data sharing where, each device
can push data in and pull data out.

Data Push-n and Pull-Out

KVStore can be thought of as single object shared across different devices such as GPUs
& computers, where each device is able to push data in and pull data out.

Following are the implementation steps that needs to be followed by devices to push data
in and pull data out:

Implementation steps

Initialisation: First step is to initialise the values. Here for our example, we will be
initialising a pair (int, NDArray) pair into KVStrore and after that pulling the values out:

import mxnet as mx

kv = mx.kv.create('local') # create a local KVStore.
shape = (3,3)

kv.init(3, mx.nd.ones(shape)*2)

a = mx.nd.zeros(shape)

kv.pull(3, out = a)

print(a.asnumpy())

Output

This produces the following output:
80

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

[[2. 2. 2.]
[2. 2. 2.]
[2. 2. 2.]]

Push, Aggregate, and Update: Once initialised, we can push a new value into KVStore
with the same shape to the key:

kv.push(3, mx.nd.ones(shape)*8)
kv.pull(3, out = a)
print(a.asnumpy())

Output

The output is given below:

[[8. 8. 8.]
[8. 8. 8.]
[8. 8. 8.1]

The data used for pushing can be stored on any device such as GPUs or computers. We
can also push multiple values into the same key. In this case, the KVStore will first sum
all of these values and then push the aggregated value as follows:

contexts = [mx.cpu(i) for i in range(4)]

b = [mx.nd.ones(shape, ctx) for ctx in contexts]
kv.push(3, b)

kv.pull(3, out = a)

print(a.asnumpy())

Output

You will see the following output:

[[4. 4. 4.]
[4. 4. 4.]
[4. 4. 4.]1]

For each push you applied, KVStore will combine the pushed value with the value already
stored. It will be done with the help of an updater. Here, the default updater is ASSIGN.

def update(key, input, stored):
print("update on key: %d" % key)

stored += input * 2

kv.set_updater(update)

81

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

kv.pull(3, out=a)
print(a.asnumpy())

Output

When you execute the above code, you should see the following output:

[[4. 4. 4.]
[4. 4. 4.]
[4. 4. 4.]]

kv.push(3, mx.nd.ones(shape))
kv.pull(3, out=a)

print(a.asnumpy())

Output

Given below is the output of the code:

update on key: 3
[[6. 6. 6.]

[6. 6. 6.]

[6. 6. 6.]1]

Pull: As like Push, we can also pull the value onto several devices with a single call as
follows:

b = [mx.nd.ones(shape, ctx) for ctx in contexts]
kv.pull(3, out = b)
print(b[1].asnumpy())

Output

The output is stated below:

[[6. 6. 6.]
[6. 6. 6.]
[6. 6. 6.]]

Complete Implementation Example

Given below is the complete implementation example:

import mxnet as mx

82

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

kv = mx.kv.create('local')

shape = (3,3)

kv.init(3, mx.nd.ones(shape)*2)

a = mx.nd.zeros(shape)

kv.pull(3, out = a)

print(a.asnumpy())

kv.push(3, mx.nd.ones(shape)*8)

kv.pull(3, out = a) # pull out the value

print(a.asnumpy())

contexts = [mx.cpu(i) for i in range(4)]

b = [mx.nd.ones(shape, ctx) for ctx in contexts]

kv.push(3, b)

kv.pull(3, out = a)

print(a.asnumpy())

def update(key, input, stored):
print("update on key: %d" % key)
stored += input * 2

kv._set_updater(update)

kv.pull(3, out=a)

print(a.asnumpy())

kv.push(3, mx.nd.ones(shape))

kv.pull(3, out=a)

print(a.asnumpy())

b = [mx.nd.ones(shape, ctx) for ctx in contexts]

kv.pull(3, out = b)

print(b[1].asnumpy())

Handling Key-Value Pairs

All the operations we have implemented above involves a single key, but KVStore also

provides an interface for a list of key-value pairs:

For a single device

Following is an example to show an KVStore interface for a list of key-value pairs for a

single device:

keys = [5, 7, 9]
kv.init(keys, [mx.nd.ones(shape)]*len(keys))
kv.push(keys, [mx.nd.ones(shape)]*len(keys))

tutorialspoint

EIMPLYEAGSY LEARMNING

)

83

Apache MXNet

b = [mx.nd.zeros(shape)]*len(keys)
kv.pull(keys, out = b)
print(b[1].asnumpy())

Output

You will receive the following output:

update on key: 5
update on key: 7
update on key: 9

[[3. 3. 3.]
[3. 3. 3.]
[3. 3. 3.]]

For multiple device

Following is an example to show an KVStore interface for a list of key-value pairs for
multiple device:

b = [[mx.nd.ones(shape, ctx) for ctx in contexts]] * len(keys)
kv.push(keys, b)

kv.pull(keys, out = b)

print(b[1][1].asnumpy())

Output

You will see the following output:

update on key: 5
update on key: 7
update on key: 9
[[11. 11. 11.]
[11. 11. 11.]
[11. 11. 11.]]

Visualization package

Visualization package is Apache MXNet package used to represents the neural network
(NN) as a computation graph that consists of nodes and edges.

Visualize neural network

In the example below we will use mx.viz.plot_network to visualize neural network.
Followings are the prerequisites for this:

84

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Prerequisites

e Jupyter notebook
e Graphviz library

Implementation Example

In the example below we will visualize a sample NN for linear matrix factorisation:

import mxnet as mx
user = mx.symbol.Variable('user')
item = mx.symbol.Variable('item")

score = mx.symbol.Variable('score')

Set the dummy dimensions

k = 64

max_user 100

max_item = 50

The user feature lookup

user = mx.symbol.Embedding(data = user, input_dim = max_user, output_dim = k)
The item feature lookup
item = mx.symbol.Embedding(data = item, input_dim = max_item, output_dim = k)

predict by the inner product and then do sum

N_net = user * item

N_net = mx.symbol.sum_axis(data = N_net, axis = 1)

N_net = mx.symbol.Flatten(data = N_net)

Defining the loss layer

N_net = mx.symbol.LinearRegressionOutput(data = N_net, label = score)

Visualize the network

mx.viz.plot_network(N_net)

85

tutorialspoint

EIMPLYEAGSY LEARMNING

)

12. Apache MXNet — Python API ndarray

This chapter explains the ndarray library which is available in Apache MXNet.

Mxnet.ndarray

Apache MXNet's NDArray library defines the core DS (data structures) for all the
mathematical computations. Two fundamental jobs of NDArray are as follows:

e It supports fast execution on a wide range of hardware configurations.

e It automatically parallelises multiple operations across available hardware.

The example given below shows how one can create an NDArray by using 1-D and 2-D
‘array’ from a regular Python list:

import mxnet as mx

from mxnet import nd

x = nd.array([1,2,3,4,5,6,7,8,9,10])

print(x)

Output

The output is given below:

[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
<NDArray 10 @cpu(0)>

y = nd.array([[1,2,3,4,5,6,7,8,9,18], [1,2,3,4,5,6,7,8,9,10],
[1,2,3,4,5,6,7,8,9,10]])

print(y)

Output

This produces the following output:

[[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]]

<NDArray 3x10 @cpu(0)>

86

w tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

Now let us discuss in detail about the classes, functions, and parameters of ndarray API
of MXNet.

Classes
Following table consists of the classes of ndarray API of MXNet:
Class Definition
CachedOp(sym[, It is used for Cached operator handle.
flags])
NDArray(handle[, It is used as an array object that represents a multi-
writable]) dimensional, homogeneous array of fixed-size items.

Functions and their parameters

Following are some of the important functions and their parameters covered by
mxnet.ndarray API:

Function & its Parameters Definition

It applies an activation function
element-wise to the input. It

Activation([data, act_type, out, name]) supports relu, sigmoid, tanh,
softrelu, softsign activation
functions.

It is used for batch
normalisation. This function
BatchNorm([data, gamma, beta, moving_mean, ...]) | normalises a data batch by
mean and variance. It applies a
scale gamma and offset beta.

This function applies bilinear
sampling to input feature map.
Actually it is the key of “Spatial
Transformer Networks”.

BilinearSampler([data, grid, cudnn_off, ...]) If you are familiar with remap

function in OpenCV, the usage
of this function is quite similar
to that. The only difference is
that it has the backward pass.

As name specifies, this function
stops gradient computation. It
basically stops the accumulated
gradient of the inputs from
flowing through this operator in
backward direction.

BlockGrad([data, out, name])

87

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Activation
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BatchNorm
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BilinearSampler
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BlockGrad

Apache MXNet

cast([data, dtype, out, name])

This function will cast all
elements of the input to a new

type.

Implementation Examples

In the example below, we will be using the function BilinierSampler() for zooming out the
data two times and shifting the data horizontally by -1 pixel:

import mxnet as mx

from mxnet import nd

data = nd.array([[[[2, 5, 3, 6],
[1, 8, 7, 9],
[e, 4, 1, 8],
[2, e, 3, 4]11D)

affine_matrix

affine_matrix

target_shape=(4, 4))

output

nd.array([[2, 0, O],

(e, 2, e]])

nd.reshape(affine_matrix, shape=(1, 6))

grid = nd.GridGenerator(data=affine_matrix, transform_type='affine',

output = nd.BilinearSampler(data, grid)

Output

When you execute the above code, you should see the following output:

[[[[e. 0. 0.
[o. 4.0000005 6.25
[0. 1.5 4.
[0. 0. 0.

<NDArray 1x1x4x4 @cpu(0)>

(4]
Q.
0
0

]
]
]
1111

The above output shows the zooming out of data two times.

Example of shifting the data by -1 pixel is as follows:

import mxnet as mx
from mxnet import nd

data = nd.array([[[[2, 5, 3, 6],

tutorialspoint

EIMPLYEAGSY LEARMNING

)

88

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Cast

Apache MXNet

[1, 8, 7, 9],
(e, 4, 1, 8],

[2, o, 3, 4]11])

warp_matrix = nd.array([[[[21, 1, 1, 1],
(1, 1, 1, 1],

[1, 1, 1, 1],
[1, 1, 1, 1]1,
[[0, 0, 0, o],
[0, 0, 0, 0],
[0, o, 0, 0],
(e, o, @, o]11])

grid = nd.GridGenerator(data=warp_matrix, transform_type='warp')

output = nd.BilinearSampler(data, grid)

output

Output

The output is stated below:

[[[[5. 3. 6. ©.]
[8. 7. 9. 0.]
[4. 1. 8. 0.]
[0. 3. 4. 0.]1]1]

<NDArray 1x1x4x4 @cpu(@)>

Similarly, following example shows the use of cast() function:

nd.cast(nd.array([300, 10.1, 15.4, -1, -2]), dtype="uint8")

Output

Upon execution, you will receive the following output:

[44 10 15 255 254]
<NDArray 5 @cpu(@)>

ndarray.contrib

The Contrib NDArray API is defined in the ndarray.contrib package. It typically provides
many useful experimental APIs for new features. This API works as a place for the
community where they can try out the new features. The feature contributor will get the
feedback as well.

89

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Functions and their parameters

Apache MXNet

Following are some of the important functions and their parameters covered by

mxnet.ndarray.contrib API:

Function & its Parameters

Definition

rand_zipfian(true_classes, hum_sampled, ...)

This function draws random samples
from an approximately Zipfian
distribution. The base distribution of
this function is Zipfian distribution.
This function randomly samples
num_sampled candidates and the
elements of sampled_candidates are
drawn from the base distribution
given above.

foreach(body, data, init_states)

As name implies, this function runs a
for loop with user-defined
computation over NDArrays on
dimension 0. This function simulates
a for loop and body has the
computation for an iteration of the for
loop.

while_loop(cond, func, loop_vars|, ...

D

As name implies, this function runs a
while loop with user-defined
computation and loop condition. This
function simulates a while loop that

literately does customized
computation if the condition is
satisfied.

cond(pred, then_func, else_func)

As name implies, this function run an
if-then-else using user-defined
condition and computation. This
function simulates an if-like branch
which chooses to do one of the two
customised computations according
to the specified condition.

isinf(data)

This function performs an element-
wise check to determine if the
NDArray contains an infinite element
or not.

getnnz([data, axis, out, name])

This function gives us the number of
stored values for a sparse tensor. It
also includes explicit zeros. It only
supports CSR matrix on CPU.

requantize([data, min_range, max_range, ...])

