
Apache MXNet        

   i 

 

 



Apache MXNet        

   ii 

 

About the Tutorial 

Apache MXNet is a powerful open-source deep learning software framework instrument 

helping developers build, train, and deploy Deep Learning models. Past few years, from 

healthcare to transportation to manufacturing and, in fact, in every aspect of our daily life, 

the impact of deep learning has been widespread. Nowadays, deep learning is sought by 

companies to solve some hard problems like Face recognition, object detection, Optical 

Character Recognition (OCR), Speech Recognition, and Machine Translation.   

Audience 

This tutorial will be useful for graduates, post-graduates, and research students who either 

have an interest in the field of AI, Machine Learning and Deep Learning or have it as a 

part of their curriculum. The reader can be a beginner or an advanced learner.  

Prerequisites 

The reader must have basic knowledge about Artificial Intelligence. He/she should also be 

aware about Python language and its functions. If you are new to any of these concepts, 

we recommend you take up tutorials concerning these topics before you dig further into 

this tutorial. 

Copyright & Disclaimer 

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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This chapter highlights the features of Apache MXNet and talks about the latest version of 

this deep learning software framework. 

What is MXNet? 

Apache MXNet is a powerful open-source deep learning software framework instrument 

helping developers build, train, and deploy Deep Learning models. Past few years, from 

healthcare to transportation to manufacturing and, in fact, in every aspect of our daily life, 

the impact of deep learning has been widespread. Nowadays, deep learning is sought by 

companies to solve some hard problems like Face recognition, object detection, Optical 

Character Recognition (OCR), Speech Recognition, and Machine Translation.  

That’s the reason Apache MXNet is supported by:  

 Some big companies like Intel, Baidu, Microsoft, Wolfram Research, etc. 

 Public cloud providers including Amazon Web Services (AWS), and Microsoft Azure 

 Some big research institutes like Carnegie Mellon, MIT, the University of 

Washington, and the Hong Kong University of Science & Technology.   

Why Apache MXNet? 

There are various deep learning platforms like Torch7, Caffe, Theano, TensorFlow, Keras, 

Microsoft Cognitive Toolkit, etc. existed then you might wonder why Apache MXNet? Let’s 

check out some of the reasons behind it: 

 Apache MXNet solves one of the biggest issues of existing deep learning platforms. 

The issue is that in order to use deep learning platforms one must need to learn 

another system for a different programming flavor.  

 With the help of Apache MXNet developers can exploit the full capabilities of GPUs 

as well as cloud computing.  

 Apache MXNet can accelerate any numerical computation and places a special 

emphasis on speeding up the development and deployment of large-scale DNN 

(deep neural networks).  

 It provides the users the capabilities of both imperative and symbolic 

programming.  

Various features 

If you are looking for a flexible deep learning library to quickly develop cutting-edge deep 

learning research or a robust platform to push production workload, your search ends at 

Apache MXNet. It is because of the following features of it: 

1. Apache MXNet — Introduction 
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Distributed Training 

Whether it is multi-gpu or multi-host training with near-linear scaling efficiency, Apache 

MXNet allows developers to make most out of their hardware. MXNet also support 

integration with Horovod, which is an open source distributed deep learning framework 

created at Uber.  

For this integration, following are some of the common distributed APIs defined in 

Horovod: 

 horovod.broadcast() 

 horovod.allgather() 

 horovod.allreduce() 

In this regard, MXNet offer us the following capabilities: 

 Device Placement: With the help of MXNet we can easily specify each data 

structure (DS). 

 Automatic Differentiation: Apache MXNet automates the differentiation i.e. 

derivative calculations. 

 Multi-GPU training: MXNet allows us to achieve scaling efficiency with number of 

available GPUs. 

 Optimized Predefined Layers: We can code our own layers in MXNet as well as 

the optimized the predefined layers for speed also.  

Hybridization:  

Apache MXNet provides its users a hybrid front-end. With the help of the Gluon Python 

API it can bridge the gap between its imperative and symbolic capabilities. It can be 

done by calling it’s hybridize functionality.  

Faster computation 

The linear operations like tens or hundreds of matrix multiplications are the computational 

bottleneck for deep neural nets. To solve this bottleneck MXNet provides: 

 Optimized numerical computation for GPUs 

 Optimized numerical computation for distributed ecosystems 

 Automation of common workflows with the help of which the standard NN can be 

expressed briefly. 

Language Bindings 

MXNet has deep integration into high-level languages like Python and R. It also provides 

support for other programming languages such as- 

 Scala 

 Julia 

 Clojure 
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 Java 

 C/C++ 

 Perl 

We do not need to learn any new programming language instead MXNet, combined with 

hybridization feature, allows an exceptionally smooth transition from Python to 

deployment in the programming language of our choice.  

Latest version MXNet 1.6.0 

Apache Software Foundation (ASF) has released the stable version 1.6.0 of Apache MXNet 

on 21st February 2020 under Apache License 2.0.  This is the last MXNet release to support 

Python 2 as MXNet community voted to no longer support Python 2 in further releases. 

Let us check out some of the new features this release brings for its users. 

NumPy-Compatible interface 

Due to its flexibility and generality, NumPy has been widely used by Machine Learning 

practitioners, scientists, and students. But as we know that, these days’ hardware 

accelerators like Graphical Processing Units (GPUs) have become increasingly assimilated 

into various Machine Learning (ML) toolkits, the NumPy users, to take advantage of the 

speed of GPUs, need to switch to new frameworks with different syntax.  

With MXNet 1.6.0, Apache MXNet is moving toward a NumPy-compatible programming 

experience. The new interface provides equivalent usability as well as expressiveness to 

the practitioners familiar with NumPy syntax. Along with that MXNet 1.6.0 also enables 

the existing Numpy system to utilize hardware accelerators like GPUs to speed-up large-

scale computations.         

Integration with Apache TVM 

Apache TVM, an open-source end-to-end deep learning compiler stack for hardware-

backends such as CPUs, GPUs, and specialized accelerators, aims to fill the gap between 

the productivity-focused deep-learning frameworks and performance-oriented hardware 

backends. With the latest release MXNet 1.6.0, users can leverage Apache(incubating) 

TVM to implement high-performance operator kernels in Python programming language. 

Two main advantages of this new feature are following: 

 Simplifies the former C++ based development process. 

 Enables sharing the same implementation across multiple hardware backend such 

as CPUs, GPUs, etc.  

Improvements on existing features 

Apart from the above listed features of MXNet 1.6.0, it also provides some improvements 

over the existing features. The improvements are as follows: 

Grouping element-wise operation for GPU 

As we know the performance of element-wise operations is memory-bandwidth and that 

is the reason, chaining such operations may reduce overall performance. Apache MXNet 
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1.6.0 does element-wise operation fusion, that actually generates just-in-time fused 

operations as and when possible. Such element-wise operation fusion also reduces storage 

needs and improve overall performance. 

Simplifying common expressions 

MXNet 1.6.0 eliminates the redundant expressions and simplify the common expressions. 

Such enhancement also improves memory usage and total execution time.  

Optimizations  

MXNet 1.6.0 also provides various optimizations to existing features & operators, which 

are as follows: 

 Automatic Mixed Precision 

 Gluon Fit API 

 MKL-DNN 

 Large tensor Support 

 TensorRT integration 

 Higher-order gradient support 

 Operators 

 Operator performance profiler 

 ONNX import/export 

 Improvements to Gluon APIs  

 Improvements to Symbol APIs 

 More than 100 bug fixes 
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To get started with MXNet, the first thing we need to do, is to install it on our computer. 

Apache MXNet works on pretty much all the platforms available, including Windows, Mac, 

and Linux.  

Linux OS 

We can install MXNet on Linux OS in the following ways: 

Graphical Processing Unit (GPU) 

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when 

we are using GPU for processing: 

By using Pip method 

You can use the following command to install MXNet on your Linus OS: 

pip install mxnet 

Apache MXNet also offers MKL pip packages, which are much faster when running on intel 

hardware. Here for example mxnet-cu101mkl means that: 

 The package is built with CUDA/cuDNN 

 The package is MKL-DNN enabled 

 The CUDA version is 10.1  

For other option you can also refer to https://pypi.org/project/mxnet/. 

By using Docker 

You can find the docker images with MXNet at DockerHub, which is available at 

https://hub.docker.com/u/mxnet Let us check out the steps below to install MXNet by 

using Docker with GPU: 

Step 1: First, by following the docker installation instructions which are available at 

https://docs.docker.com/engine/install/ubuntu/. We need to install Docker on our 

machine. 

Step 2: To enable the usage of GPUs from the docker containers, next we need to install 

nvidia-docker-plugin. You can follow the installation instructions given at 

https://github.com/NVIDIA/nvidia-docker/wiki.  

Step 3: By using the following command, you can pull the MXNet docker image: 

 $ sudo docker pull mxnet/python:gpu 

2. Apache MXNet — Installing MXNet 

https://pypi.org/project/mxnet/
https://hub.docker.com/u/mxnet
https://docs.docker.com/engine/install/ubuntu/
https://github.com/NVIDIA/nvidia-docker/wiki
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Now in order to see if mxnet/python docker image pull was successful, we can list docker 

images as follows: 

 $ sudo docker images 

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet 

with Intel MKL-DNN. Check the commands below: 

$ sudo docker pull mxnet/python:1.3.0_cpu_mkl 

$ sudo docker images  

From source 

To build the MXNet shared library from source with GPU, first we need to set up the 

environment for CUDA and cuDNN as follows: 

 Download and install CUDA toolkit, here CUDA 9.2 is recommended. 

 Next download cuDNN 7.1.4. 