This function requantise the given
data that is quantised in int32 and the
corresponding thresholds, into int8
using min and max thresholds either

tutorialspoint

EIMPLYEAGSY LEARMNING

)

90

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.rand_zipfian
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.foreach
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.while_loop
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.cond
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.isinf
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.getnnz
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.requantize

Apache MXNet

calculated at runtime or from
calibration.

Implementation Examples

In the example below, we will be using the function rand_zipfian for drawing random
samples from an approximately Zipfian distribution:

import mxnet as mx
from mxnet import nd
trueclass = mx.nd.array([2])

samples, exp_count_true, exp_count_sample =
mx.nd.contrib.rand_zipfian(trueclass, 3, 4)

samples

Output

You will see the following output:

[0 0 1]
<NDArray 3 @cpu(0)>

exp_count_true

Output

The output is given below:

[0.53624076]
<NDArray 1 @cpu(@)>

exp_count_sample

Output

This produces the following output:

[1.29202967 1.29202967 ©.75578891]
<NDArray 3 @cpu(0)>

In the example below, we will be using the function while_loop for running a while loop
for user-defined computation and loop condition:

cond = lambda i, s: i <=7

91

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

func = lambda i, s: ([1i + s], [1 + 1, s + i])
loop_var = (mx.nd.array([@], dtype="int64"), mx.nd.array([1], dtype="int64"))

outputs, states = mx.nd.contrib.while_loop(cond, func, loop_vars,
max_iterations=10)

outputs

Output

The output is shown below:

[
[l 1]
[2]
[4]
[7]
[11]
[16]
[22]
[29]
[3152434450384]
[257]1

<NDArray 10x1 @cpu(0)>]

States

Output

This produces the following output:

[

[8]

<NDArray 1 @cpu(0)>,
[29]

<NDArray 1 @cpu(@)>]

ndarray.image

The Image NDArray API is defined in the ndarray.image package. As name implies, it
typically used for images and their features.

Functions and their parameters

)

92

tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

Following are some of the important functions & their parameters covered by
mxnet.ndarray.image API:

Function & its Parameters Definition

As name implies, this function
adjusts the lighting level of the
input. It follows the AlexNet
style.

adjust_lighting([data, alpha, out, name])

With the help of this function, we
can crop an image NDArray of
shape (HxW xC)or (NxHx W
x C) to the size given by user.

crop([data, x, y, width, height, out, name])

It will normalise a tensor of shape
(CxHxW)or(NxCxHxW)
withh mean and standard
deviation(SD).

normalize([data, mean, std, out, name])

Similar to crop(), it randomly
crop an image NDArray of shape
(HxWxC)or(NxHxWxC)to
random_crop([data, xrange, yrange, width, ...]) the size given by the user. It will
upsample the result if src is
smaller than the size.

As name implies, this function
adds the PCA noise randomly. It

random_lighting([data, alpha_std, out, name]) also follows the AlexNet style.

It also crops an image randomly
NDArray of shape (H x W x C) or
(N x Hx W x C) to the given size.
It will upsample the result, if src
is smaller than the size. It will
randomise the area and aspect
ration as well.

random_resized_crop([data, xrange, yrange, ...])

As name implies, this function
will resize an image NDArray of
resize([data, size, keep_ratio, interp, ...]) shape (Hx W x C) or (Nx Hx W
x C) to the size given by user.

It converts an image NDArray of
shape (HxW xC)or (NxHx W
x C) with the values in the range
[0, 255] to a tensor NDArray of
shape (CxHx W) or (NxCxH
x W) with the values in the range
[0, 11].

to_tensor([data, out, name])

Implementation Examples

93

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.adjust_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.normalize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_resized_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.resize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.to_tensor

Apache MXNet

In the example below, we will be using the function to_tensor to convert image NDArray
of shape (Hx W x C) or (N x Hx W x C) with the values in the range [0, 255] to a tensor
NDArray of shape (C x Hx W) or (N x C x H x W) with the values in the range [0, 1].

import numpy as np

img = mx.nd.random.uniform(@, 255, (4, 2, 3)).astype(dtype=np.uint8)

mx.nd.image.to_tensor(img)

Output

You will see the following output:

[[[0.972549 .5058824]

0
[0.6039216 ©.01960784]
[0.28235295 0.35686275]

0

[0.11764706 ©.8784314]]

[[0.8745098 ©.9764706]
[0.4509804 ©.03529412]
[0.9764706 ©.29411766]
[0.6862745 ©.4117647]]

[[0.46666667 ©.05490196]

0
[0.7372549 ©.4392157]
[0.11764706 ©.47843137]
[0.31764707 ©.91764706]]]

<NDArray 3x4x2 @cpu(@)>

img = mx.nd.random.uniform(®, 255, (2, 4, 2, 3)).astype(dtype=np.uint8)

mx.nd.image.to_tensor(img)

Output

When you run the code, you will see the following output:

[[[[@.0627451 ©.5647059]
[0.2627451 ©.9137255]
[0.57254905 ©.27450982]

94

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

[0.6666667 ©.64705884]]

[[0.21568628 ©.5647059]
[0.5058824 ©.09019608]
[0.08235294 0.31764707]
[0.8392157 ©.7137255]]

[[0.6901961 ©.8627451]
[0.52156866 ©.91764706]
[0.9254902 ©.00784314]
[0.12941177 ©.8392157]]]

[[[©.28627452 ©.39607844]
[0.01960784 0.36862746]
[0.6745098 ©.7019608]
[0.9607843 ©.7529412]]

[[0.2627451 ©.58431375]
[0.16470589 ©.00392157]
[0.5686275 ©.73333335]
[0.43137255 ©.57254905]]

[[0.18039216 0.54901963]
[0.827451 ©.14509805]
[0.26666668 ©.28627452]
[0.24705882 ©.39607844]1]]]

<NDArray 2x3x4x2 @cpu(0)>

In the example below, we will be using the function normalize to normalise a tensor of
shape (C x Hx W) or (N x C x H x W) with mean and standard deviation(SD).

img = mx.nd.random.uniform(@, 1, (3, 4, 2))

mx.nd.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1))

Output

)

95

tutorialspoint

EIMPLYEAGSY LEARMNING

This produces the following output:

Apache MXNet

[[[©.29391178 ©.3218054]
[0.23084386 ©.19615503]
[0.24175143 ©.21988946]
[0.16710812 ©.1777354]]

[[-0.02195817 -0.3847335]
[-0.17800489 -0.30256534]
[-0.28807247 -06.19059572]
[-0.19680339 -0.26256624]]

[[-1.9808068 -1.5298678]
[-1.6984252 -1.2839255]
[-1.3398265 -1.712009 |
[-1.7099224 -1.6165378]]]

<NDArray 3x4x2 @cpu(@)>

img = mx.nd.random.uniform(o@, 1, (2, 3, 4, 2))

mx.nd.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1))

Output

When you execute the above code, you should see the following output:

[[[[2.0600514e-01 2.4972327¢-01]

[1.4292289%¢e-01 .9281738e-01]

[4.5158025e-02 .4287784e-02]

w w NN

[9.9427439¢-02 3.0791296e-02]]
[[-2.1501756e-01 -3.2297665e-01]
[-2.0456362e-01 -2.2409186e-01]
[-2.1283737e-01 -4.8318747e-01]
[-1.7339960e-01 -1.5519112e-02]]

[[-1.3478968e+00 -1.6790028e+00]
[-1.5685816e+00 -1.7787373e+00]

tutorialspoint

EIMPLYEAGSY LEARMNING

)

96

Apache MXNet

[-1.
[-1.

[[[1.
[2.
[2.
[2.

[[-4.
[-4.
[-1.
[-5.

[[-1.
[-1.
[-1.

1034534e+00 -1.
6324382e+00 -1.

4528830e-01
9730779%e-01
6873133e-01

P R 0 W

3462953e-01

4988656e-01 -4.
0258706e-02 -3.
4287934e-01 -2.
7649612e-04 -7.

8505517e+00 -1.
1318740e+00 -1.
8375070e+00 -1.

8587360e+00]
9027401e+00]]]

.2801408e-01]
.6780310e-02]
.7900752e-01]
.4930873e-01]]

5021546e-01]
2384416e-01]
6537544e-01]
9429924¢-02]]

0953522e+00]
9624406e+00]
4916846e+00]

[-1.3844404e+00 -1.8331525e+00]]1]

<NDArray 2x3x4x2 @cpu(0)>

ndarray.random

The Random NDArray API is defined in the ndarray.random package. As name implies, it
is random distribution generator NDArray API of MXNet.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.ndarray.random API:

Function and its Parameters

Definition

uniform([low, high, shape, dtype, ctx, out])

It generates random samples
from a uniform distribution.

normal([loc, scale, shape, dtype, ctx, out])

It generates random samples

randn(*shape, **kwargs)

from a normal (Gaussian)
distribution.
It generates random samples
from a normal (Gaussian)
distribution.

poisson([lam, shape, dtype, ctx, out])

It generates random samples
from a Poisson distribution.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

97

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randn
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson

Apache MXNet

exponential([scale, shape, dtype, ctx, out])

It generates samples from an
exponential distribution.

gamma([alpha, beta, shape, dtype, ctx, out])

It generates random samples
from a gamma distribution.

multinomial(data[, shape, get_prob, out, dtype])

It generates concurrent sampling
from multiple multinomial
distributions.

negative_binomial([k, p, shape, dtype, ctx, out])

It generates
from a negative
distribution.

random samples
binomial

It generates random samples

. . . . from a generalised negative
generalized_negative_binomial([mu, alpha, ...]) binomial distribution.
It shuffles the elements
shuffle(data, **kwargs) randomly.

randint(low, high[, shape, dtype, ctx, out])

It generates
from a
distribution.

random samples
discrete uniform

exponential_like([data, lam, out, name])

It generates random samples
from an exponential distribution
according to the input array
shape.

gamma_like([data, alpha, beta, out, name])

It generates random samples

from a gamma distribution
according to the input array
shape.

generalized_negative_binomial_like([data, ...])

It generates random samples
from a generalised negative
binomial distribution, according
to the input array shape.

negative_binomial_like([data, k, p, out, name])

It generates random samples
from a negative binomial
distribution, according to the
input array shape.

normal_like([data, loc, scale, out, name])

It generates random samples
from a normal (Gaussian)
distribution, according to the
input array shape.

poisson_like([data, lam, out, name])

It generates random samples

from a Poisson distribution,
according to the input array
shape.

uniform_like([data, low, high, out, name])

It generates random samples
from a uniform distribution,

tutorialspoint

EIMPLYEAGSY LEARMNING

)

98

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.multinomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.shuffle
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randint
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform_like

Apache MXNet

according to the input array
shape.

Implementation Examples

In the example below, we are going to draw random samples from a uniform distribution.
For this will be using the function uniform().

mx.nd.random.uniform(@, 1)

Output

The output is mentioned below:

[0.12381998]
<NDArray 1 @cpu(@)>

mx.nd.random.uniform(-1, 1, shape=(2,))

Output

The output is given below:

[0.558102 0.69601643]
<NDArray 2 @cpu(0)>

low = mx.nd.array([1,2,3])
high = mx.nd.array([2,3,4])

mx.nd.random.uniform(low, high, shape=2)

Output

You will see the following output:

[[1.8649333 1.8073189]
[2.4113967 2.5691009]
[3.1399727 3.4071832]]

<NDArray 3x2 @cpu(@)>

In the example below, we are going to draw random samples from a generalized negative
binomial distribution. For this, we will be using the function
generalized_negative_binomial().

99

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

mx.nd.random.generalized_negative binomial(10, 0.5)

Output

When you execute the above code, you should see the following output:

[1.]
<NDArray 1 @cpu(@)>

mx.nd.random.generalized_negative_binomial(10, 0.5, shape=(2,))

Output

The output is given herewith:

[16. 23.]
<NDArray 2 @cpu(0)>

mu = mx.nd.array([1,2,3])
alpha = mx.nd.array([0.2,0.4,0.6])

mx.nd.random.generalized_negative_binomial(mu, alpha, shape=2)

Output

Given below is the output of the code:

[[0. ©.]
[4. 1.]
[9. 3.1]

<NDArray 3x2 @cpu(0)>

ndarray.utils

The utility NDArray API is defined in the ndarray.utils package. As name implies, it provides
the utility functions for NDArray and BaseSparseNDArray.

Functions and their parameters

Following are some of the important functions and their parameters covered by
mxnet.ndarray.utils API:

Function and its Parameters Definition

This function will return a new array of given shape

zeros(shapel, ctx, dtype, stype]) and type, filled with zeros.

100

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.zeros

Apache MXNet

It will returns a new array of given shape and type,

empty(shape[, ctx, dtype, stype]) without initialising entries.

As name implies, this function will create an array

array(source_array[, ctx, dtype]) from any object exposing the array interface.

load(fname) It will load an array from file.

As name implies, this function will load an array

load_frombuffer(buf) dictionary or list from a buffer

This function will save a list of arrays or a dict of

save(fname, data) str->array to file

Implementation Examples

In the example below, we are going to return a new array of given shape and type, filled
with zeros. For this, we will be using the function zeros().

mx.nd.zeros((1,2), mx.cpu(), stype='csr')

Output

This produces the following output:

<CSRNDArray 1x2 @cpu(@)>

mx.nd.zeros((1,2), mx.cpu(), 'floatle', stype='row_sparse').asnumpy()

Output

You will receive the following output:

array([[0., ©.]], dtype=floatl6)

In the example below, we are going to save a list of arrays and a dictionary of strings. For
this, we will be using the function save().

X

mx.nd.zeros((2,3))

y = mx.nd.ones((1,4))
mx.nd.save('list', [x,y])
mx.nd.save('dict', {'x':x, 'y':y})

mx.nd.load('list")

Output

Upon execution, you will receive the following output:

101

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.empty
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.array
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.load
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.load_frombuffer
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.save

Apache MXNet

[
[[0. . 0.]

[6. 0. 0.]]
<NDArray 2x3 @cpu(9)>,
[[1. 1. 1. 1.]]
<NDArray 1x4 @cpu(0)>]

mx.nd.load('my_dict")

Output

The output is shown below:

{'x":
[[0. 0. 0.]
[0. 0. 0.]]

<NDArray 2x3 @cpu(@)>, 'y':

[[1. 1. 1. 1.]]
<NDArray 1x4 @cpu(@)>}

m tutorialspoint

AGSBYLEARMI

H G

102

13. Apache MXNet — Python API gluon

As we have already discussed in previous chapters that, MXNet Gluon provides a clear,
concise, and simple API for DL projects. It enables Apache MXNet to prototype, build, and
train DL models without forfeiting the training speed.

Core Modules

Let us learn the core modules of Apache MXNet Python application programming interface
(API) gluon.

gluon.nn

Gluon provides a large number of build-in NN layers in gluon.nn module. That is the
reason it is called the core module.

Methods and their parameters

Following are some of the important methods and their parameters covered by
mxnet.gluon.nn core module:

Methods and its Parameters Definition

As name implies, this method
applies an activation function to

Activation(activation, **kwargs) input

This is average pooling operation
AvgPooll1D([pool_size, strides, padding, ...]) for temporal data.

This is average pooling operation
AvgPool2D([pool_size, strides, padding, ...]) for spatial data.

This is Average pooling operation
for 3D data. The data can be

AvgPool3D([pool_size, strides, padding, ...]) spatial or spatio-temporal.

It represents batch normalisation
BatchNorm([axis, momentum, epsilon, center, ...]) | layer.

It also represents batch
normalisation layer but with Relu

BatchNormReLU([axis, momentum, epsilon, ...]) activation function

It gives the base class for all
neural network layers and

Block([prefix, params]) models

This method is used for 1-D
convolution layer. For example,

Conv1D(channels, kernel_size[, strides, ...]) temporal convolution

103

@ tutorialspoint

EIMPLYEAGSY LEARMNING

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Activation
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.BatchNorm
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.BatchNormReLU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Block
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv1D

Apache MXNet

Conv1lDTranspose(channels, kernel_size[, ...])

This method is used for
Transposed 1D convolution layer.

Conv2D(channels, kernel_size[, strides, ...])

This method is used for 2D
convolution layer. For example,
spatial convolution over images).

Conv2DTranspose(channels, kernel_size[, ...])

This method is used for
Transposed 2D convolution layer.

Conv3D(channels, kernel_size[, strides, ...])

This method is used for 3D
convolution layer. For example,
spatial convolution over volumes.

Conv3DTranspose(channels, kernel_size[, ...])

This method is used for
Transposed 3D convolution layer.

Dense(units[, activation, use_bias, ...])

This method represents for your
regular densely-connected NN
layer.

Dropout(rate[, axes])

As name implies, the method
applies Dropout to the input.

ELU([alpha])

This method is used for
Exponential Linear Unit (ELU).

Embedding(input_dim, output_dim[, dtype, ...])

It turns non-negative integers
into dense vectors of fixed size.

Flatten(**kwargs)

This method flattens the input to
2-D.

GELU(**kwargs)

This method is used for Gaussian
Exponential Linear Unit (GELU).

GlobalAvgPool1D([layout])

With the help of this method, we
can do global average pooling
operation for temporal data.

GlobalAvgPool2D([layout])

With the help of this method, we
can do global average pooling
operation for spatial data.

GlobalAvgPool3D([layout])

With the help of this method, we
can do global average pooling
operation for 3-D data.

GlobalMaxPool1D([layout])

With the help of this method, we
can do global max pooling
operation for 1-D data.

GlobalMaxPool2D([layout])

With the help of this method, we
can do global max pooling
operation for 2-D data.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

104

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv1DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv2DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv3DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Dense
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Dropout
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.ELU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Embedding
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Flatten
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GELU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool2D

Apache MXNet

With the help of this method, we

GroupNorm([num_groups, epsilon, center, ...])

can do global max pooling
GlobalMaxPool3D([layout]) operation for 3-D data.
This method applies group

normalization to the n-D input
array.

HybridBlock([prefix, params])

This method supports forwarding
with both Symbol and NDArray.

With the help of this method we
can wrap an operator or an

HybridLambda(function[, prefix]) expression as a HybridBlock
object.
It stacks HybridBlocks
HybridSequential([prefix, params]) sequentially.

InstanceNorm([axis, epsilon, center, scale, ...])

This method applies instance
normalisation to the n-D input
array.

Implementation Examples

In the example below, we are going to use Block() which gives the base class for all neural

network layers and models.

from mxnet.gluon import Block, nn
class Model(Block):
def __init__ (self, **kwargs):

super(Model, self)._ init_ (**kwargs)

use name_scope to give child Blocks appropriate names.

with self.name_scope():
self.dense® = nn.Dense(20)
self.densel = nn.Dense(20)

def forward(self, x):

x = mx.nd.relu(self.densed(x))

return mx.nd.relu(self.densel(x))

model = Model()
model.initialize(ctx=mx.cpu(9))

model(mx.nd.zeros((5, 5), ctx=mx.cpu(@)))

Output

You will see the following output:

)

tutorialspoint

EIMPLYEAGSY LEARMNING

105

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GroupNorm
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridBlock
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridLambda
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridSequential
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.InstanceNorm

Apache MXNet

[[6. 0. 0. 0. 0. ©0. 0. 0. ©0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ©0. 0. 0. ©0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. ©. 0. 0. 0. 0. 0. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. ©. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

<NDArray 5x20 @cpu(@)>

In the example below, we are going to use HybridBlock() that supports forwarding with
both Symbol and NDArray.

import mxnet as mx

from mxnet.gluon import HybridBlock, nn

class Model(HybridBlock):
def __init__ (self, **kwargs):
super(Model, self)._ init__ (**kwargs)
use name_scope to give child Blocks appropriate names.
with self.name_scope():
self.dense® = nn.Dense(20)

self.densel = nn.Dense(20)

def forward(self, x):
X = nd.relu(self.dense@(x))
return nd.relu(self.densel(x))
model = Model()

model.initialize(ctx=mx.cpu(0))

model.hybridize()

model(mx.nd.zeros((5, 5), ctx=mx.cpu(@)))

Output

The output is mentioned below:

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. ©. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]
<NDArray 5x20 @cpu(@)>
106
8 g . .
§fi>tutorialspoint

Apache MXNet

gluon.mn

Gluon provides a large number of build-in recurrent neural network (RNN) layers in
gluon.rnn module. That is the reason, it is called the core module.

Methods and their parameters

Following are some of the important methods and their parameters covered by
mxnet.gluon.nn core module:

Methods and its Parameters Definition

It is used for Bidirectional Recurrent
BidirectionalCell(l_cell, r_cell[, ...]) Neural Network (RNN) cell.

This method will apply dropout on the
DropoutCell(rate[, axes, prefix, params]) given input.

It applies a multi-layer gated
recurrent unit (GRU) RNN to a given

GRU(hidden_size[, num_layers, layout, ...]) input sequence

It is used for Gated Rectified Unit
GRUCell(hidden_size[, ...]) (GRU) network cell.

Thi thod ts hybridize.
HybridRecurrentCell([prefix, params]) IS method stipports hybridize

With the help of this method we can
sequentially stack multiple HybridRNN

HybridSequentialRNNCell([prefix, params]) cells

It applies a multi-layer long short-
term memory (LSTM) RNN to a given

LSTM(hidden_size[, num_layers, layout, ...]) input sequence

It is used for Long-Short Term
LSTMCell(hidden_size[, ...]) Memory (LSTM) network cell.

It is the Base class for modifier cells.
ModifierCell(base_cell)

It applies a multi-layer Elman RNN
with tanh or ReLU non-linearity to a

RNN(hidden_size[, num_layers, activation, ...]) given input sequence.

It is used for ElIman RNN recurrent
RNNCell(hidden_size[, activation, ...]) neural network cell.

It represents the abstract base class
RecurrentCell([prefix, params]) for RNN cells.

With the help of this method we can
SequentialRNNCell([prefix, params]) sequentially stack multiple RNN cells.

This method applies Zoneout on the
ZoneoutCell(base_cell[, zoneout_outputs, ...]) | base cell.

Implementation Examples

¥

107

tutorialspoint

EIMPLYEAGSY LEARMING

https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.BidirectionalCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.DropoutCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.GRU
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.GRUCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.HybridRecurrentCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.HybridSequentialRNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.LSTM
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.LSTMCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.ModifierCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RNN
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RecurrentCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.SequentialRNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.ZoneoutCell

Apache MXNet

In the example below, we are going to use GRU() which applies a multi-layer gated
recurrent unit (GRU) RNN to a given input sequence.

layer = mx.gluon.rnn.GRU(100, 3)
layer.initialize()

input_seq = mx.nd.random.uniform(shape=(5, 3, 10))
out_seq = layer(input_seq)

ho = mx.nd.random.uniform(shape=(3, 3, 100))
out_seq, hn = layer(input_seq, ho)

out_seq

Output

This produces the following output:

[[[1.50152072e-01 19012511e-01 1.02390535e-01 ... 4.35803324e-01

.30406499e-01 .30152437e-02]

.91542172e-01 .02243155e-01 1.73325196e-01 ... 5.65296151e-02

.22257316e-01 28903517e-01

5.
1 3
2 1
1.76546033e-02 1.66693389%e-01]
2 3.76294643e-01 2.11277917e-01 ... 2.
3 1

.43954474e-01 .52770668e-01]]

[[1.40634328e-01 2.93247789e-01 5.50393537e-0230207980e-01
6.61415309e-02 2.70989928e-02]

[1.11081995e-01 7.20834285e-02 1.08342394e-0128330195e-02
6.79589901e-03 1.25501186e-01]

[1.15944080e-01 2.41565228e-01 1.18612610e-01 ... 1.14908054e-01
1.61080107e-01 1.15969211e-01]]

hn
Output

This produces the following output:

[[[-6.08105101e-02 3.86217088e-02 6.64453954e-03 8.18805695e-02
3.85607071e-02 -1.36945639e-02 7.45836645e-03 -5.46515081e-03
9.49622393e-02 6.39371723e-02 -6.37890724e-03 3.82240303e-02

9.11015049e-02 -2.01375950e-02 -7.29381144e-02 6.93765879e-02

108

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

.71829776e-02
.72040805e-02
.79770005e-02
.16915874e-01
.60370195e-02
.08297703e-02
.88266212e-02
.46166918e-02
.37298454e-02
.00907174e-02
.30150884e-02
.39616570e-02

6.
7.