 Now we need to unzip the file. It is also required to change to the cuDNN root 

directory. Also move the header and libraries to local CUDA Toolkit folder as follows: 

tar xvzf cudnn-9.2-linux-x64-v7.1 

 

sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include 

 

sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64 

 

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn* 

 

sudo ldconfig 

After setting up the environment for CUDA and cuDNN, follow the steps below to build the 

MXNet shared library from source: 

Step 1: First, we need to install the prerequisite packages. These dependencies are 

required on Ubuntu version 16.04 or later. 

sudo apt-get update 

 

sudo apt-get install -y build-essential git ninja-build ccache libopenblas-dev 

libopencv-dev cmake 
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Step 2: In this step, we will download MXNet source and configure. First let us clone the 

repository by using following command: 

git clone –recursive https://github.com/apache/incubator-mxnet.git mxnet 

      

      cd mxnet 

  

 cp config/linux_gpu.cmake #for build with CUDA 

Step 3: By using the following commands, you can build MXNet core shared library: 

rm -rf build 

mkdir -p build && cd build 

cmake -GNinja .. 

cmake --build . 

Two important points regarding the above step is as follows: 

If you want to build the Debug version, then specify the as follows: 

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja .. 

In order to set the number of parallel compilation jobs, specify the following: 

cmake --build . --parallel N 

Once you successfully build MXNet core shared library, in the build folder in your MXNet 

project root, you will find libmxnet.so which is required to install language 

bindings(optional). 

Central Processing Unit (CPU) 

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when 

we are using CPU for processing: 

By using Pip method 

You can use the following command to install MXNet on your Linus OS: 

pip install mxnet 

Apache MXNet also offers MKL-DNN enabled pip packages which are much faster, when 

running on intel hardware.  

pip install mxnet-mkl 
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By using Docker 

You can find the docker images with MXNet at DockerHub, which is available at 

https://hub.docker.com/u/mxnet. Let us check out the steps below to install MXNet by 

using Docker with CPU: 

Step 1: First, by following the docker installation instructions which are available at 

https://docs.docker.com/engine/install/ubuntu/. We need to install Docker on our 

machine. 

Step 2: By using the following command, you can pull the MXNet docker image: 

 $ sudo docker pull mxnet/python 

Now, in order to see if mxnet/python docker image pull was successful, we can list docker 

images as follows: 

 $ sudo docker images 

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet 

with Intel MKL-DNN.  

Check the commands below: 

$ sudo docker pull mxnet/python:1.3.0_cpu_mkl 

$ sudo docker images 

From source 

 To build the MXNet shared library from source with CPU, follow the steps below: 

Step 1: First, we need to install the prerequisite packages. These dependencies are 

required on Ubuntu version 16.04 or later. 

sudo apt-get update 

 

sudo apt-get install -y build-essential git ninja-build ccache libopenblas-dev 

libopencv-dev cmake 

Step 2: In this step we will download MXNet source and configure. First let us clone the 

repository by using following command: 

git clone –recursive https://github.com/apache/incubator-mxnet.git mxnet 

      

     cd mxnet 

  

cp config/linux.cmake config.cmake 

https://hub.docker.com/u/mxnet
https://docs.docker.com/engine/install/ubuntu/
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Step 3: By using the following commands, you can build MXNet core shared library: 

rm -rf build 

mkdir -p build && cd build 

cmake -GNinja .. 

cmake --build . 

Two important points regarding the above step is as follows: 

If you want to build the Debug version, then specify the as follows: 

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja .. 

In order to set the number of parallel compilation jobs, specify the following: 

cmake --build . --parallel N 

Once you successfully build MXNet core shared library, in the build folder in your MXNet 

project root, you will find libmxnet.so, which is required to install language 

bindings(optional). 

MacOS 

We can install MXNet on MacOS in the following ways: 

Graphical Processing Unit (GPU) 

If you plan to build MXNet on MacOS with GPU, then there is NO Pip and Docker method 

available. The only method in this case is to build it from source.  

From source 

To build the MXNet shared library from source with GPU, first we need to set up the 

environment for CUDA and cuDNN. You need to follow the NVIDIA CUDA Installation 

Guide which is available at https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-

x/index.html and cuDNN Installation Guide, which is available at 

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-mac for mac 

OS.  

Please note that in 2019 CUDA stopped supporting macOS. In fact, future versions of 

CUDA may also not support macOS. 

Once you set up the environment for CUDA and cuDNN, follow the steps given below to 

install MXNet from source on OS X (Mac): 

Step 1: As we need some dependencies on OS x, First, we need to install the prerequisite 

packages.  

https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-mac
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xcode-select –-install #Install OS X Developer Tools 

 

/usr/bin/ruby -e "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/master/install)" #Install 

Homebrew 

 

brew install cmake ninja ccache opencv # Install dependencies 

We can also build MXNet without OpenCV as opencv is an optional dependency. 

Step 2: In this step we will download MXNet source and configure. First let us clone the 

repository by using following command: 

git clone –-recursive https://github.com/apache/incubator-mxnet.git mxnet 

      

     cd mxnet 

  

cp config/linux.cmake config.cmake 

For a GPU-enabled, it is necessary to install the CUDA dependencies first because when 

one tries to build a GPU-enabled build on a machine without GPU, MXNet build cannot 

autodetect your GPU architecture. In such cases MXNet will target all available GPU 

architectures.   

Step 3: By using the following commands, you can build MXNet core shared library: 

rm -rf build 

mkdir -p build && cd build 

cmake -GNinja .. 

cmake --build . 

Two important points regarding the above step is as follows: 

If you want to build the Debug version, then specify the as follows: 

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja .. 

In order to set the number of parallel compilation jobs, specify the following: 

cmake --build . --parallel N 

Once you successfully build MXNet core shared library, in the build folder in your MXNet 

project root, you will find libmxnet.dylib, which is required to install language 

bindings(optional). 

https://raw.githubusercontent.com/Homebrew/install/master/install


Apache MXNet        

   11 

 

Central Processing Unit (CPU) 

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when 

we are using CPU for processing: 

By using Pip method 

You can use the following command to install MXNet on your Linus OS 

pip install mxnet 

By using Docker 

You can find the docker images with MXNet at DockerHub, which is available at 

https://hub.docker.com/u/mxnet. Let us check out the steps below to install MXNet by 

using Docker with CPU: 

Step 1: First, by following the docker installation instructions which are available at 

https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac we 

need to install Docker on our machine. 

Step 2: By using the following command, you can pull the MXNet docker image: 

 $ docker pull mxnet/python 

Now in order to see if mxnet/python docker image pull was successful, we can list docker 

images as follows: 

 $ docker images 

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet 

with Intel MKL-DNN. Check the commands below: 

$ docker pull mxnet/python:1.3.0_cpu_mkl 

$ docker images 

From source 

Follow the steps given below to install MXNet from source on OS X (Mac): 

Step 1: As we need some dependencies on OS x, first, we need to install the prerequisite 

packages.  

xcode-select –-install #Install OS X Developer Tools 

 

/usr/bin/ruby -e "$(curl -fsSL 

https://raw.githubusercontent.com/Homebrew/install/master/install)" #Install 

Homebrew 

 

https://hub.docker.com/u/mxnet
https://hub.docker.com/u/mxnet
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac
https://raw.githubusercontent.com/Homebrew/install/master/install
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brew install cmake ninja ccache opencv # Install dependencies 

We can also build MXNet without OpenCV as opencv is an optional dependency. 

Step 2: In this step we will download MXNet source and configure. First, let us clone the 

repository by using following command: 

git clone –-recursive https://github.com/apache/incubator-mxnet.git mxnet 

      

     cd mxnet 

  

cp config/linux.cmake config.cmake 

Step 3: By using the following commands, you can build MXNet core shared library: 

rm -rf build 

mkdir -p build && cd build 

cmake -GNinja .. 

cmake --build . 

Two important points regarding the above step is as follows: 

If you want to build the Debug version, then specify the as follows: 

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja .. 

In order to set the number of parallel compilation jobs, specify the following: 

cmake --build . --parallel N 

Once you successfully build MXNet core shared library, in the build folder in your MXNet 

project root, you will find libmxnet.dylib, which is required to install language 

bindings(optional). 

Windows OS 

To install MXNet on Windows, following are the prerequisites: 

Minimum System Requirements 

 Windows 7, 10, Server 2012 R2, or Server 2016 

 Visual Studio 2015 or 2017 (any type) 

 Python 2.7 or 3.6 

 pip 

Recommended System Requirements 

 Windows 10, Server 2012 R2, or Server 2016 
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 Visual Studio 2017 

 At least one NVIDIA CUDA-enabled GPU 

 MKL-enabled CPU: Intel® Xeon® processor, Intel® Core™ processor family, Intel 

Atom® processor, or Intel® Xeon Phi™ processor 

 Python 2.7 or 3.6 

 pip 

Graphical Processing Unit (GPU) 

By using Pip method:  

If you plan to build MXNet on Windows with NVIDIA GPUs, there are two options for 

installing MXNet with CUDA support with a Python package: 

Install with CUDA Support 

Below are the steps with the help of which, we can setup MXNet with CUDA.  

Step 1:  First install Microsoft Visual Studio 2017 or Microsoft Visual Studio 2015. 

Step 2: Next, download and install NVIDIA CUDA. It is recommended to use CUDA 

versions 9.2 or 9.0 because some issues with CUDA 9.1 have been identified in the past. 

Step 3: Now, download and install NVIDIA_CUDA_DNN. 

Step 4: Finally, by using following pip command, install MXNet with CUDA: 

pip install mxnet-cu92 

Install with CUDA and MKL Support 

Below are the steps with the help of which, we can setup MXNet with CUDA and MKL.  

Step 1:  First install Microsoft Visual Studio 2017 or Microsoft Visual Studio 2015. 

Step 2: Next, download and install intel MKL 

Step 3: Now, download and install NVIDIA CUDA.  

Step 4: Now, download and install NVIDIA_CUDA_DNN. 

Step 5: Finally, by using following pip command, install MXNet with MKL. 

pip install mxnet-cu92mkl 

From source 

To build the MXNet core library from source with GPU, we have the following two options: 
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Option 1: Build with Microsoft Visual Studio 2017 

In order to build and install MXNet yourself by using Microsoft Visual Studio 2017, you 

need the following dependencies.  

Install/update Microsoft Visual Studio. 

 If Microsoft Visual Studio is not already installed on your machine, first download 

and install it.  

 It will prompt about installing Git. Install it also. 

 If Microsoft Visual Studio is already installed on your machine but you want to 

update it then proceed to the next step to modify your installation. Here you will 

be given the opportunity to update Microsoft Visual Studio as well. 

Follow the instructions for opening the Visual Studio Installer  available at 

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-

2019 to modify Individual components. 

In the Visual Studio Installer application, update as required. After that look for and 

check VC++ 2017 version 15.4 v14.11 toolset and click Modify. 

Now by using the following command, change the version of the Microsoft VS2017 to 

v14.11: 

"C:\Program Files (x86)\Microsoft Visual 

Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat" -vcvars_ver=14.11 

Next, you need to download and install CMake available at 

https://cmake.org/download/ It is recommended to use CMake v3.12.2 which is 

available at https://cmake.org/download/ because it is tested with MXNet. 

Now, download and run the OpenCV package available at 

https://sourceforge.net/projects/opencvlibrary/which will unzip several files. It is up to 

you if you want to place them in another directory or not. Here, we will use the path 

C:\utils(mkdir C:\utils) as our default path. 

Next, we need to set the environment variable OpenCV_DIR to point to the OpenCV build 

directory that we have just unzipped. For this open command prompt and type set 

OpenCV_DIR=C:\utils\opencv\build. 

One important point is that if you do not have the Intel MKL (Math Kernel Library) installed 

the you can install it.  

Another open source package you can use is OpenBLAS. Here for the further instructions 

we are assuming that you are using OpenBLAS. 

So, Download the OpenBlas package which is available at 

https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-

int32.zip/download and unzip the file, rename it to OpenBLAS and put it under C:\utils.  

Next, we need to set the environment variable OpenBLAS_HOME to point to the 

OpenBLAS directory that contains the include and lib directories. For this open command 

prompt and type set OpenBLAS_HOME=C:\utils\OpenBLAS. 

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://cmake.org/download
https://cmake.org/download/
https://cmake.org/download/
https://sourceforge.net/projects/opencvlibrary/
https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip/download
https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip/download
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Now, download and install CUDA available at https://developer.nvidia.com/cuda-

downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=

exelocal. Note that, if you already had CUDA, then installed Microsoft VS2017, you need 

to reinstall CUDA now, so that you can get the CUDA toolkit components for Microsoft 

VS2017 integration. 

Next, you need to download and install cuDNN. 

Next, you need to download and install git which is at https://gitforwindows.org/ also. 

Once you have installed all the required dependencies, follow the steps given below to 

build the MXNet source code: 

Step 1: Open command prompt in windows. 

Step 2: Now, by using the following command, download the MXNet source code from 

GitHub: 

cd C:\ 

 

git clone https://github.com/apache/incubator-mxnet.git --recursive 

Step 3: Next, verify the following: 

DCUDNN_INCLUDE and DCUDNN_LIBRARY environment variables are pointing to 

the include folder and cudnn.lib file of your CUDA installed location 

C:\incubator-mxnet is the location of the source code you just cloned in the previous 

step. 

Step 4: Next by using the following command, create a build directory and also go to the 

directory, for example: 

mkdir C:\incubator-mxnet\build 

cd C:\incubator-mxnet\build 

Step 5: Now, by using cmake, compile the MXNet source code as follows: 

cmake -G "Visual Studio 15 2017 Win64" -T cuda=9.2,host=x64 -DUSE_CUDA=1 -

DUSE_CUDNN=1 -DUSE_NVRTC=1 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_BLAS=open -

DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_LIST=Common -DCUDA_TOOLSET=9.2 -

DCUDNN_INCLUDE=C:\cuda\include -DCUDNN_LIBRARY=C:\cuda\lib\x64\cudnn.lib 

"C:\incubator-mxnet" 

Step 6: Once the CMake successfully completed, use the following command to compile 

the MXNet source code: 

msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount 

Option 2: Build with Microsoft Visual Studio 2015 

In order to build and install MXNet yourself by using Microsoft Visual Studio 2015, you 

need the following dependencies.  

https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://gitforwindows.org/
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Install/update Microsoft Visual Studio 2015. The minimum requirement to build MXnet 

from source is of Update 3 of Microsoft Visual Studio 2015. You can use Tools -> 

Extensions and Updates... | Product Updates menu to upgrade it.   

Next, you need to download and install CMake which is available at 

https://cmake.org/download/. It is recommended to use CMake v3.12.2 which is at 
https://cmake.org/download/, because it is tested with MXNet. 

Now, download and run the OpenCV package available at 

https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-

3.4.1-vc14_vc15.exe which will unzip several files. It is up to you, if you want to place 

them in another directory or not. 

Next, we need to set the environment variable OpenCV_DIR to point to the OpenCV 

build directory that we have just unzipped. For this, open command prompt and type set 

OpenCV_DIR=C:\opencv\build\x64\vc14\bin. 

One important point is that if you do not have the Intel MKL (Math Kernel Library) installed 

the you can install it.  

Another open source package you can use is OpenBLAS. Here for the further instructions 

we are assuming that you are using OpenBLAS. 

So, Download the OpenBLAS package available at 

https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-

Win64-int32.zip and unzip the file, rename it to OpenBLAS and put it under C:\utils.  

Next, we need to set the environment variable OpenBLAS_HOME to point to the OpenBLAS 

directory that contains the include and lib directories. You can find the directory 

in C:\Program files (x86)\OpenBLAS\ 

Now, download and install CUDA, which is available at https://developer.nvidia.com/cuda-

downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=

exelocal.  

Note that, if you already had CUDA, then installed Microsoft VS2015, you need to reinstall 

CUDA now so that, you can get the CUDA toolkit components for Microsoft VS2017 

integration. 

Next, you need to download and install cuDNN. 

Now, we need to Set the environment variable CUDACXX to point to the CUDA 

Compiler(C:\Program Files\NVIDIA GPU Computing 

Toolkit\CUDA\v9.1\bin\nvcc.exe for example). 

Similarly, we also need to set the environment variable CUDNN_ROOT to point to 

the cuDNN directory that contains the include, lib and bin directories 

(C:\Downloads\cudnn-9.1-windows7-x64-v7\cuda for example). 

Once you have installed all the required dependencies, follow the steps given below to 

build the MXNet source code: 

Step 1: First, download the MXNet source code from GitHub: 

https://cmake.org/download/
https://cmake.org/download/
https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe
https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe
https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip
https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
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cd C:\ 

 

git clone https://github.com/apache/incubator-mxnet.git --recursive 

Step 2: Next, use CMake to create a Visual Studio in ./build. 

Step 3: Now, in Visual Studio, we need to open the solution file,.sln, and compile it. 

These commands will produce a library called mxnet.dll in 

the ./build/Release/ or ./build/Debug folder 

Step 4: Once the CMake successfully completed, use the following command to compile 

the MXNet source code 

msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount 

Central Processing Unit (CPU) 

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when 

we are using CPU for processing: 

By using Pip method  

If you plan to build MXNet on Windows with CPUs, there are two options for installing 

MXNet using a Python package: 

Install with CPUs 

Use the following command to install MXNet with CPU with Python: 

pip install mxnet 

Install with Intel CPUs 

As discussed above, MXNet has experimental support for Intel MKL as well as MKL-DNN. 

Use the following command to install MXNet with Intel CPU with Python: 

pip install mxnet-mkl  

By using Docker 

You can find the docker images with MXNet at DockerHub, available at 

https://hub.docker.com/u/mxnet Let us check out the steps below, to install MXNet by 

using Docker with CPU: 

Step 1: First, by following the docker installation instructions which can be read at 
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac. We 

need to install Docker on our machine. 

Step 2: By using the following command, you can pull the MXNet docker image: 

 $ docker pull mxnet/python 

https://hub.docker.com/u/mxnet
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac
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Now in order to see if mxnet/python docker image pull was successful, we can list docker 

images as follows: 

 $ docker images 

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet 

with Intel MKL-DNN.  

Check the commands below: 

$ docker pull mxnet/python:1.3.0_cpu_mkl 

$ docker images 

Installing MXNet On Cloud and Devices 

This section highlights how to install Apache MXNet on Cloud and on devices. Let us begin 

by learning about installing MXNet on cloud. 

Installing MXNet On Cloud 

You can also get Apache MXNet on several cloud providers with Graphical Processing 

Unit (GPU) support. Two other kind of support you can find are as follows: 

 GPU/CPU-hybrid support for use cases like scalable inference. 

 Factorial GPU support with AWS Elastic Inference. 

Following are cloud providers providing GPU support with different virtual machine for 

Apache MXNet: 

The Alibaba Console 

You can create the NVIDIA GPU Cloud Virtual Machine (VM) available at 
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-

console.html#launching-nv-cloud-vm-console with the Alibaba Console and use Apache 

MXNet. 

Amazon Web Services 

It also provides GPU support and gives the following services for Apache MXNet: 

Amazon SageMaker 

It manages training and deployment of Apache MXNet models. 

AWS Deep Learning AMI 

It provides preinstalled Conda environment for both Python 2 and Python 3 with Apache 

MXNet, CUDA, cuDNN, MKL-DNN, and AWS Elastic Inference.  

Dynamic Training on AWS 

https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console
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It provides the training for experimental manual EC2 setup as well as for semi-automated 

CloudFormation setup. 

You can use NVIDIA VM available at 
https://aws.amazon.com/marketplace/pp/B076K31M1S with Amazon web services.  

Google Cloud Platform 

Google is also providing NVIDIA GPU cloud image which is available at 

https://console.cloud.google.com/marketplace/details/nvidia-ngc-

public/nvidia_gpu_cloud_image?pli=1 to work with Apache MXNet. 