7.

N B Ww

64435029e-02
06537142e-02
.10734522e-01
95962065e-02
.17055440e-01
.24978097e-02
.04114193e-02
.41122833e-02
.28888980e-01
.37077095e-03
.11416787e-01
.80710578e-02

-8.
-3.

-3.

-1.

-2.

45306814e-02
93818803e-02

.56721435e-02

06530762e-02

.85361822e-03
.25245082e-02
.28791538e-02
.80885363e-02
.07202265e-02

78839862e-02

.12221760e-02

28817668e-02

-1.

-6.

-1.

03075653e-01

.16211614e-03

93409378e-03

.42394680e-02
.16660878e-01
.28673983e-02
.70827350e-03
.37745279%e-03
.50503756e-02
.90695080e-02

13236710e-01

.92073174e-02

In the example below we are going to use LSTM() which applies a long-short term memory
(LSTM) RNN to a given input sequence.

layer

layer.

initialize()

mx.gluon.rnn.LSTM(100, 3)

input_seq = mx.nd.random.uniform(shape=(5, 3, 10))

out_seq = layer(input_seq)

ho

coO =

out_se

out_se

q, hn
q

layer(input_seq, [h0,c0O])

mx.nd.random.uniform(shape=(3, 3, 100))

mx.nd.random.uniform(shape=(3, 3, 100))

Output

The output is mentioned below:

(L[9.
1

[1.
2.
[7.

00025964e-02 3.

.25569820e-01

55962542e-01
30574399¢e-01
83204585e-02

.28254429e-01

41036932e-02

.23949116e-02

2
-3

96071747e-02 1.83841765e-01 ...

.15555862e-01]

.10300849e-02 1.76772922e-01 ...

.81707942e-02]

.53361529e-03 1.27262697e-01 ...

.55299702e-02]]

.35250352e-02 9.87644792e-02 ...

.00922674e-01]

3.95872220e-02

1.92474753e-01

9.97719541e-02

5.89378644e-03

)

=

tutorialspoint

PLYEAGSYLEARMNINIG

109

Apache MXNet

[8.59075040e-02 -1.67027581e-02 9.69351009e-02 ... 1.17763653e-01
9.71239135e-02 2.25218050e-02]
[4.34580036e-02 7.62207608e-04 6.37005866e-02 ... 6.14888743e-02

5.96345589e-02

4.72368896e-02]]

hn

Output

When you run the code, you will see the following output:

[

(e 2.
1.

21408084e-02
78788435e-02

.56616641e-03
.21173314e-03
.38765781e-03

.06449470e-02
.34188128e-03
.43960279e-02
.23341820e-03
.55221792e-02

-2.
-1.

.42750628e-02
.99269159%e-02
.80876666e-03

78371759%e-02
38521893e-02

.77471633e-02
.46054149e-02
.92892228e-02
.68163737e-02
.05655073e-02

-1.

-1.

.53067932e-03
.65306023e-02

15729487e-02
90690923e-02

.06938594e-03

.65885007e-02
.19911093e-02
.74766723e-02
.43402853e-03

L N U1 O BB

4.
3.
-4,
.24557598¢-03 -3.

.22849066e-02
.42553642e-02
.98640442e-02
.21447181e-02
.21346042e-02

.63008019¢e-02

11194898e-02
40303481e-02
11836170e-02
40388380e-02

Training Modules

The training modules in Gluon are as follows:

gluon.loss

In mxnet.gluon.loss module, Gluon provides pre-defined loss function. Basically, it has
the losses for training neural network. That is the reason it is called the training module.

Methods and their parameters

Following are some of the important methods and their parameters covered by
mxnet.gluon.loss training module:

Methods and its Parameters Definition

This acts as the base class for loss.

Loss(weight, batch_axis, **kwargs)

110

tutorialspoint

PLYEAGSYLEARMNINIG

=

)

https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.Loss

Apache MXNet

L2Loss([weight, batch_axis])

It calculates the mean squared
error (MSE)
between label and prediction(pr
ed).

LiLoss([weight, batch_axis])

It calculates the mean absolute
error (MAE)
between label and pred.

SigmoidBinaryCrossEntropyLoss(]...])

This method is used for the cross-
entropy loss for binary
classification.

SigmoidBCELoss

This method is used for the cross-
entropy loss for binary
classification.

SoftmaxCrossEntropyLoss([axis, ...])

It computes the softmax cross-
entropy loss (CEL).

SoftmaxCELoss

It also computes the softmax cross
entropy loss.

KLDivLoss([from_logits, axis, weight, ...])

It is used for the Kullback-Leibler
divergence loss.

CTCLoss([layout, label_layout, weight])

It is wused for connectionist
Temporal Classification Loss (TCL).

HuberLoss([rho, weight, batch_axis])

It calculates smoothed L1 loss. The
smoothed L1 loss will be equal to
L1 loss if absolute error exceeds
rho but is equal to L2 loss
otherwise.

HingeLoss([margin, weight, batch_axis])

This method calculates the hinge
loss function often used in SVMs:

SquaredHingelLoss([margin, weight, batch_axis

D

This method calculates the soft-
margin loss function used in SVMs:

LogisticLoss([weight, batch_axis, label_format])

This method calculates the logistic
loss.

TripletLoss([margin, weight, batch_axis])

This method calculates triplet loss
given three input tensors and a
positive margin.

PoissonNLLLoss([weight, from_logits, ...])

The function calculates the

Negative Log likelihood loss.

CosineEmbeddinglLoss([weight, batch_axis, ma

rgin])

The function computes the cosine
distance between the vectors.

SDMLLoss([smoothing_parameter, weight, ...])

This method calculates Batchwise
Smoothed Deep Metric Learning
(SDML) Loss given two input

tutorialspoint

EIMPLYEAGSY LEARMNING

)

111

https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.L2Loss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.L1Loss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SigmoidBCELoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SoftmaxCrossEntropyLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SoftmaxCELoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.KLDivLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.CTCLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.HuberLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.HingeLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SquaredHingeLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.LogisticLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.TripletLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.PoissonNLLLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.CosineEmbeddingLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SDMLLoss

Apache MXNet

tensors and a smoothing weight
SDM Loss. It learns similarity
between paired samples by using
unpaired samples in the minibatch
as potential negative examples.

Example

As we know that mxnet.gluon.loss.loss will calculate the MSE(Mean Squared Error)
between /label and prediction (pred). It is done with the help of following formula:

L=-
2

Yillabel; — pred;|?

gluon.parameter

mxnet.gluon.parameter is a container that holds the parameters i.e. weights of the
Blocks.

Methods and their parameters

Following are some of the important methods and their parameters covered by
mxnet.gluon.parameter training module:

Methods and its Parameters Definition

This method will cast data and gradient of this
cast(dtype) Parameter to a new data type.

This method will return a copy of this parameter
data([ctx]) on one context.

This method will return a gradient buffer for this
grad([ctx]) parameter on one context.

This method will initialize parameter and gradient
initialize([init, ctx, default_init, ...]) | arrays.

This method will return a list of contexts this
list_ctx() parameter is initialized on.

This method will return copies of this parameter
on all contexts. It will be done in the same order

list_data() as creation.

This method will return gradient buffers on all
. contexts. This will be done in the same order
list_grad()

as values().

This method will return copies of the ‘row_sparse’
parameter on all contexts. This will be done in

list_row_sparse_data(row_id) the same order as creation.

This method will re-assign Parameter to other
reset_ctx(ctx) contexts.

112

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.cast
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.grad
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.initialize
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_ctx
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_grad
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_row_sparse_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.reset_ctx

Apache MXNet

row_sparse_data(row_id)

4

This method will return a copy of the ‘row_sparse
parameter on the same context as row_.id’s.

set_data(data)

This method will set this parameter’s value on all
contexts.

var()

This method will return a symbol representing
this parameter.

zero_grad()

This method will set the gradient buffer on all
contexts to 0.

Implementation Example

In the example below, we will initialize parameters and the gradients arrays by using

initialize() method as follows:

weight = mx.gluon.Parameter('weight', shape=(2, 2))

weight.initialize(ctx=mx.cpu(0))

weight.data()

Output:

The output is mentioned below:

[[-0.0256899 ©.06511251]
[-0.00243821 -0.00123186]]
<NDArray 2x2 @cpu(0)>

weight.grad()

Output

The output is given below:

[[0. ©.]

[0. 0.]]
<NDArray 2x2 @cpu(0)>

weight.data(mx.gpu(@))

weight.initialize(ctx=[mx.gpu(@), mx.gpu(1l)])

Output

You will see the following output:

tutorialspoint

EIMPLYEAGSY LEARMNING

)

113

https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.row_sparse_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.set_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.var
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.zero_grad

Apache MXNet

[[-0.00873779 -0.02834515]
[©.05484822 -0.06206018]]
<NDArray 2x2 @gpu(@)>

weight.data(mx.gpu(1))

Output

When you execute the above code, you should see the following output:

[[-0.00873779 -0.02834515]
[©.05484822 -0.06206018]]
<NDArray 2x2 @gpu(1l)>

gluon.trainer

mxnet.gluon.trainer applies an Optimizer on a set of parameters. It should be used

together with autograd.

Methods and their parameters

Following are some of the important methods and their parameters covered by

mxnet.gluon.trainer training module:

Methods and its Parameters

Definition

allreduce_grads()

This method will reduce the gradients from
different contexts for each parameter
(weight).

load_states(fname)

As name implies, this method will load
trainer states.

save_states(fhame)

As name implies, this method will save
trainer states.

set_learning_rate(lr)

This method will set a new learning rate of
the optimizer.

step(batch_size[, ignore_stale_grad])

This method will make one step of
parameter update. It should be called after
autograd.backward() and outside of
record() scope.

update(batch_size[, ignore_stale_grad])

This method will also make one step of
parameter update. It should be called after
autograd.backward() and outside of
record() scope and after trainer.update().

tutorialspoint

EIMPLYEAGSY LEARMNING

)

114

https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.allreduce_grads
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.load_states
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.save_states
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.set_learning_rate
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.step
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.update

Data Modules

The data modules of Gluon are explained below:

gluon.data

Apache MXNet

Gluon provides a large number of build-in dataset utilities in gluon.data module. That is

the reason it is called the data module.

Classes and their parameters

Following are some of the important methods and their parameters covered by
mxnet.gluon.data core module. These methods are typically related to Datasets,

Sampling, and DatalLoader.

Methods and its Parameters

Definition

ArrayDataset(*args)

This method represents a dataset
which combines two or more than
two dataset-like objects. For
example, Datasets, lists, arrays,
etc.

BatchSampler(sampler, batch_size[, last_batch])

This method wraps over
another Sampler. Once wrapped
it returns the mini batches of
samples.

Dataloader(dataset[, batch_size, shuffle, ...])

Similar to BatchSampler but this
method loads data from a dataset.
Once loaded it returns the mini
batches of data.

Dataset

This represents the abstract
dataset class.

FilterSampler(fn, dataset)

This method represents the
samples elements from a Dataset
for which fn (function) returns
True.

RandomSampler(length)

This method represents samples
elements from [O, length)
randomly without replacement.

RecordFileDataset(filename)

It represents a dataset wrapping
over a RecordlO file. The
extension of the file is .rec.

Sampler

This is the base class for samplers.

SequentialSampler(length[, start])

It represents the sample elements
from the set [start, start+length)
sequentially.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

115

https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.ArrayDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.BatchSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.DataLoader
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.Dataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.FilterSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.RandomSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.RecordFileDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.Sampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.SequentialSampler

Apache MXNet

This represents the simple Dataset
wrapper especially for lists and

SimpleDataset(data) arrays

Implementation Examples

In the example below, we are going to use gluon.data.BatchSampler() API, which
wraps over another sampler. It returns the mini batches of samples.

import mxnet as mx

from mxnet.gluon import data

sampler = mx.gluon.data.SequentialSampler(15)

batch_sampler = mx.gluon.data.BatchSampler(sampler, 4, 'keep')
list(batch_sampler)

Output

The output is mentioned below:

([e, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14]]

gluon.data.vision.datasets

Gluon provides a large number of pre-defined vision dataset functions in
gluon.data.vision.datasets module.