Microsoft Azure 

Microsoft Azure Marketplace is also providing NVIDIA GPU cloud image available at 

https://azuremarketplace.microsoft.com/en-

us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview to work with Apache 

MXNet. 

Oracle Cloud 

Oracle is also providing NVIDIA GPU cloud image available at 

https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/References/ngcimage.htm to 

work with Apache MXNet. 

Central Processing Unit (CPU) 

Apache MXNet works on every cloud provider’s CPU-only instance. There are various 

methods to install such as: 

 Python pip install instructions. 

 Docker instructions. 

 Preinstalled option like Amazon Web Services which provides AWS Deep Learning 

AMI (having preinstalled Conda environment for both Python 2 and Python 3 with 

MXNet and MKL-DNN). 

Installing MXNet on Devices 

Let us learn how to install MXNet on devices. 

Raspberry Pi 

You can also run Apache MXNet on Raspberry Pi 3B devices as MXNet also support 

Respbian ARM based OS. In order to run MXNet smoothly on the Raspberry Pi3, it is 

recommended to have a device that has more than 1 GB of RAM and a SD card with at 

least 4GB of free space.  

Following are the ways with the help of which you can build MXNet for the Raspberry Pi 

and install the Python bindings for the library as well: 

https://aws.amazon.com/marketplace/pp/B076K31M1S
https://console.cloud.google.com/marketplace/details/nvidia-ngc-public/nvidia_gpu_cloud_image?pli=1
https://console.cloud.google.com/marketplace/details/nvidia-ngc-public/nvidia_gpu_cloud_image?pli=1
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview
https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/References/ngcimage.htm
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Quick installation 

The pre-built Python wheel can be used on a Raspberry Pi 3B with Stretch for quick 

installation. One of the important issues with this method is that, we need to install several 

dependencies to get Apache MXNet to work. 

Docker installation 

You can follow the docker installation instructions, which is available at 

https://docs.docker.com/engine/install/ubuntu/ to install Docker on your machine. For 

this purpose, we can install and use Community Edition (CE) also.   

Native Build (from source) 

In order to install MXNet from source, we need to follow the following two steps: 

Step 1 

Build the shared library from the Apache MXNet C++ source code 

To build the shared library on Raspberry version Wheezy and later, we need the following 

dependencies: 

 Git: It is required to pull code from GitHub. 

 Libblas: It is required for linear algebraic operations. 

 Libopencv: It is required for computer vision related operations. However, it is 

optional if you would like to save your RAM and Disk Space. 

 C++ Compiler: It is required to compiles and builds MXNet source code. Following 

are the supported compilers that supports C++ 11: 

 G++ (4.8 or later version) 

 Clang(3.9-6) 

Use the following commands to install the above-mentioned dependencies: 

sudo apt-get update 

sudo apt-get -y install git cmake ninja-build build-essential g++-4.9 c++-4.9 

liblapack* 

libblas* libopencv* 

libopenblas* python3-dev python-dev virtualenv 

Next, we need to clone the MXNet source code repository. For this use the following git 

command in your home directory: 

git clone https://github.com/apache/incubator-mxnet.git --recursive 

 

cd incubator-mxnet 

Now, with the help of following commands, build the shared library: 

https://mxnet-public.s3.amazonaws.com/install/raspbian/mxnet-1.5.0-py2.py3-none-any.whl
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
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mkdir -p build && cd build 

cmake \ 

-DUSE_SSE=OFF \ 

-DUSE_CUDA=OFF \ 

-DUSE_OPENCV=ON \ 

-DUSE_OPENMP=ON \ 

-DUSE_MKL_IF_AVAILABLE=OFF \ 

-DUSE_SIGNAL_HANDLER=ON \ 

 

-DCMAKE_BUILD_TYPE=Release \ 

-GNinja .. 

ninja -j$(nproc) 

Once you execute the above commands, it will start the build process which will take 

couple of hours to finish. You will get a file named libmxnet.so in the build directory.  

Step 2 

Install the supported language-specific packages for Apache MXNet 

In this step, we will install MXNet Pythin bindings. To do so, we need to run the following 

command in the MXNet directory: 

cd python 

pip install --upgrade pip 

pip install -e . 

Alternatively, with the following command, you can also create a whl package installable 

with pip: 

ci/docker/runtime_functions.sh build_wheel python/ $(realpath build) 

NVIDIA Jetson Devices 

You can also run Apache MXNet on NVIDIA Jetson Devices, such as TX2 or Nano as MXNet 

also support the Ubuntu Arch64 based OS. In order to run, MXNet smoothly on the NVIDIA 

Jetson Devices, it is necessary to have CUDA installed on your Jetson device.  

Following are the ways with the help of which you can build MXNet for NVIDIA Jetson 

devices: 

 By using a Jetson MXNet pip wheel for Python development 

 From source 

But, before building MXNet from any of the above-mentioned ways, you need to install 

following dependencies on your Jetson devices: 
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Python Dependencies 

In order to use the Python API, we need the following dependencies: 

sudo apt update 

sudo apt -y install \ 

                        build-essential \ 

                        git \ 

                        graphviz \ 

 

                        libatlas-base-dev \ 

                        libopencv-dev \ 

                        python-pip 

 

sudo pip install --upgrade \ 

                        pip \ 

                        setuptools 

 

sudo pip install \ 

                        graphviz==0.8.4 \ 

                        jupyter \ 

                        numpy==1.15.2 

Clone the MXNet source code repository  

By using the following git command in your home directory, clone the MXNet source code 

repository: 

git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet 

Setup environment variables 

Add the following in your .profile file in your home directory: 

export PATH=/usr/local/cuda/bin:$PATH 

export MXNET_HOME=$HOME/mxnet/ 

export PYTHONPATH=$MXNET_HOME/python:$PYTHONPATH 

Now, apply the change immediately with the following command: 
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source .profile 

Configure CUDA  

Before configuring CUDA, with nvcc, you need to check what version of CUDA is running: 

nvcc --version 

Suppose, if more than one CUDA version is installed on your device or computer and you 

want to switch CUDA versions then, use the following and replace the symbolic link to the 

version you want: 

sudo rm /usr/local/cuda 

sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda 

The above command will switch to CUDA 10.0, which is preinstalled on NVIDIA Jetson 

device Nano. 

Once you done with the above-mentioned prerequisites, you can now install MXNet on 

NVIDIA Jetson Devices. So, let us understand the ways with the help of which you can 

install MXNet: 

By using a Jetson MXNet pip wheel for Python development: If you want to use a 

prepared Python wheel then download the following to your Jetson and run it: 

 MXNet 1.4.0 (for Python 3) available at 

https://docs.docker.com/engine/install/ubuntu/ 

 MXNet 1.4.0 (for Python 2) available at 

https://docs.docker.com/engine/install/ubuntu/ 

Native Build (from source) 

In order to install MXNet from source, we need to follow the following two steps: 

Step 1 

Build the shared library from the Apache MXNet C++ source code 

To build the shared library from the Apache MXNet C++ source code, you can either use 

Docker method or do it manually: 

Docker method 

In this method, you first need to install Docker and able to run it without sudo (which is 

also explained in previous steps). Once done, run the following to execute cross-

compilation via Docker: 

$MXNET_HOME/ci/build.py -p jetson 

Manual  

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
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In this method, you need to edit the Makefile (with below command) to install the MXNet 

with CUDA bindings to leverage the Graphical Processing units (GPU) on NVIDIA Jetson 

devices: 

cp $MXNET_HOME/make/crosscompile.jetson.mk config.mk 

After editing the Makefile, you need to edit config.mk file to make some additional 

changes for the NVIDIA Jetson device.  

For this, update the following settings: 

 Update the CUDA path:  USE_CUDA_PATH = /usr/local/cuda 

 Add -gencode arch=compute-63, code=sm_62 to the CUDA_ARCH setting. 

 Update the NVCC settings: NVCCFLAGS := -m64 

 Turn on OpenCV: USE_OPENCV = 1 

Now to ensure that the MXNet builds with Pascal’s hardware level low precision 

acceleration, we need to edit the Mshadow Makefile as follow: 

MSHADOW_CFLAGS += -DMSHADOW_USE_PASCAL=1 

Finally, with the help of following command you can build the complete Apache MXNet 

library: 

cd $MXNET_HOME 

make -j $(nproc) 

Once you execute the above commands, it will start the build process which will take 

couple of hours to finish. You will get a file named libmxnet.so in the mxnet/lib 

directory.  

Step 2 

Install the Apache MXNet Python Bindings  

In this step, we will install MXNet Python bindings. To do so we need to run the following 

command in the MXNet directory: 

cd $MXNET_HOME/python 

sudo pip install -e . 

Once done with above steps, you are now ready to run MXNet on your NVIDIA Jetson 

devices TX2 or Nano. It can be verified with the following command: 

import mxnet 

mxnet.__version__ 

It will return the version number if everything is properly working. 
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To support the research and development of Deep Learning applications across many 

fields, Apache MXNet provides us a rich ecosystem of toolkits, libraries and many more. 

Let us explore them: 

ToolKits 

Following are some of the most used and important toolkits provided by MXNet: 

GluonCV  

As name implies GluonCV is a Gluon toolkit for computer vision powered by MXNet. It 

provides implementation of state-of-the-art DL (Deep Learning) algorithms in computer 

vision (CV). With the help of GluonCV toolkit engineers, researchers, and students can 

validate new ideas and learn CV easily.  

Given below are some of the features of GluonCV: 

 It trains scripts for reproducing state-of-the-art results reported in latest research. 

 More than 170+ high quality pretrained models. 

 Embrace flexible development pattern. 

 GluonCV is easy to optimize. We can deploy it without retaining heavy weight DL 

framework.  

 It provides carefully designed APIs that greatly lessen the implementation intricacy.   

 Community support. 

 Easy to understand implementations. 

Following are the supported applications by GluonCV toolkit: 

 Image Classification 

 Object Detection 

 Semantic Segmentation 

 Instance Segmentation 

 Pose Estimation 

 Video Action Recognition 

We can install GluonCV by using pip as follows: 

pip install --upgrade mxnet gluoncv 

  

3. Apache MXNet — Toolkits and Ecosystem  

https://pip.pypa.io/en/stable/installing/
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GluonNLP 

As name implies GluonNLP is a Gluon toolkit for Natural Language Processing (NLP) 

powered by MXNet. It provides implementation of state-of-the-art DL (Deep Learning) 

models in NLP.  

With the help of GluonNLP toolkit engineers, researchers, and students can build blocks 

for text data pipelines and models. Based on these models, they can quickly prototype the 

research ideas and product.  

Given below are some of the features of GluonNLP: 

 It trains scripts for reproducing state-of-the-art results reported in latest research. 

 Set of pretrained models for common NLP tasks. 

 It provides carefully designed APIs that greatly lessen the implementation intricacy.   

 Community support. 

 It also provides tutorials to help you get started on new NLP tasks. 

Following are the NLP tasks we can implement with GluonNLP toolkit: 

 Word Embedding 

 Language Model 

 Machine Translation 

 Text Classification 

 Sentiment Analysis 

 Natural Language Inference 

 Text Generation 

 Dependency Parsing 

 Named Entity Recognition 

 Intent Classification and Slot Labeling  

We can install GluonNLP by using pip as follows: 

pip install --upgrade mxnet gluonnlp 

GluonTS 

As name implies GluonTS is a Gluon toolkit for Probabilistic Time Series Modeling powered 

by MXNet.  

It provides the following features: 

 State-of-the-art (SOTA) deep learning models ready to be trained. 

 The utilities for loading as well as iterating over time-series datasets. 

 Building blocks to define your own model. 

With the help of GluonTS toolkit engineers, researchers, and students can train and 

evaluate any of the built-in models on their own data, quickly experiment with different 

solutions, and come up with a solution for their time series tasks.  

https://pip.pypa.io/en/stable/installing/
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They can also use the provided abstractions and building blocks to create custom time 

series models, and rapidly benchmark them against baseline algorithms.  

We can install GluonTS by using pip as follows: 

pip install gluonts 

GluonFR  

As name implies, it is an Apache MXNet Gluon toolkit for FR (Face Recognition). It provides 

the following features: 

 State-of-the-art (SOTA) deep learning models in face recognition. 

 The implementation of SoftmaxCrossEntropyLoss, ArcLoss, TripletLoss, RingLoss, 

CosLoss/AMsoftmax, L2-Softmax, A-Softmax, CenterLoss, ContrastiveLoss, and 

LGM Loss, etc. 

In order to install Gluon Face, we need Python 3.5 or later. We also first need to install 

GluonCV and MXNet first as follows: 

pip install gluoncv --pre 

pip install mxnet-mkl --pre --upgrade 

pip install mxnet-cuXXmkl --pre –upgrade # if cuda XX is installed 

Once you installed the dependencies, you can use the following command to install 

GluonFR: 

 From Source 

pip install git+https://github.com/THUFutureLab/gluon-face.git@master 

 Pip 

pip install gluonfr 

Ecosystem 

Now let us explore MXNet’s rich libraries, packages, and frameworks: 

Coach RL 

Coach, a Python Reinforcement Learning (RL) framework created by Intel AI lab. It enables 

easy experimentation with State-of-the-art RL algorithms. Coach RL supports Apache 

MXNet as a back end and allows simple integration of new environment to solve.  

In order to extend and reuse existing components easily, Coach RL very well decoupled 

the basic reinforcement learning components such as algorithms, environments, NN 

architectures, exploration policies. 

Following are the agents and supported algorithms for Coach RL framework: 

https://pip.pypa.io/en/stable/installing/
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Value Optimization Agents 

 Deep Q Network (DQN) 

 Double Deep Q Network (DDQN) 

 Dueling Q Network 

 Mixed Monte Carlo (MMC) 

 Persistent Advantage Learning (PAL) 

 Categorical Deep Q Network (C51)  

 Quantile Regression Deep Q Network (QR-DQN)  

 N-Step Q Learning   

 Neural Episodic Control (NEC) 

 Normalized Advantage Functions (NAF)   

 Rainbow 

Policy Optimization Agents 

 Policy Gradients (PG) 

 Asynchronous Advantage Actor-Critic (A3C)  

 Deep Deterministic Policy Gradients (DDPG)  

 Proximal Policy Optimization (PPO) 

 Clipped Proximal Policy Optimization (CPPO) 

 Generalized Advantage Estimation (GAE) 

 Sample Efficient Actor-Critic with Experience Replay (ACER) 

 Soft Actor-Critic (SAC) 

 Twin Delayed Deep Deterministic Policy Gradient (TD3) 

General Agents 

 Direct Future Prediction (DFP)  

Imitation Learning Agents 

 Behavioral Cloning (BC) 

 Conditional Imitation Learning  

Hierarchical Reinforcement Learning Agents 

 Hierarchical Actor Critic (HAC) 

Deep Graph Library 

Deep Graph Library (DGL), developed by NYU and AWS teams, Shanghai, is a Python 

package that provides easy implementations of Graph Neural Networks (GNNs) on top of 

MXNet. It also provides easy implementation of GNNs on top of other existing major deep 

learning libraries like PyTorch, Gluon, etc.  
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Deep Graph Library is a free software. It is available on all Linux distributions later than 

Ubuntu 16.04, macOS X, and Windows 7 or later. It also requires the Python 3.5 version 

or later. 

Following are the features of DGL: 

No Migration cost: There is no migration cost for using DGL as it is built on top of popular 

exiting DL frameworks. 

 

Message Passing: DGL provides message passing and it has versatile control over it. The 

message passing ranges from low-level operations such as sending along selected edges 

to high-level control such as graph-wide feature updates. 

 

Smooth Learning Curve: It is quite easy to learn and use DGL as the powerful user-

defined functions are flexible as well as easy to use. 

 

Transparent Speed Optimization: DGL provides transparent speed optimization by 

doing automatic batching of computations and sparse matrix multiplication. 

 

High performance: In order to achieve maximum efficiency, DGL automatically batches 

DNN (deep neural networks) training on one or many graphs together. 

 

Easy & friendly interface: DGL provides us easy & friendly interfaces for edge feature 

access as well as graph structure manipulation. 

InsightFace 

InsightFace, a Deep Learning Toolkit for Face Analysis that provides implementation of 

SOTA (state-of-the-art) face analysis algorithm in computer vision powered by MXNet. It 

provides: 

 High-quality large set of pre-trained models. 

 State-of-the-art (SOTA) training scripts. 

 InsightFace is easy to optimize. We can deploy it without retaining heavy weight 

DL framework.  

 It provides carefully designed APIs that greatly lessen the implementation intricacy.   

 Building blocks to define your own model. 

We can install InsightFace by using pip as follows: 

pip install --upgrade insightface 

Please note that before installing InsightFace, please install the correct MXNet package 

according to your system configuration. 

Keras-MXNet 

As we know that Keras is a high-level Neural Network (NN) API written in Python, Keras-

MXNet provides us a backend support for the Keras. It can run on top of high performance 

and scalable Apache MXNet DL framework.  

The features of Keras-MXNet are mentioned below: 

https://pip.pypa.io/en/stable/installing/
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 Allows users for easy, smooth, and fast prototyping. It all happens through user 

friendliness, modularity, and extensibility. 

 Supports both CNN (Convolutional Neural Networks) and RNN (Recurrent Neural 

Networks) as well as the combination of both also. 

 Runs flawlessly on both Central Processing Unit (CPU) and Graphical Processing 

Unit (GPU).  

 Can run on one or multi GPU.    

In order to work with this backend, you first need to install keras-mxnet as follows: 

pip install keras-mxnet 

Now, if you are using GPUs then install MXNet with CUDA 9 support as follows: 

pip install mxnet-cu90 

But if you are using CPU-only then install basic MXNet as follows: 

pip install mxnet 

MXBoard 

MXBoard is logging tool, written in Python, that is used to record MXNet data frames and 

display in TensorBoard. In other words, the MXBoard is meant to follow the tensorboard-

pytorch API. It supports most of the data types in TensorBoard.  

Some of them are mentioned below: 

 Graph 

 Scalar 

 Histogram 

 Embedding 

 Image 

 Text 

 Audio 

 Precision-Recall Curve 

MXFusion 

MXFusion is a modular probabilistic programming library with deep learning. MXFusion 

allows us to fully exploited modularity, which is a key feature of deep learning libraries, 

for probabilistic programming. It is simple to use and provides the users a convenient 

interface for designing probabilistic models and applying them to the real-world problems.  

MXFusion is verified on Python version 3.4 and more on MacOS and Linux OS. In order to 

install MXFusion, we need to first install the following dependencies: 
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 MXNet >= 1.3  

 Networkx >= 2.1  

With the help of following pip command, you can install MXFusion: 

pip install mxfusion 

TVM 

Apache TVM, an open-source end-to-end deep learning compiler stack for hardware-

backends such as CPUs, GPUs, and specialized accelerators, aims to fill the gap between 

the productivity-focused deep-learning frameworks and performance-oriented hardware 

backends. With the latest release MXNet 1.6.0, users can leverage Apache(incubating) 

TVM to implement high-performance operator kernels in Python programming language.  

Apache TVM actually started as a research project at the SAMPL group of Paul G. Allen 

School of Computer Science & Engineering, University of Washington and now it is an 

effort undergoing incubation at The Apache Software Foundation (ASF) which is driven by 

an OSC (open source community) that  involves multiple industry as well as academic 

institutions under the Apache way. 

Following are the main features of Apache(incubating) TVM: 

 Simplifies the former C++ based development process. 

 Enables sharing the same implementation across multiple hardware backends such 

as CPUs, GPUs, etc. 