Classes and their parameters

MXNet provides us useful and important datasets, whose classes and parameters are given
below:

Classes and its Parameters Definition

This is a useful dataset providing us the
handwritten digits. The url for MNIST
MNIST([root, train, transform]) dataset is
http://yann.lecun.com/exdb/mnist

This dataset consists of Zalando’s article
images consisting of fashion products. Itis a
drop-in replacement of original MNIST
FashionMNIST([root, train, transform]) | dataset. You can get this dataset from
https://github.com/zalandoresearch/fashio
n-mnist

This is an image classification dataset
from https://www.cs.toronto.edu/~kriz/cifa
CIFAR10([root, train, transform]) r.html. In this dataset each sample is an
image with shape (32, 32, 3).

116

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.SimpleDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.MNIST
http://yann.lecun.com/exdb/mnist
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.FashionMNIST
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.CIFAR10
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Apache MXNet

This is CIFAR100 image classification

dataset
CIFAR100([root, fine_label, train, trans | from https://www.cs.toronto.edu/~kriz/cifa
form]) r.html. It also has each sample is an image

with shape (32, 32, 3).

This dataset is wrapping over a RecordIO file
ImageRecordDataset that contains images. In this each sample is

(filenamel, flag, transform]) an image with its corresponding label.

This is a dataset for loading image files that

ImageFolderDataset)
are stored in a folder structure.

(root[, flag, transform])

This is a dataset for loading image files that

ImagelistDataset
9 are specified by a list of entries.

([root, imglist, flag])

Example

In the example below, we are going to show the use of ImageListDataset(), which is used
for loading image files that are specified by a list of entries:

written to text file *.1lst

root/cat/ee0l. jpg
root/cat/xxxa.jpg
root/cat/yyyb.jpg
root/dog/123.jpg
root/dog/023.jpg

vi A W N RO
P P PO OO

root/dog/wwww.jpg

A pure list, each item is a list [imagelabel: float or list of float,
imgpath]

[[@, root/cat/eeel.jpg]
[0, root/cat/xxxa.jpg]
[0, root/cat/yyyb.jpg]
[1, root/dog/123.jpg]
[1, root/dog/023.jpg]
[1, root/dog/wwww.jpg]]

Utility Modules

The utility modules in Gluon are as follows:

117

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.CIFAR100
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageRecordDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageFolderDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageListDataset

Apache MXNet

gluon.utils

Gluon provides a large number of build-in parallelisation utility optimiser in gluon.utils
module. It provides variety of utilities for training. That is the reason it is called the utility
module.

Functions and their parameters

Following are the functions and their parameters consisting in this utility module named
gluon.utils:

Functions and its Parameters Definition

This function is usually use for data
parallelism and each slice is sent to
one device i.e. GPU. It splits an
NDArray into num_slice slices
along batch_axis.

split_data(data, num_slice[, batch_axis, ...])

This function splits an NDArray
into len(ctx_list) slices

along batch_axis. The only
split_and_load(data, ctx_list[, batch_axis, ...]) | difference from above split_data ()
function is that, it also loads each
slice to one context in ctx_list.

The job of this function is to rescale
NDArrays in such a way that the sum
clip_global_norm(arrays, max_norm|[, ...]) of their 2-norm is smaller
than max_norm.

This function will check whether the
shal hash of the file content

check_shai(filename, shal_hash) matches the expected hash or not.

As name specifies, this function will
download(url[, path, overwrite, shal_hash, ...]) | download a given URL.

This function will implement atomic
os.replace. it will be done with

replace_file(src, dst) Linux and OSX

118

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.split_data
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.split_and_load
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.clip_global_norm
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.check_sha1
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.download
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.replace_file

Apache MXNet — Python API autograd and

initializer

This chapter deals with the autograd and initializer API in MXNet.

mxnet.autograd

This is MXNet’ autograd API for NDArray. It has the following class:

Class: Function()

It is used for customised differentiation in autograd. It can be written as
mxnet.autograd.Function. If, for any reason, the user do not want to use the gradients
that are computed by the default chain-rule, then he/she can use Function class of
mxnet.autograd to customize differentiation for computation. It has two methods namely
Forward() and Backward().

Let us understand the working of this class with the help of following points:

e First, we need to define our computation in the forward method.

e Then, we need to provide the customized differentiation in the backward method.

e Now during gradient computation, instead of user-defined backward function,
mxnet.autograd will use the backward function defined by the user. We can also

cast to numpy array and back for some operations in forward as well as backward.

Example

Before using the mxnet.autograd.function class, let’s define a stable sigmoid function with
backward as well as forward methods as follows:

class sigmoid(mx.autograd.Function):
def forward(self, x):
y =1/ (1 + mx.nd.exp(-x))
self.save_for_backward(y)

return y

def backward(self, dy):
y, = self.saved_tensors

return dy * y * (1-y)

Now, the function class can be used as follows:

func = sigmoid()

x = mx.nd.random.uniform(shape=(10,))

119

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

x.attach_grad()

with mx.autograd.record():
m = func(x)
m.backward()

dx_grad = x.grad.asnumpy()

dx_grad

Output

When you run the code, you will see the following output:

array([0.21458015, ©.21291625, 0.23330082, 0.2361367 , 0.23086983,
0.24060014, 0.20326573, 0.21093895, 0.24968489, 0.24301809],
dtype=float32)

Methods and their parameters

Following are the methods and their parameters of mxnet.autogard.function class:

Methods and its Parameters Definition

forward (heads[, head_grads, retain_graph, ...]) This method is used for forward
computation.

This method is used for backward
computation. It computes the
gradients of heads with respect
to previously marked variables.
This method takes as many
backward(heads[, head_grads, retain_graph, ...]) | inputs as forward’s output. It also
returns as many NDArray’s as
forward’s inputs.

This method is used to retrieve
recorded computation history

get_symbol(x) as Symbol.

This method computes the
gradients of heads with respect
to variables. Once computed,
grad(heads, variables[, head_grads, ...]) instead of storing into
variable.grad, gradients will be
returned as new NDArrays.

120

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.backward
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.get_symbol
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.grad

Apache MXNet

is_recording()

With the help of this method we
can get status on recording and
not recording.

is_training()

With the help of this method we
can get status on training and
predicting.

mark_variables(variables, gradients[, grad_reqs])

This method will mark NDArrays
as variables to compute gradient
for autograd. This method is
same as function .attach_grad()
in a variable but the only
difference is that with this call we
can set the gradient to any value.

pause([train_mode])

This method returns a scope
context to be used in ‘with’
statement for codes which do not
need gradients to be calculated.

predict_mode()

This method returns a scope
context to be wused in ‘with’
statement in which forward pass
behavior is set to inference mode
and that is without changing the
recording states.

record([train_mode])

It will return an autograd
recording scope context to be
used in ‘with’ statement and
captures code which needs
gradients to be calculated.

set_recording(is_recording)

Similar to is_recoring(), with the
help of this method we can get
status on recording and not
recording.

set_training(is_training)

Similar to is_traininig(), with the
help of this method we can set
status to training or predicting.

train_mode()

This method will return a scope
context to be wused in ‘with’
statement in which forward pass
behavior is set to training mode
and that is without changing the
recording states.

Implementation Example

In the below example, we will be using mxnet.autograd.grad() method to compute the

gradient of head with respect to variables:

tutorialspoint

EIMPLYEAGSY LEARMNING

)

121

https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.is_recording
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.is_training
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.mark_variables
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.pause
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.predict_mode
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.record
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.set_recording
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.set_training
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.train_mode

Apache MXNet

X = mx.nd.ones((2,))
x.attach_grad()
with mx.autograd.record():
z = mx.nd.elemwise add(mx.nd.exp(x), Xx)
dx_grad = mx.autograd.grad(z, [x], create_graph=True)

dx_grad

Output

The output is mentioned below:

[
[3.7182817 3.7182817]

<NDArray 2 @cpu(@)>]

We can use mxnet.autograd.predict_mode() method to return a scope to be used in ‘with’
statement:

with mx.autograd.record():
y = model(x)
with mx.autograd.predict_mode():
y = sampling(y)
backward([y])

mxnet.intializer

This is MXNet’ API for weigh initializer. It has the following classes:

Classes and their parameters

Following are the methods and their parameters of mxnet.autogard.function class:

Classes and its Parameters Definition

With the help of this class we can
initialize weight for up-sampling

Bilinear() layers.

This class initializes the weights to
a given value. The value can be a
scalar as well as NDArray that
matches the shape of the
parameter to be set.

Constant(value)

As name implies, this class
initialize parameters for the fused
FusedRNN(init, num_hidden, num_layers, mode) | Recurrent Neural Network (RNN)
layers.

122

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Bilinear
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Constant
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.FusedRNN

Apache MXNet

InitDesc

It acts as the descriptor for the
initialization pattern.

Initializer(**kwargs)

This is the base class of an
initializer.

LSTMBias([forget_bias])

This class initialize all biases of an
LSTMCell to 0.0 but except for the
forget gate whose bias is set to a
custom value.

Load(param|[, default_init, verbose])

This class initialize the variables by
loading data from file or dictionary.

MSRAPrelu([factor_type, slope])

As name implies, this class
Initialize the weight according to a
MSRA paper.

Mixed(patterns, initializers)

It initializes the parameters using
multiple initializers.

Normal([sigma])

Normal() class initializes weights
with random values sampled from
a normal distribution with a mean
of zero and standard deviation
(SD) of sigma.

One()

It initializes the weights of
parameter to one.

Orthogonal([scale, rand_type])

As name implies, this class
initialize weight as orthogonal
matrix.

Uniform([scale])

It initializes weights with random
values which is uniformly sampled
from a given range.

Xavier([rnd_type, factor_type, magnitude])

It actually returns an initializer that
performs “Xavier” initialization for
weights.

Zero()

It initializes the weights of
parameter to zero.

Implementation Example

In the below example, we will be using mxnet.init.Normal() class create an initializer

and retrieve its parameters:

init = mx.init.Normal(0.8)

init.dumps()

Output

The output is given below:

)

tutorialspoint

EIMPLYEAGSY LEARMNING

123

https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.InitDesc
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Initializer
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.LSTMBias
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Load
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.MSRAPrelu
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Mixed
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Normal
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.One
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Orthogonal
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Uniform
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Xavier
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Zero

Apache MXNet

'["normal™, {"sigma": 0.8}]"'

init = mx.init.Xavier(factor_type="in", magnitude=2.45)

init.dumps()

Output

The output is shown below:

'["xavier", {"rnd_type": "uniform", "factor_type": "in", "magnitude": 2.45}]"

In the below example, we will be using mxnet.initializer.Mixed() class to initialize
parameters using multiple initializers:

init = mx.initializer.Mixed(['bias’', '.*'], [mx.init.Zero(),
mx.init.Uniform(0.1)])

module.init_params(init)

for dictionary in module.get_params():
for key in dictionary:
print(key)
print(dictionary[key].asnumpy())

Output

The output is shown below:

fullyconnectedl_weight

[[9.0097627 0.01856892 ©0.04303787]]
fullyconnectedl_bias

[e.]

124

tutorialspoint

EIMPLYEAGSY LEARMNING

)

15. Apache MXNet — Python APl Symbol

In this chapter, we will learn about an interface in MXNet which is termed as Symbol.

Mxnet.ndarray

Apache MXNet's Symbol API is an interface for symbolic programming. Symbol API
features the use of the following:

e Computational graphs
e Reduced memory usage

e Pre-use function optimization

The example given below shows how one can create a simple expression by using MXNet's
Symbol API:

An NDArray by using 1-D and 2-D ‘array’ from a regular Python list:

import mxnet as mx
Two placeholders namely x and y will be created with mx.sym.variable

mx.sym.Variable('x")

x
I

mx.sym.Variable('y")

I S
1}

The symbol here is constructed using the plus ‘+’ operator.

Z=X+Yy

Output

You will see the following output:

<Symbol _pluse>

(X5 Y, 2)

Output

The output is given below:

(<Symbol x>, <Symbol y>, <Symbol _pluse>)

Now let us discuss in detail about the classes, functions, and parameters of ndarray API
of MXNet.

Classes

125

w tutorialspoint

EIMPLYEAGSY LEARMNING

Apache MXNet

Following table consists of the classes of Symbol API of MXNet:

Class Definition

Symbol(handle) | This class namely symbol is the symbolic graph of the Apache

MXNet.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.Symbol API:

Function and its Parameters

Definition

Activation([data, act_type, out, name])

It applies an activation function
element-wise to the input. It
supports relu, sigmoid, tanh,
softrelu, softsign activation
functions.

BatchNorm([data, gamma, beta, moving_mean, ...])

It is used for batch
normalization. This function
normalizes a data batch by
mean and variance. It applies a
scale gamma and offset beta.

BilinearSampler([data, grid, cudnn_off, ...])

This function applies bilinear
sampling to input feature map.
Actually it is the key of “Spatial
Transformer Networks”. If you
are familiar with remap
function in OpenCV, the usage
of this function is quite similar
to that. The only difference is
that it has the backward pass.

BlockGrad([data, out, name])

As name specifies, this function
stops gradient computation. It
basically stops the accumulated
gradient of the inputs from
flowing through this operator in
backward direction.

cast([data, dtype, out, name])

This function will cast all
elements of the input to a new

type.

zeros(shape[, dtype])

This function, as name
specified, returns a new symbol
of given shape and type, filled
with zeros.

ones(shape[, dtype])

This function, as name
specified return a new symbol

tutorialspoint

EIMPLYEAGSY LEARMNING

)

126

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Activation
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BatchNorm
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BilinearSampler
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BlockGrad
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Cast
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.zeros
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.ones

Apache MXNet

of given shape and type, filled
with ones.

full(shape, val[, dtype])

This function, as name
specified returns a new array of
given shape and type, filled
with the given value val.

arange(start[, stop, step, repeat, ...])

It will return evenly spaced
values within a given interval.
The values are generated
within half open interval [start,
stop) which means that the
interval includes start but
excludes stop.

linspace(start, stop, num[, endpoint, name, ...])

It will return evenly spaced
numbers within a specified
interval. Similar to the function
arrange(), the wvalues are
generated within half open
interval [start, stop) which
means that the interval
includes start but excludes
stop.

histogram(a[, bins, range])

As name implies, this function
will compute the histogram of
the input data.

power(base, exp)

As name implies, this function
will return element-wise result
of base element raised to
powers from exp element. Both
inputs i.e. base and exp, can be
either Symbol or scalar. Here
note that broadcasting is not
allowed. You can use
broadcast_pow if you want to
use the feature of broadcast.

SoftmaxActivation([data, mode, name, attr, out])

This function applies softmax
activation to input. It is
intended for internal layers. It
is actually deprecated, we can
use softmax() instead.

Implementation Examples

In the example below we will be using the function power() which will return element-
wise result of base element raised to the powers from exp element:

import mxnet as mx

tutorialspoint

EIMPLYEAGSY LEARMNING

)

127

https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.full
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.arange
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.linspace
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.histogram
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.power
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.SoftmaxActivation

Apache MXNet

mx.sym.power(3, 5)

Output

You will see the following output:

243

X
I

mx.sym.Variable('x")

mx.sym.Variable('y")

<
1}

N
1}

mx.sym.power(x, 3)

z.eval(x=mx.nd.array([1,2]))[0].asnumpy()

Output

This produces the following output:

array([1., 8.], dtype=float32)

z = mx.sym.power(4, y)

z.eval(y=mx.nd.array([2,3]))[0].asnumpy()

Output

When you execute the above code, you should see the following output:

array([16., 64.], dtype=float32)

z = mx.sym.power(x, y)

z.eval(x=mx.nd.array([4,5]), y=mx.nd.array([2,3]))[9].asnumpy()

Output

The output is mentioned below:

array([16., 125.], dtype=float32)

In the example given below, we will be using the function SoftmaxActivation() (or
softmax()) which will be applied to input and is intended for internal layers.

input_data = mx.nd.array([[2., ©.9, -0.5, 4., 8.], [4., -.7, 9., 2., 0.9]1])
soft_max_act = mx.nd.softmax(input_data)

print (soft_max_act.asnumpy())

128

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

Output

You will see the following output:

[[2.4258138e-03 8.0748333e-04 1.9912292e-04 1.7924475e-02 9.7864312e-01]
[6.6843745e-03 6.0796250e-05 9.9204916e-01 9.0463174e-04 3.0112563e-04]]

symbol.contrib

The Contrib NDArray API is defined in the symbol.contrib package. It typically provides
many useful experimental APIs for new features. This API works as a place for the
community where they can try out the new features. The feature contributor will get the
feedback as well.

Functions and their parameters

Following are some of the important functions and their parameters covered by
mxnet.symbol.contrib API:

Function and its Parameters Definition

This function draws random
samples from an approximately
Zipfian distribution. The base
distribution of this function is
Zipfian distribution. This function
rand_zipfian(true_classes, num_sampled, ...) randomly samples num_sampled
candidates and the elements of
sampled_candidates are drawn
from the base distribution given
above.

As name implies, this function runs
a loop with user-defined
computation over NDArrays on
dimension 0. This function
simulates a for loop and body has
the computation for an iteration of
the for loop.

foreach(body, data, init_states)

As name implies, this function runs
a while loop with user-defined
computation and loop condition.
This function simulates a while loop
that literately does customized
computation if the condition is
satisfied.

while_loop(cond, func, loop_vars[, ...])

As name implies, this function run
an if-then-else using user-defined
cond(pred, then_func, else_func) condition and computation. This
function simulates an if-like branch
which chooses to do one of the two

129

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.rand_zipfian
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.foreach
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.while_loop
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.cond

Apache MXNet

customized computations according
to the specified condition.

getnnz([data, axis, out, name])

This function gives us the number
of stored values for a sparse tensor.
It also includes explicit zeros. It
only supports CSR matrix on CPU.

requantize([data, min_range, max_range, ...])

This function requantize the given
data that is quantized in int32 and
the corresponding thresholds, into
int8 using min and max thresholds
either calculated at runtime or from
calibration.

index_copy([old_tensor, index_vector, ...])

This function copies the elements of
a new_tensor into

the old_tensor by selecting the
indices in the order given in
index. The output of this
operator will be a new tensor
that contains the rest elements
of old tensor and the copied
elements of new tensor.

interleaved_matmul_encdec_qgk([queries, ...])

This operator compute the matrix
multiplication between the
projections of queries and keys in
multi-head attention use as
encoder-decoder. The condition is
that the inputs should be a tensor
of projections of queries that
follows the layout: (seq_length,
batch_size, num_heads*,
head_dim).

Implementation Examples

In the example below we will be using the function rand_zipfian for drawing random

samples from an approximately Zipfian distribution:

import mxnet as mx
true_cls = mx.sym.Variable('true_cls"')

samples, exp_count_true, exp_count_sample =
mx.sym.contrib.rand_zipfian(true_cls, 5, 6)

samples.eval(true_cls=mx.nd.array([3]))[©9].asnumpy()

Output

You will see the following output:

array([4, 0, 2, 1, 5], dtype=int64)

tutorialspoint

EIMPLYEAGSY LEARMNING

)

130

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.getnnz
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.requantize
https://mxnet.apache.org/api/python/docs/api/symbol/contrib/index.html#mxnet.symbol.contrib.index_copy
https://mxnet.apache.org/api/python/docs/api/symbol/contrib/index.html#mxnet.symbol.contrib.interleaved_matmul_encdec_qk

Apache MXNet

exp_count_true.eval(true_cls=mx.nd.array([3]))[@].asnumpy()

Output

The output is mentioned below:

array([0.57336551])

exp_count_sample.eval(true_cls=mx.nd.array([3]))[©].asnumpy()

Output

You will see the following output:

array([1.78103594, 0.46847373, 1.04183923, 0.57336551, 1.04183923])

In the example below we will be using the function while_loop for running a while loop
for user-defined computation and loop condition:

cond

lambda i, s: i <=7

func = lambda i, s: ([1i + s], [1 + 1, s + i])
loop_vars = (mx.sym.var('i'), mx.sym.var('s"'))

outputs, states = mx.sym.contrib.while_loop(cond, func, loop_vars,
max_iterations=10)

print(outputs)

Output

The output is given below:

[<Symbol _while_loop®>]

Print(States)

Output

This produces the following output:

[<Symbol while_loop®>, <Symbol _while loop®>]

In the example below we will be using the function index_copy that copies the elements
of new_tensor into the old_tensor.

131

tutorialspoint

EIMPLYEAGSY LEARMNING

)

Apache MXNet

import mxnet as mx

a = mx.nd.zeros((6,3))

b = mx.nd.array([[2,2,3],[4,5,6],[7,8,9]])
index = mx.nd.array([0,4,2])

mx.nd.contrib.index_copy(a, index, b)

Output

When you execute the above code, you should see the following output:

[[1. 2. 3.]
[0. 0. 0.]
[7. 8. 9.]
[0. 0. 0.]
[4. 5. 6.]
[0. 0. 0.]]

<NDArray 6x3 @cpu(@)>

symbol.image

The Image Symbol API is defined in the symbol.image package. As name implies, it

typically used for images and their features.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.symbol.image API:

Function and its Parameters

Definition

adjust_lighting([data, alpha, out, name])

As name implies, this function
adjusts the lighting level of the
input. It follows the AlexNet
style.

crop([data, X, y, width, height, out, name])

With the help of this function we
can crop an image NDArray of
shape (Hx W x C)or(NxHxW
x C) to the size given by user.

normalize([data, mean, std, out, name])

It will normalize an tensor of
shape (CxHxW)or(NxCxH
x W) with mean and standard
deviation(SD).

random_crop([data, xrange, yrange, width, ...])

Similar to crop(), it randomly
crop an image NDArray of shape
(HxWxC)or(NxHxXxWxC)to
the size given by the user. It will

tutorialspoint

EIMPLYEAGSY LEARMNING

)

132

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.adjust_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.normalize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_crop

Apache MXNet

upsample the result if src is
smaller than the size.

As name implies, this function
random_lighting([data, alpha_std, out, name]) adds the PCA noise randomly. It
also follows the AlexNet style.

It also crops an image randomly
NDArray of shape (Hx W x C) or
(N x Hx W x C) to the given size.
random_resized_crop([data, xrange, yrange, ...]) | It will upsample the result if src
is smaller than the size. It will
randomize the area and aspect
ration as well.

As name implies, this function
will resize an image NDArray of
shape (HxW x C)or(NxHxW
x C) to the size given by user.

resize([data, size, keep_ratio, interp, ...])

It converts an image NDArray of
shape (HxW xC)or (NxHx W
x C) with the values in the range
to_tensor([data, out, name]) [0, 255] to a tensor NDArray of
shape (CxHxW)or (NxCxH
x W) with the values in the range
[0, 11.

Implementation Examples

In the example below, we will be using the function to_tensor to convert image NDArray
of shape (Hx W x C) or (N x Hx W x C) with the values in the range [0, 255] to a tensor
NDArray of shape (C x Hx W) or (N x C x H x W) with the values in the range [0, 1].

import numpy as np

img = mx.sym.random.uniform(@, 255, (4, 2, 3)).astype(dtype=np.uint8)

mx.sym.image.to_tensor(img)

Output

The output is stated below:

<Symbol to_tensor4>

img = mx.sym.random.uniform(®@, 255, (2, 4, 2, 3)).astype(dtype=np.uint8)

133

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_resized_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.resize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.to_tensor

Apache MXNet

mx.sym.image.to_tensor(img)

Output

The output is mentioned below:

<Symbol to_tensor5>

In the example below, we will be using the function normalize() to normalize an tensor
of shape (Cx Hx W) or (N x C x H x W) with mean and standard deviation(SD).

img = mx.sym.random.uniform(@, 1, (3, 4, 2))

mx.sym.image.normalize(img, mean=(@, 1, 2), std=(3, 2, 1))

Output

Given below is the output of the code:

<Symbol normalize©>

img = mx.sym.random.uniform(@, 1, (2, 3, 4, 2))

mx.sym.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1))

Output

The output is shown below:

<Symbol normalizel>

symbol.random

The Random Symbol API is defined in the symbol.random package. As name implies, it is
random distribution generator Symbol API of MXNet.