 TVM provides compilation of DL models in various frameworks such as Kears, 

MXNet, PyTorch, Tensorflow, CoreML, DarkNet into minimum deployable modules 

on diverse hardware backends. 

 It also provides us the infrastructure to automatically generate and optimize tensor 

operators with better performance.   

XFer 

Xfer, a transfer learning framework, is written in Python. It basically takes an MXNet model 

and train a meta-model or modifies the model for a new target dataset as well.  

In simple words, Xfer is a Python library that allows users to quick and easy transfer of 

knowledge stored in DNN (deep neural networks).  

Xfer can be used: 

 For the classification of data of arbitrary numeric format. 

 To the common cases of images or text data. 

 As a pipeline that spams from extracting features to training a repurposer (an 

object that performs classification in the target task). 

Following are the features of Xfer: 

 Resource efficiency 

https://sampl.cs.washington.edu/
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 Data efficiency 

 Easy access to neural networks 

 Uncertainty modeling 

 Rapid prototyping 

 Utilities for feature extraction from NN 
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This chapter will help you in understanding about the MXNet system architecture. Let us 

begin by learning about the MXNet Modules. 

MXNet Modules  

The diagram below is the MXNet system architecture and it shows the major modules and 

components of MXNet modules and their interaction. 

 

In the above diagram: 

 The modules in blue color boxes are User Facing Modules.  

 The modules in green color boxes are System Modules.  

 Solid arrow represents high dependency, i.e. heavily rely on the interface. 

 Dotted arrow represents light dependency, i.e. Used data structure for convenience 

and interface consistency. In fact, it can be replaced by the alternatives.  

Let us discuss more about user facing and system modules. 

4. Apache MXNet — System Architecture  
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User-facing Modules 

The user-facing modules are as follows: 

 NDArray: It provides flexible imperative programs for Apache MXNet. They are 

dynamic and asynchronous n-dimensional arrays. 

 KVStore: It acts as interface for efficient parameter synchronization. In KVStore, 

KV stands for Key-Value. So, it a key-value store interface. 

 Data Loading (IO): This user facing module is used for efficient distributed data 

loading and augmentation. 

 Symbol Execution: It is a static symbolic graph executor. It provides efficient 

symbolic graph execution and optimization. 

 Symbol Construction: This user facing module provides user a way to construct 

a computation graph i.e. net configuration. 

System Modules 

The system modules are as follows: 

 Storage Allocator: This system module, as name suggests, allocates and recycle 

memory blocks efficiently on host i.e. CPU and different devices i.e. GPUs.  

 Runtime Dependency Engine: Runtime dependency engine module schedules as 

well as executes the operations as per their read/write dependency. 

 Resource Manager: Resource Manager (RM) system module manages global 

resources like the random number generator and temporal space. 

 Operator: Operator system module consists of all the operators that define static 

forward and gradient calculation i.e. backpropagation. 
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Here, the system components in Apache MXNet are explained in detail. First, we will study 

about the execution engine in MXNet. 

Execution Engine 

Apache MXNet’s execution engine is very versatile. We can use it for deep learning as well 

as any domain-specific problem: execute a bunch of functions following their 

dependencies. It is designed in such a way that the functions with dependencies are 

serialized whereas, the functions with no dependencies can be executed in parallel.  

Core Interface 

The API given below is the core interface for Apache MXNet’s execution engine: 

virtual void PushSync(Fn exec_fun, Context exec_ctx, 

                          std::vector<VarHandle> const& const_vars, 

                          std::vector<VarHandle> const& mutate_vars) = 0; 

The above API has the following: 

 exec_fun: The core interface API of MXNet allows us to push the function named 

exec_fun, along with its context information and dependencies, to the execution 

engine. 

 exec_ctx: The context information in which the above-mentioned function 

exec_fun should be executed. 

 const_vars: These are the variables that the function reads from. 

 mutate_vars: These are the variables that are to be modified. 

The execution engine provides its user the guarantee that the execution of any two 

functions that modify a common variable is serialized in their push order. 

Function 

Following is the function type of the execution engine of Apache MXNet: 

using Fn = std::function<void(RunContext)>; 

 

 

     

5. Apache MXNet — System Components  
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In the above function, RunContext contains the runtime information. The runtime 

information should be determined by the execution engine. The syntax of RunContext is 

as follows: 

    struct RunContext { 

        // stream pointer which could be safely cast to 

        // cudaStream_t* type 

     void *stream; 

    }; 

Below are given some important points about execution engine’s functions: 

 All the functions are executed by MXNet’s execution engine’s internal threads. 

 It is not good to push blocking the function to the execution engine because with 

that the function will occupy the execution thread and will also reduce the total 

throughput. 

 For this MXNet provides another asynchronous function as follows: 

using Callback = std::function<void()>; 

    using AsyncFn = std::function<void(RunContext, Callback)>; 

 In this AsyncFn function we can pass the heavy part of our threads, but the 

execution engine does not consider the function finished until we call the callback 

function. 

Context 

In Context, we can specify the context of the function to be executed within. This usually 

includes the following: 

 Whether the function should be run on a CPU or a GPU. 

 If we specify GPU in the Context, then which GPU to use. 

 There is a huge difference between Context and RunContext. Context have the 

device type and device id, whereas RunContext have the information that can be 

decided only during runtime. 

VarHandle 

VarHandle, used to specify the dependencies of functions, is like a token (especially 

provided by execution engine) we can use to represents the external resources the 

function can modify or use.  

But the question arises, why we need to use VarHandle? It is because, the Apache MXNet 

engine is designed to decoupled from other MXNet modules.   

Following are some important points about VarHandle: 
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 It is lightweight so to create, delete, or copying a variable incurs little operating 

cost. 

 We need to specify the immutable variables i.e. the variables that will be used in 

the const_vars. 

 We need to specify the mutable variables i.e. the variables that will be modified in 

the mutate_vars. 

 The rule used by the execution engine to resolve the dependencies among functions 

is that the execution of any two functions when one of them modifies at least one 

common variable is serialized in their push order. 

 For creating a new variable, we can use the NewVar() API. 

 For deleting a variable, we can use the PushDelete API. 

Let us understand its working with a simple example: 

Suppose if we have two functions namely F1 and F2 and they both mutate the variable 

namely V2. In that case, F2 is guaranteed to be executed after F1 if F2 is pushed after F1. 

On the other side, if F1 and F2 both use V2 then their actual execution order could be 

random. 

Push and Wait 

Push and wait are two more useful API of execution engine.  

Following are two important features of Push API: 

 All the Push APIs are asynchronous which means that the API call immediately 

returns regardless of whether the pushed function is finished or not.  

 Push API is not thread safe which means that only one thread should make engine 

API calls at a time. 

Now if we talk about Wait API, following points represent it: 

 If a user wants to wait for a specific function to be finished, he/she should include 

a callback function in the closure. Once included, call the function at the end of the 

function. 

 On the other hand, if a user wants to wait for all functions that involves a certain 

variable to finish, he/she should use WaitForVar(var) API. 

 If someone wants to wait for all the pushed functions to finish, then use the 

WaitForAll () API. 

 Used to specify the dependencies of functions, is like a token. 

Operators 

Operator in Apache MXNet is a class that contains actual computation logic as well as 

auxiliary information and aid the system in performing optimisation.  
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Operator Interface 

Forward is the core operator interface whose syntax is as follows: 

virtual void Forward(const OpContext &ctx, 

                         const std::vector<TBlob> &in_data, 

                         const std::vector<OpReqType> &req, 

                         const std::vector<TBlob> &out_data, 

                         const std::vector<TBlob> &aux_states) = 0; 

The structure of OpContext, defined in Forward() is as follows: 

           struct OpContext { 

             int is_train; 

             RunContext run_ctx; 

             std::vector<Resource> requested; 

           } 

 

The OpContext describes the state of operator (whether in the train or test phase), which 

device the operator should be run on and also the requested resources. two more useful 

API of execution engine.  

From the above Forward core interface, we can understand the requested resources as 

follows: 

 in_data and out_data represent the input and output tensors. 

 req denotes how the result of computation are written into the out_data. 

The OpReqType can be defined as: 

enum OpReqType { 

             kNullOp, 

             kWriteTo, 

             kWriteInplace, 

             kAddTo 

           }; 

As like Forward operator, we can optionally implement the Backward interface as 

follows: 

virtual void Backward(const OpContext &ctx, 

                          const std::vector<TBlob> &out_grad, 

                          const std::vector<TBlob> &in_data, 

                          const std::vector<TBlob> &out_data, 
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                          const std::vector<OpReqType> &req, 

                          const std::vector<TBlob> &in_grad, 

                          const std::vector<TBlob> &aux_states); 

Various tasks 

Operator interface allows the users to do the following tasks: 

 User can specify in-place updates and can reduce memory allocation cost 

 In order to make it cleaner, the user can hide some internal arguments from 

Python. 

 User can define the relationship among the tensors and output tensors. 

 To perform computation, the user can acquire additional temporary space from the 

system. 

Operator Property 

As we are aware that in Convolutional neural network (CNN), one convolution has several 

implementations. To achieve the best performance from them, we might want to switch 

among those several convolutions.   

That is the reason, Apache MXNet separate the operator semantic interface from the 

implementation interface. This separation is done in the form of OperatorProperty class 

which consists of the following: 

InferShape: The InferShape interface has two purposes as given below: 

 First purpose is to tell the system the size of each input and output tensor so that 

the space can be allocated before Forward and Backward call.  

 Second purpose is to perform a size check to make sure that there is no error 

before running. 

  The syntax is given below: 

virtual bool InferShape(mxnet::ShapeVector *in_shape, 

                                   mxnet::ShapeVector *out_shape, 

                                   mxnet::ShapeVector *aux_shape) const = 0; 
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Request Resource: What if your system can manage the computation workspace for 

operations like cudnnConvolutionForward? Your system can perform optimizations 

such as reuse the space and many more. Here, MXNet easily achieve this with the help of 

following two interfaces: 

virtual std::vector<ResourceRequest> ForwardResource( 

               const mxnet::ShapeVector &in_shape) const; 

           virtual std::vector<ResourceRequest> BackwardResource( 

               const mxnet::ShapeVector &in_shape) const; 

But, what if the ForwardResource and BackwardResource return non-empty arrays? 

In that case, the system offers corresponding resources through ctx parameter in the 

Forward and Backward interface of Operator.  

Backward dependency: Apache MXNet has following two different operator signatures 

to deal with backward dependency: 

void FullyConnectedForward(TBlob weight, TBlob in_data, TBlob out_data); 

           void FullyConnectedBackward(TBlob weight, TBlob in_data, TBlob 

out_grad, TBlob in_grad); 

 

           void PoolingForward(TBlob in_data, TBlob out_data); 

           void PoolingBackward(TBlob in_data, TBlob out_data, TBlob out_grad, 

TBlob in_grad); 

Here, the two important points to note:  

 The out_data in FullyConnectedForward is not used by FullyConnectedBackward, 

and 

 PoolingBackward requires all the arguments of PoolingForward.  

That is why for FullyConnectedForward, the out_data tensor once consumed could be 

safely freed because the backward function will not need it. With the help of this system 

got a to collect some tensors as garbage as early as possible. 

In place Option: Apache MXNet provides another interface to the users to save the cost 

of memory allocation. The interface is appropriate for element-wise operations in which 

both input and output tensors have the same shape.  

Following is the syntax for specifying the in-place update: 

Example for Creating an Operator 

With the help of OperatorProperty we can create an operator. To do so, follow the steps 
given below: 

 

          virtual std::vector<std::pair<int, void*>>    

ElewiseOpProperty::ForwardInplaceOption( 
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               const std::vector<int> &in_data, 

               const std::vector<void*> &out_data) const { 

             return { {in_data[0], out_data[0]} }; 

           } 

           virtual std::vector<std::pair<int, void*>> 

ElewiseOpProperty::BackwardInplaceOption( 

               const std::vector<int> &out_grad, 

               const std::vector<int> &in_data, 

               const std::vector<int> &out_data, 

               const std::vector<void*> &in_grad) const { 

             return { {out_grad[0], in_grad[0]} } 

           } 

Step 1 

Create Operator 

First implement the following interface in OperatorProperty: 

 virtual Operator* CreateOperator(Context ctx) const = 0; 

The example is given below: 

    class ConvolutionOp { 

     public: 

      void Forward( ... ) { ... } 

      void Backward( ... ) { ... } 

    }; 

    class ConvolutionOpProperty : public OperatorProperty { 

     public: 

      Operator* CreateOperator(Context ctx) const { 

        return new ConvolutionOp; 

      } 

    }; 

Step 2 

Parameterize Operator 

If you are going to implement a convolution operator, it is mandatory to know the kernel 

size, the stride size, padding size, and so on. Why, because these parameters should be 

passed to the operator before calling any Forward or backward interface.  

For this, we need to define a ConvolutionParam structure as below: 
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#include <dmlc/parameter.h> 

    struct ConvolutionParam : public dmlc::Parameter<ConvolutionParam> { 

      mxnet::TShape kernel, stride, pad; 

      uint32_t num_filter, num_group, workspace; 

      bool no_bias; 

    }; 

Now, we need to put this in ConvolutionOpProperty and pass it to the operator as 

follows: 

class ConvolutionOp { 

     public: 

      ConvolutionOp(ConvolutionParam p): param_(p) {} 

      void Forward( ... ) { ... } 

      void Backward( ... ) { ... } 

     private: 

      ConvolutionParam param_; 

    }; 

    class ConvolutionOpProperty : public OperatorProperty { 

     public: 

      void Init(const vector<pair<string, string>& kwargs) { 

        // initialize param_ using kwargs 

      } 

      Operator* CreateOperator(Context ctx) const { 

        return new ConvolutionOp(param_); 

      } 

     private: 

      ConvolutionParam param_; 

    }; 

Step 3 

Register the Operator Property Class and the Parameter Class to Apache MXNet 

At last, we need to register the Operator Property Class and the Parameter Class to MXNet. 

It can be done with the help of following macros: 

DMLC_REGISTER_PARAMETER(ConvolutionParam); 

    MXNET_REGISTER_OP_PROPERTY(Convolution, ConvolutionOpProperty); 

In the above macro, the first argument is the name string and the second is the property 

class name. 
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This chapter provides information about the unified operator application programming 

interface (API) in Apache MXNet. 

SimpleOp 

SimpleOp is a new unified operator API which unifies different invoking processes. Once 

invoked, it returns to the fundamental elements of operators. The unified operator is 

specially designed for unary as well as binary operations. It is because most of the 

mathematical operators attend to one or two operands and more operands make the 

optimization, related to dependency, useful. 

We will be understanding its SimpleOp unified operator working with the help of an 

example. In this example, we will be creating an operator functioning as a smooth l1 

loss, which is a mixture of l1 and l2 loss. We can define and write the loss as given below: 

    loss = outside_weight .* f(inside_weight .* (data - label)) 

    grad = outside_weight .* inside_weight .* f'(inside_weight .* (data - 

label)) 

Here, in above example, 

 .* stands for element-wise multiplication 

 f, f’ is the smooth l1 loss function which we are assuming is in mshadow. 

It looks impossible to implement this particular loss as a unary or binary operator but 

MXNet provides its users automatic differentiation in symbolic execution which simplifies 

the loss to f and f’ directly. That’s why we can certainly implement this particular loss as 

a unary operator. 

Defining Shapes 

As we know MXNet’s mshadow library requires explicit memory allocation hence we need 

to provide all data shapes before any calculation occurs. Before defining functions and 

gradient, we need to provide input shape consistency and output shape as follows: 

typedef mxnet::TShape (*UnaryShapeFunction)(const mxnet::TShape& src, 

                                         const EnvArguments& env); 

    typedef mxnet::TShape (*BinaryShapeFunction)(const mxnet::TShape& lhs, 

                                          const mxnet::TShape& rhs, 

                                          const EnvArguments& env); 

The function mxnet::Tshape is used to check input data shape and designated output data 

shape. In case, if you do not define this function then the default output shape would be 

6. Apache MXNet — Unified Operator API 
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same as input shape. For example, in case of binary operator the shape of lhs and rhs is 

by default checked as the same.  

Now let’s move on to our smooth l1 loss example. For this, we need to define an XPU 

to cpu or gpu in the header implementation smooth_l1_unary-inl.h. The reason is to 

reuse the same code in smooth_l1_unary.cc and smooth_l1_unary.cu. 

#include <mxnet/operator_util.h> 

    #if defined(__CUDACC__) 

    #define XPU gpu 

    #else 

    #define XPU cpu 

    #endif 

As in our smooth l1 loss example, the output has the same shape as the source, we can 

use the default behavior. It can be written as follows: 

inline mxnet::TShape SmoothL1Shape_(const mxnet::TShape& src, 

                                 const EnvArguments& env) { 

      return mxnet::TShape(src); 

    } 

Defining Functions 

We can create a unary or binary function with one input as follows: 

typedef void (*UnaryFunction)(const TBlob& src, 

                                  const EnvArguments& env, 

                                  TBlob* ret, 

                                  OpReqType req, 

                                  RunContext ctx); 

    typedef void (*BinaryFunction)(const TBlob& lhs, 

                                   const TBlob& rhs, 

                                   const EnvArguments& env, 

                                   TBlob* ret, 

                                   OpReqType req, 

                                   RunContext ctx); 

 

Following is the RunContext ctx struct which contains the information needed during 

runtime for execution: 

struct RunContext { 
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          void *stream;  // the stream of the device, can be NULL or 

Stream<gpu>* in GPU mode 

          template<typename xpu> inline mshadow::Stream<xpu>* get_stream() // 

get mshadow stream from Context 

        }  // namespace mxnet 

Now, let’s see how we can write the computation results in ret. 

        enum OpReqType { 

          kNullOp,  // no operation, do not write anything 

          kWriteTo,  // write gradient to provided space 

          kWriteInplace,  // perform an in-place write 

          kAddTo  // add to the provided space 

        }; 

Now, let’s move on to our smooth l1 loss example. For this, we will use UnaryFunction 

to define the function of this operator as follows: 

    template<typename xpu> 

    void SmoothL1Forward_(const TBlob& src, 

                          const EnvArguments& env, 

                          TBlob *ret, 

                          OpReqType req, 

                          RunContext ctx) { 

      using namespace mshadow; 

      using namespace mshadow::expr; 

      mshadow::Stream<xpu> *s = ctx.get_stream<xpu>(); 

      real_t sigma2 = env.scalar * env.scalar; 

      MSHADOW_TYPE_SWITCH(ret->type_flag_, DType, { 

        mshadow::Tensor<xpu, 2, DType> out = ret->get<xpu, 2, DType>(s); 

        mshadow::Tensor<xpu, 2, DType> in = src.get<xpu, 2, DType>(s); 

        ASSIGN_DISPATCH(out, req, 

                        F<mshadow_op::smooth_l1_loss>(in, 

ScalarExp<DType>(sigma2))); 

      }); 

    } 
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Defining Gradients 

Except Input, TBlob, and OpReqType are doubled, Gradients functions of binary 

operators have similar structure. Let’s check out below, where we created a gradient 

function with various types of input: 

    // depending only on out_grad 

    typedef void (*UnaryGradFunctionT0)(const OutputGrad& out_grad, 

                                        const EnvArguments& env, 

                                        TBlob* in_grad, 

                                        OpReqType req, 

                                        RunContext ctx); 

    // depending only on out_value 

    typedef void (*UnaryGradFunctionT1)(const OutputGrad& out_grad, 

                                        const OutputValue& out_value, 

                                        const EnvArguments& env, 

                                        TBlob* in_grad, 

                                        OpReqType req, 

                                         RunContext ctx); 