Functions and their parameters

Following are some of the important functions and their parameters covered by
mxnet.symbol.random API:

Function and its Parameters Definition

It generates random samples
uniform([low, high, shape, dtype, ctx, out]) from a uniform distribution.

134

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform

Apache MXNet

normal([loc, scale, shape, dtype, ctx, out])

It generates random samples

randn(*shape, **kwargs)

from a normal (Gaussian)
distribution.
It generates random samples
from a normal (Gaussian)
distribution.

poisson([lam, shape, dtype, ctx, out])

It generates random samples
from a Poisson distribution.

exponential([scale, shape, dtype, ctx, out])

It generates samples from an
exponential distribution.

gamma([alpha, beta, shape, dtype, ctx, out])

It generates random samples
from a gamma distribution.

multinomial(data[, shape, get_prob, out, dtype])

It generates concurrent sampling
from multiple multinomial
distributions.

negative_binomial([k, p, shape, dtype, ctx, out])

It generates
from a negative
distribution.

random samples
binomial

It generates random samples

f lized ti
generalized_negative_binomial([mu, alpha, ...]) b:%?miazil digt?rri]bel:?icl)i]e negative

It shuffles the elements
shuffle(data, **kwargs) randomly.

randint(low, high[, shape, dtype, ctx, out])

It generates
from a
distribution.

random samples
discrete uniform

exponential_like([data, lam, out, name])

It generates random samples
from an exponential distribution
according to the input array
shape.

gamma_like([data, alpha, beta, out, name])

It generates random samples

from a gamma distribution
according to the input array
shape.

generalized_negative_binomial_like([data, ...])

It generates random samples
from a generalized negative
binomial distribution according to
the input array shape.

negative_binomial_like([data, k, p, out, name])

It generates random samples
from a negative binomial
distribution according to the input
array shape.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

135

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randn
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.multinomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.shuffle
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randint
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial_like

Apache MXNet

It generates random samples
from a normal (Gaussian)

normal_like([data, loc, scale, out, name]) distribution according to the input
array shape.

It generates random samples
from a Poisson distribution

poisson_like([data, lam, out, name]) according to the input array
shape.

It generates random samples
from a uniform distribution

uniform_like([data, low, high, out, name]) according to the input array
shape.

Implementation Examples

In the example below, we are going to shuffle the elements randomly using shuffle()
function. It will shuffle the array along the first axis.

data = mx.nd.array([[0, 1, 2], [3, 4, 5], [6, 7, 8],[9,10,11]])
X = mx.sym.Variable('x")
y = mx.sym.random.shuffle(x)

y.eval(x=data)

Output

You will see the following output:

[
[[9. 10. 11.]

[0. 1. 2.]
[6. 7. 8.]
[3. 4. 5.]]
<NDArray 4x3 @cpu(0)>]

y.eval(x=data)

Output

When you execute the above code, you should see the following output:

[
[[6. 7. 8.]

[0. 1. 2.]

)

('Y
W
q

tutorialspoint

EIMPLYEAGSY LEARMNING

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform_like

Apache MXNet

[3. 4. 5.]
[9. 10. 11.]]
<NDArray 4x3 @cpu(0)>]

In the example below, we are going to draw random samples from a generalized negative
binomial distribution. For this will be using the function
generalized_negative_binomial().

mx.sym.random.generalized_negative_binomial(10, ©.1)

Output

The output is given below:

<Symbol _random_generalized_negative binomial®@>

symbol.sparse

The Sparse Symbol API is defined in the mxnet.symbol.sparse package. As name implies,
it provides sparse neural network graphs and auto-differentiation on CPU.

Functions and their parameters

Following are some of the important functions (includes Symbol creation routines, Symbol
Manipulation routines, Mathematical functions, Trigonometric function, Hyberbolic
functions, Reduce functions, Rounding, Powers, Neural Network) and their parameters
covered by mxnet.symbol.sparse API:

Function and its Parameters Definition

This function will add all input
arguments element wise. For
example, add_n(al,a2,..an = al +
ElementWiseSum(*args, **kwargs) a2 +--+an). Here, we can see that
add_n is potentially more efficient
than calling add by n times.

It will map the integer indices to

vector representations i.e.
embeddings. It actually maps words
Embedding([data, weight, input_dim, ...]) to real-valued vectors in high-

dimensional space which is called
word embeddings.

It computes and optimizes for
squared loss during backward
LinearRegressionOutput([data, label, ...]) propagation giving just output data
during forward propagation.

o . Applies a logistic function which is

137

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.ElementWiseSum
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.Embedding
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.LinearRegressionOutput
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.LogisticRegressionOutput

Apache MXNet

the input. The function is computed
1

1+exp(—x) '

MAERegressionOutput([data, label, ...])

This operator computes mean
absolute error of the input. MAE is
actually a risk metric corresponding
to the expected value of absolute
error.

abs([data, name, attr, out])

As name implies, this function will
return element-wise absolute value
of the input.

adagrad_update([weight, grad, history, Ir, ...])

It is an update function for AdaGrad
optimizer.

adam_update([weight, grad, mean, var, Ir, ...])

It is an update function for Adam
optimizer.

add_n(*args, **kwargs)

As name implies it will adds all input
arguments element-wise.

arccos([data, name, attr, out])

This function will returns element-
wise inverse cosine of the input
array.

dot([lhs, rhs, transpose_a, transpose_b, ...])

As name implies, it will give the dot
product of two arrays. It will depend
upon the input array dimension:

1-D: inner product of vectors
2-D: matrix multiplication

N-D: A sum product over the last
axis of the first input and the first
axis of the second input.

As name implies it will add
elemwise_add([lhs, rhs, name, attr, out]) arguments element wise.

As name implies it will divide
elemwise_div([lhs, rhs, name, attr, out]) arguments element wise.

As name implies it will Multiply

elemwise_mul([lhs, rhs, name, attr, out])

arguments element wise.

elemwise_sub([lhs, rhs, name, attr, out])

As name implies it will Subtract
arguments element wise.

exp([data, name, attr, out])

This function will return element
wise exponential value of the given
input.

sgd_update([weight, grad, Ir, wd, ...])

It acts as an update function for
Stochastic Gradient Descent
optimizer.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

138

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.MAERegressionOutput
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.abs
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.adagrad_update
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.adam_update
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.add_n
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.arccos
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.dot
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_add
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_div
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_mul
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_sub
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.exp
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sgd_update

Apache MXNet

sigmoid([data, name, attr, out])

As name implies it will compute
sigmoid of x element wise.

sign([data, name, attr, out])

It will return the element wise sign
of the given input.

sin([data, name, attr, out])

As name implies, this function will
computes the element wise sine of
the given input array.

Implementation Example

In the example below, we are going to shuffle the elements randomly using
ElementWiseSum() function. It will map integer indices to vector representations i.e.
word embeddings.

input_dim

output_dim

=4

=5

y = [[e.
[5.
[10.
[15.

x = [[1.,
[e.,

)

)

)

)

1.,
6.,
11.,

16.,

3.1,
2.1]

2
7
12
17

/* Here input array Xx

/* Here every row in weight
)
)
)

*J

represents n-grams(2-gram). So, x = [(wl,w3), (wO,w2)]

3.,

8.,
13.,
18.,

4.1,

9.1,

14.1,

19.1]

/* Now, Mapped input x to its vector

representation y.

matrix y represents a word. So, y = (wO,wl,w2,w3)

Embedding(x, y, 4, 5) = [[[5., 6., 7., 8., 9.1,
[15., 16., 17., 18., 19.]11,
[[., 1., 2., 3., 4.1,
[10., 11., 12., 13., 14.]1]
139
8 g . .
w tutorialspoint

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sigmoid
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sign
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sin

16. Apache MXNet — Python APl Module

Apache MXNet’'s module API is like a FeedForward model and it is easier to compose similar
to Torch module. It consists of following classes:

BaseModule([logger])

It represents the base class of a module. A module can be thought of as computation
component or computation machine. The job of a module is to execute forward and

backward passes. It also updates parameters in a model.

Methods

Following table shows the methods consisted in BaseModule class:

Methods

Definition

backward([out_grads])

As name implies this method
implements the backward
computation.

bind(data_shapes[, label_shapes, ...])

It binds the symbols to construct
executors and it is necessary
before one can perform
computation with the module.

fit(train_data[, eval_data, eval_metric, ...])

This method trains the module
parameters.

forward(data_batch[, is_train])

As name implies this method
implements the Forward
computation. This method
supports data batches with various
shapes like different batch sizes or
different image sizes.

forward_backward(data_batch)

It is a convenient function, as
name implies, that calls
both forward and backward.

get_input_grads([merge_multi_context])

This method will gets the gradients
to the inputs which is computed in
the previous backward
computation.

get_outputs([merge_multi_context])

As name implies, this method will
gets outputs of the previous
forward computation.

get_params()

It gets the parameters especially
those which are potentially copies

@ tutorialspoint

EIMPLYEAGSY LEARMNING

140

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.fit
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params

Apache MXNet

of the actual parameters used to do
computation on the device.

get_states([merge_multi_context])

This method will get states from all
devices

init_optimizer([kvstore, optimizer, ...])

This method installs and initialize
the optimizers. It also initializes
kvstore for distribute training.

init_params([initializer, arg_params, ...])

As name implies, this method will
initialize the parameters and
auxiliary states.

install_monitor(mon)

This method will install monitor on
all executors.

iter_predict(eval_data[, num_batch, reset, ...])

This method will
predictions.

iterate over

load_params(fname)

It will, as name specifies, load

model parameters from file.

predict(eval_data[, num_batch, ...])

It will run the prediction and
collects the outputs as well.

prepare(data_batch[, sparse_row_id_fn])

The operator prepares the module
for processing a given data batch.

save_params(fname)

As name specifies, this function will
save the model parameters to file.

score(eval_data, eval_metric[, num_batch, ...])

It runs the prediction
on eval_data and also evaluates
the performance according to the
given eval_metric.

set_params(arg_params, aux_params|, ...])

This method will assign the
parameter and aux state values.

set_states([states, value])

This method, as name implies, sets
value for states.

update()

This method updates the given
parameters according to the
installed optimizer. It also updates
the gradients computed in the
previous forward-backward batch.

update_metric(eval_metric, labels[, pre_sliced])

This method, as name implies,
evaluates and accumulates the
evaluation metric on outputs of the
last forward computation.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

141

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.iter_predict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.load_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.predict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.score
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Methods Definition

As name implies this method
implements Apache MXNet

backward([out_grads])
the backward computation.

It set up the buckets and binds the
executor for the default bucket

key. This method represents

bind(data_shapes[, label_shapes, ...])
the binding for a

BucketingModule.

As name implies this method
implements

the Forward computation. This
method

supports data

forward(data_batch[, is_train])
batches with various shapes like

different
batch sizes or

different image sizes.

This method will get the gradients
to the

inputs which is computed in the

get_input_grads([merge_multi_context]) previous

backward computation.

As name implies, this method will
get

get_outputs([merge_multi_context]) outputs from the previous forward

computation.

It gets the current parameters
especially

those which are potentially copies
of the

get_params()
actual parameters used to do

computation

on the device.

This method will get states from all
get_states([merge_multi_context]) devices.

This method installs and initialize
the

optimizers. It also initializes

init_optimizer([kvstore, optimizer, ...]) kvstore for

distribute training.

142

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer

Apache MXNet

As name implies, this method will
initialize
init_params([initializer, arg_params, ...]) the parameters and auxiliary
states.

This method will install monitor on
all

install_monitor(mon)
executors.

This method will create a model
from the

load(prefix, epoch[, sym_gen, ...])
previously saved checkpoint.

This method will create a model
from a

dictionary (dict) mapping
load_dict([sym_dict, sym_gen, ...]) bucket_key to

symbols. It also shares
arg_params and aux_params.

The operator prepares the module
for

prepare(data_batch[, sparse_row_id_fn])
processing a given data batch.

This method, as name implies,
saves the

current progress to the checkpoint
for all

save_checkpoint(prefix, epoch[, remove_amp_ buckets in BucketingModule. It is

cast]) recommended to
use mx.callback.module_checkpoin
t as

epoch_end_callback to save during
training.

As name specifies, this function will
assign parameters and aux state

set_params(arg_params, aux_params[,...]) values

This method, as name implies, sets
set_states([states, value]) value for states.

It will switche to a different bucket.
switch_bucket(bucket_key, data_shapes], ...])

This method updates the given
parameters according to the
installed optimizer. It also updates
the gradients computed in the
previous forward-backward batch.

update()

143

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load_dict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.save_checkpoint
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.switch_bucket
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update

Apache MXNet

This method, as name implies,
evaluates

update_metric(eval_metric, labels[, pre_sliced] and accumulates the evaluation

) metric on outputs of the last
forward computation.

Attributes
Following table shows the attributes consisted in the methods of BaseModule class:
Attributes Definition
data_names It consists of the list of names for data required by this module.

It consists of the list of (name, shape) pairs specifying the data inputs

data_shapes | i< module.

It shows the list of (name, shape) pairs specifying the label inputs to

label_shapes |\ is module.

output_names | It consists of the list of names for the outputs of this module.

output_shapes It consists of the list of (name, shape) pairs specifying the outputs of

this module.
As name specified, this attribute gets the symbol associated with this
symbol
module.
data_shapes: You can refer the link available at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base
Module.bind for details.

output_shapes: More information is available at
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base
Module.forward backward.

BucketingModule(sym_gen]...])

It represents the Bucketingmodaule class of a Module which helps to deal efficiently with
varying length inputs.

Methods

Following table shows the methods consisted in BucketingModule class:

Attributes
Following table shows the attributes consisted in the methods of BaseModule class:
Attributes Definition
data_names It consists of the list of names for data required by this module.

144

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Apache MXNet

It consists of the list of (name, shape) pairs specifying the data inputs

data_shapes |0 ihis module.

It shows the list of (name, shape) pairs specifying the label inputs to

label_shapes | {1ic module.

output_names | It consists of the list of names for the outputs of this module.

It consists of the list of (name, shape) pairs specifying the outputs of

output_shapes |" e

As name specified, this attribute gets the symbol associated with this

Symbol module.

data_shapes: You can refer the link at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for more information.

output_shapes: You can refer the link at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward backward for more information.

Module(symbol[,data_names, label names,...)])

It represents a basic module that wrap a symbol.

Methods

Following table shows the methods consisted in Module class:

Methods

Definition

backward([out_grads])

As name implies this method
implements the backward
computation.

bind(data_shapes[, label_shapes, ...])

It binds the symbols to construct
executors and it is necessary before
one can perform computation with
the module.

borrow_optimizer(shared_module)

As name implies, this method will
borrow the optimizer from a shared
module.

forward(data_batch[, is_train])

As name implies this method
implements the Forward
computation. This method supports
data batches with various shapes like
different batch sizes or different
image sizes.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

145

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.borrow_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward

Apache MXNet

get_input_grads([merge_multi_context])

This method will gets the gradients
to the inputs which is computed in
the previous backward computation.

get_outputs([merge_multi_context])

As name implies, this method will
gets outputs of the previous forward
computation.

get_params()

It gets the parameters especially
those which are potentially copies of
the actual parameters used to do
computation on the device.

get_states([merge_multi_context])

This method will get states from all
devices

init_optimizer([kvstore, optimizer, ...])

This method installs and initialize the
optimizers. It also initializes kvstore
for distribute training.

init_params([initializer, arg_params, ...])

As name implies, this method will
initialize the parameters and
auxiliary states.

install_monitor(mon)

This method will install monitor on all
executors.

load(prefix, epoch[, sym_gen, ...])

This method will create a model from
the previously saved checkpoint.

load_optimizer_states(fname)

This method will load an optimizer
i.e. the updater state from a file.

prepare(data_batch[, sparse_row_id_fn])

The operator prepares the module
for processing a given data batch.

reshape(data_shapes[, label_shapes])

This method, as name implies,
reshape the module for new input
shapes.

save_checkpoint(prefix, epoch[, ...])

It saves the current progress to
checkpoint.

save_optimizer_states(fname)

This method saves the optimizer or
the updater state to a file.

set_params(arg_params, aux_paramsl,...])

As name specifies, this function will
assign parameters and aux state
values.

set_states([states, value])

This method, as name implies, sets
value for states.

update()

This method updates the given
parameters according to the installed
optimizer. It also updates the

tutorialspoint

EIMPLYEAGSY LEARMNING

)

146

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.load_optimizer_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.reshape
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.save_checkpoint
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.save_optimizer_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update

Apache MXNet

gradients computed in the previous
forward-backward batch.

This method, as name implies,
evaluates and accumulates the

update_metric(eval_metric, labels[, pre_sliced]) evaluation metric on outputs of the

last forward computation.

Attributes
Following table shows the attributes consisted in the methods of Module class:
Attributes Definition
data_names It consists of the list of names for data required by this module.

data_shapes | i/ this module.

It consists of the list of (name, shape) pairs specifying the data inputs

label_shapes this module.

It shows the list of (name, shape) pairs specifying the label inputs to

output_names | It consists of the list of names for the outputs of this module.

output_shapes this module.

It consists of the list of (name, shape) pairs specifying the outputs of

label_names It consists of the list of names for labels required by this module.

data_shapes:

the link

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for further details.

output_shapes: The

link given herewith

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward backward will offer other important information.

PythonLossModule([name,data_names....])

The base of this «class s

mxnet.module.python_module.PythonModule.

PythonLossModule class is a convenient module class which implements all or many of the

module APIs as empty functions.

Methods

Following table shows the methods consisted in PythonLossModule class:

Methods

Definition

backward([out_grads])

As name implies this method implements
the backward computation.

forward(data_batch[, is_train])

As name implies this method implements
the Forward computation. This method
supports data batches with various

tutorialspoint

EIMPLYEAGSY LEARMNING

)

147

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward

Apache MXNet

shapes like different batch sizes or
different image sizes.

This method will gets the gradients to the
inputs which is computed in the previous

get_input_grads([merge_multi_context]) backward computation.

As name implies, this method will gets
outputs of the previous forward

get_outputs([merge_multi_context]) computation

This method will install monitor on all
install_monitor(mon) executors.

PythonModule([data_names,label names...))

The base of this class is mxnet.module.base_module.BaseModule. PythonModule
class also is a convenient module class which implements all or many of the module APIs
as empty functions.

Methods

Following table shows the methods consisted in PythonModule class:

Methods Definition

It binds the symbols to construct
executors and it is necessary

bind(data_shapes[, label_shapes, ...]) before one can perform
computation with the module.

It gets the parameters especially
those which are potentially copies
get_params() of the actual parameters used to do
computation on the device.

This method installs and initialize
the optimizers. It also initializes

init_optimizer([kvstore, optimizer, ...]) kvstore for distribute training.

As name implies, this method will
initialize the parameters and

init_params([initializer, arg_params, ...]) auxiliary states

This method updates the given
parameters according to the
installed optimizer. It also updates
the gradients computed in the
previous forward-backward batch.

update()

This method, as name implies,
evaluates and accumulates the

update_metric(eval_metric, labels[, pre_sliced]) | evaluation metric on outputs of the
last forward computation.

148

tutorialspoint

EIMPLYEAGSY LEARMING

¥

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Apache MXNet

Attributes
Following table shows the attributes consisted in the methods of PythonModule class:
Attributes Definition
data_names It consists of the list of names for data required by this module.

It consists of the list of (name, shape) pairs specifying the data inputs

data_shapes | i< module.

It shows the list of (name, shape) pairs specifying the label inputs to

label_shapes | {1 ic module.

output_names | It consists of the list of names for the outputs of this module.

It consists of the list of (name, shape) pairs specifying the outputs of

output_shapes | ... " e

data_shapes: Follow the link
https://mxnet.apache.org/api/python/docs/api/module/index.html# mxnet.module.Base
Module.bind for details.

output_shapes: For more details, visit the link available at
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base
Module.forward backward.

SequentialModule([logger])

The base of this class is mxnet.module.base_module.BaseModule.
SequentialModule class also is a container module that can chain more than two
(multiple) modules together.

Methods

Following table shows the methods consisted in SequentialModule class:

Methods Definition

This is most important function of
this class. It adds a module to the

add(module, **kwargs) chain

As name implies this method
implements the backward

backward([out_grads]) computation.

It binds the symbols to construct
executors and it is necessary

bind(data_shapes[, label_shapes, ...]) before one can perform
computation with the module.

As name implies this method

_ _ implements the Forward

supports data batches with various

149

tutorialspoint

EIMPLYEAGSY LEARMNING

)

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.SequentialModule.add
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward

Apache MXNet

shapes like different batch sizes or
different image sizes.

get_input_grads([merge_multi_context])

This method will gets the gradients
to the inputs which is computed in
the previous backward
computation.

get_outputs([merge_multi_context])

As name implies, this method will
gets outputs of the previous
forward computation.

get_params()

It gets the parameters especially
those which are potentially copies
of the actual parameters used to do
computation on the device.

init_optimizer([kvstore, optimizer, ...])

This method installs and initialize
the optimizers. It also initializes
kvstore for distribute training.

init_params([initializer, arg_params, ...])

As name implies, this method will
initialize the parameters and
auxiliary states.

install_monitor(mon)

This method will install monitor on
all executors.

update()

This method updates the given
parameters according to the
installed optimizer. It also updates
the gradients computed in the
previous forward-backward batch.

update_metric(eval_metric, labels[, pre_sliced])

This method, as name implies,
evaluates and accumulates the
evaluation metric on outputs of the
last forward computation.

Attributes
Following table shows the attributes consisted in the methods of BaseModule class:
Attributes Definition
data_names It consists of the list of hames for data required by this module.

data_ShapeS to this module.

It consists of the list of (name, shape) pairs specifying the data inputs

label_shapes | ... dule.

It shows the list of (name, shape) pairs specifying the label inputs to

output_names | It consists of the list of names for the outputs of this module.

tutorialspoint

EIMPLYEAGSY LEARMNING

)

150

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Apache MXNet

It consists of the list of (name, shape) pairs specifying the outputs of

output_shapes | .. dule.

data_shapes: The link given herewith
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base
Module.bind will help you in understanding the attribute in much detail.

output_shapes: Follow the link available at
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base
Module.forward backward for details.

Implementation Examples

In the example below, we are going create a mxnet module.

import mxnet as mx
input_data = mx.symbol.Variable('input_data')

f _connectedl = mx.symbol.FullyConnected(data, name='f_connectedl’,
num_hidden=128)

activation_1 = mx.symbol.Activation(f_connectedl, name='relul',
act_type="relu")

f_connected2 = mx.symbol.FullyConnected(activation_1, name = 'f_connected2’,
num_hidden = 64)

activation_2 = mx.symbol.Activation(f_connected2, name='relu2',
act_type="relu")

f_connected3 = mx.symbol.FullyConnected(activation_2, name='fc3"',
num_hidden=10)

out = mx.symbol.SoftmaxOutput(f_connected3, name = 'softmax')

mod = mx.mod.Module(out)

print(out)

Output

The output is mentioned below:

<Symbol softmax>

print(mod)

Output

The output is shown below:

<mxnet.module.module.Module object at 0x00000123A9892F28>

151

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward

Apache MXNet

In this example below, we will be implementing forward computation

import mxnet as mx

from collections import namedtuple
Batch = namedtuple('Batch', ['data’])
data = mx.sym.Variable('data')

out = data * 2

mod

mx.mod.Module(symbol=out, label names=None)
mod.bind(data_shapes=[('data’', (1, 10))])
mod.init_params()

datal = [mx.nd.ones((1, 10))]
mod.forward(Batch(datal))

print (mod.get_outputs()[0].asnumpy())

Output

When you execute the above code, you should see the following output:

[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]

data2 = [mx.nd.ones((3, 5))]

mod.forward(Batch(data2))

print (mod.get_outputs()[0].asnumpy())

Output

Given below is the output of the code:

[[2. 2. 2. 2. 2.]
[2. 2. 2. 2. 2.]
[2. 2. 2. 2. 2.]]

152

tutorialspoint

EIMPLYEAGSY LEARMNING

)