    // depending only on in_data 

    typedef void (*UnaryGradFunctionT2)(const OutputGrad& out_grad, 

                                        const Input0& in_data0, 

                                        const EnvArguments& env, 

                                        TBlob* in_grad, 

                                        OpReqType req, 

                                        RunContext ctx); 

As defined above Input0, Input, OutputValue, and OutputGrad all share the structure 

of GradientFunctionArgument. It is defined as follows: 

struct GradFunctionArgument { 

          TBlob data; 

      } 

Now let’s move on to our smooth l1 loss example. For this to enable the chain rule of 

gradient we need to multiply out_grad from the top to the result of in_grad. 

template<typename xpu> 

    void SmoothL1BackwardUseIn_(const OutputGrad& out_grad, 

                                const Input0& in_data0, 

 

                                const EnvArguments& env, 
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                                TBlob *in_grad, 

                                OpReqType req, 

                                RunContext ctx) { 

      using namespace mshadow; 

      using namespace mshadow::expr; 

      mshadow::Stream<xpu> *s = ctx.get_stream<xpu>(); 

      real_t sigma2 = env.scalar * env.scalar; 

      MSHADOW_TYPE_SWITCH(in_grad->type_flag_, DType, { 

        mshadow::Tensor<xpu, 2, DType> src = in_data0.data.get<xpu, 2, 

DType>(s); 

        mshadow::Tensor<xpu, 2, DType> ograd = out_grad.data.get<xpu, 2, 

DType>(s); 

        mshadow::Tensor<xpu, 2, DType> igrad = in_grad->get<xpu, 2, DType>(s); 

         ASSIGN_DISPATCH(igrad, req, 

                        ograd * F<mshadow_op::smooth_l1_gradient>(src, 

ScalarExp<DType>(sigma2))); 

      }); 

    } 

Register SimpleOp to MXNet 

Once we created the shape, function, and gradient, we need to restore them into both an 

NDArray operator as well as into a symbolic operator. For this, we can use the registration 

macro as follows: 

MXNET_REGISTER_SIMPLE_OP(Name, DEV) 

    .set_shape_function(Shape) 

    .set_function(DEV::kDevMask, Function<XPU>, SimpleOpInplaceOption) 

    .set_gradient(DEV::kDevMask, Gradient<XPU>, SimpleOpInplaceOption) 

    .describe("description"); 

The SimpleOpInplaceOption can be defined as follows: 

    enum SimpleOpInplaceOption { 

      kNoInplace,  // do not allow inplace in arguments 

      kInplaceInOut,  // allow inplace in with out (unary) 

      kInplaceOutIn,  // allow inplace out_grad with in_grad (unary) 

      kInplaceLhsOut,  // allow inplace left operand with out (binary) 

 

      kInplaceOutLhs  // allow inplace out_grad with lhs_grad (binary) 
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    }; 

Now let’s move on to our smooth l1 loss example. For this, we have a gradient function 

that relies on input data so that the function cannot be written in place.  

    MXNET_REGISTER_SIMPLE_OP(smooth_l1, XPU) 

    .set_function(XPU::kDevMask, SmoothL1Forward_<XPU>, kNoInplace) 

    .set_gradient(XPU::kDevMask, SmoothL1BackwardUseIn_<XPU>, kInplaceOutIn) 

    .set_enable_scalar(true) 

    .describe("Calculate Smooth L1 Loss(lhs, scalar)"); 

SimpleOp on EnvArguments 

As we know some operations might need the following: 

 A scalar as input such as a gradient scale 

 A set of keyword arguments controlling behavior 

 A temporary space to speed up calculations. 

The benefit of using EnvArguments is that it provides additional arguments and resources 

to make calculations more scalable and efficient. 

Example 

First let’s define the struct as below: 

struct EnvArguments { 

      real_t scalar;  // scalar argument, if enabled 

      std::vector<std::pair<std::string, std::string> > kwargs;  // keyword 

arguments 

      std::vector<Resource> resource;  // pointer to the resources requested 

    }; 

Next, we need to request additional resources like mshadow::Random<xpu> and 

temporary memory space from EnvArguments.resource. It can be done as follows: 

struct ResourceRequest { 

      enum Type {  // Resource type, indicating what the pointer type is 

        kRandom,  // mshadow::Random<xpu> object 

        kTempSpace  // A dynamic temp space that can be arbitrary size 

      }; 

      Type type;  // type of resources 

    }; 
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Now, the registration will request the declared resource request from 

mxnet::ResourceManager. After that, it will place the resources in 

std::vector<Resource> resource in EnvAgruments. 

We can access the resources with the help of following code: 

    auto tmp_space_res = env.resources[0].get_space(some_shape, some_stream); 

    auto rand_res = env.resources[0].get_random(some_stream); 

If you see in our smooth l1 loss example, a scalar input is needed to mark the turning 

point of a loss function. That’s why in the registration process, we use 

set_enable_scalar(true), and env.scalar in function and gradient declarations. 

Building Tensor Operation 

Here the question arises that why we need to craft tensor operations? The reasons are as 

follows: 

 Computation utilizes the mshadow library and we sometimes do not have functions 

readily available. 

 If an operation is not done in an element-wise way such as softmax loss and 

gradient. 

Example 

Here, we are using the above smooth l1 loss example. We will be creating two mappers 

namely the scalar cases of smooth l1 loss and gradient: 

namespace mshadow_op { 

    struct smooth_l1_loss { 

      // a is x, b is sigma2 

      MSHADOW_XINLINE static real_t Map(real_t a, real_t b) { 

        if (a > 1.0f / b) { 

          return a - 0.5f / b; 

        } else if (a < -1.0f / b) { 

          return -a - 0.5f / b; 

        } else { 

          return 0.5f * a * a * b; 

        } 

      } 

    }; 

    } 
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This chapter is about the distributed training in Apache MXNet. Let us start by 

understanding what are the modes of computation in MXNet. 

Modes of Computation 

MXNet, a multi-language ML library, offers its users the following two modes of 

computation: 

Imperative mode 

This mode of computation exposes an interface like NumPy API. For example, in MXNet, 

use the following imperative code to construct a tensor of zeros on both CPU as well as 

GPU: 

import mxnet as mx 

tensor_cpu = mx.nd.zeros((100,), ctx=mx.cpu()) 

tensor_gpu= mx.nd.zeros((100,), ctx=mx.gpu(0)) 

As we see in the above code, MXNets specifies the location where to hold the tensor, either 

in CPU or GPU device. In above example, it is at location 0. MXNet achieve incredible 

utilisation of the device, because all the computations happen lazily instead of 

instantaneously.     

Symbolic mode  

Although the imperative mode is quite useful, but one of the drawbacks of this mode is its 

rigidity, i.e. all the computations need to be known beforehand along with pre-defined 

data structures.  

On the other hand, Symbolic mode exposes a computation graph like TensorFlow. It 

removes the drawback of imperative API by allowing MXNet to work with symbols or 

variables instead of fixed/pre-defined data structures. Afterwards, the symbols can be 

interpreted as a set of operations as follows: 

import mxnet as mx 

x = mx.sym.Variable(“X”) 

y = mx.sym.Variable(“Y”) 

z = (x+y) 

m = z/100 

Kinds of Parallelism 

Apache MXNet supports distributed training. It enables us to leverage multiple machines 

for faster as well as effective training.  

7. Apache MXNet — Distributed Training  
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Following are the two ways in which, we can distribute the workload of training a NN across 

multiple devices, CPU or GPU device: 

Data Parallelism 

In this kind of parallelism, each device stores a complete copy of the model and works 

with a different part of the dataset. Devices also update a shared model collectively. We 

can locate all the devices on a single machine or across multiple machines. 

Model Parallelism 

It is another kind of parallelism, which comes handy when models are so large that they 

do not fit into device memory. In model parallelism, different devices are assigned the 

task of learning different parts of the model. The important point here to note is that 

currently Apache MXNet supports model parallelism in a single machine only.    

Working of distributed training 

The concepts given below are the key to understand the working of distributed training in 

Apache MXNet: 

Types of processes 

Processes communicates with each other to accomplish the training of a model. Apache 

MXNet has the following three processes: 

Worker 

The job of worker node is to perform training on a batch of training samples. The Worker 

nodes will pull weights from the server before processing every batch. The Worker nodes 

will send gradients to the server, once the batch is processed.  

Server 

MXNet can have multiple servers for storing the model’s parameters and to communicate 

with the worker nodes.  

Scheduler 

The role of the scheduler is to set up the cluster, which includes waiting for messages that 

each node has come up and which port the node is listening to. After setting up the cluster, 

the scheduler lets all the processes know about every other node in the cluster. It is 

because the processes can communicate with each other. There is only one scheduler.  

KV Store 

KV stores stands for Key-Value store. It is critical component used for multi-device 

training. It is important because, the communication of parameters across devices on 

single as well as across multiple machines is transmitted through one or more servers with 

a KVStore for the parameters. Let’s understand the working of KVStore with the help of 

following points: 

 Each value in KVStore is represented by a key and a value. 
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 Each parameter array in the network is assigned a key and the weights of that 

parameter array is referred by value.  

 After that, the worker nodes push gradients after processing a batch. They also 

pull updated weights before processing a new batch. 

The notion of KVStore server exists only during distributed training and the distributed 

mode of it is enabled by calling mxnet.kvstore.create function with a string argument 

containing the word dist: 

kv = mxnet.kvstore.create(‘dist_sync’) 

Distribution of Keys 

It is not necessary that, all the servers store all the parameters array or keys, but they 

are distributed across different servers. Such distribution of keys across different servers 

is handled transparently by the KVStore and the decision of which server stores a specific 

key is made at random.  

KVStore, as discussed above, ensures that whenever the key is pulled, its request is sent 

to that server, which has the corresponding value. What if the value of some key is large? 

In that case, it may be shared across different servers.   

Split training data 

As being the users, we want each machine to be working on different parts of the dataset, 

especially, when running distributed training in data parallel mode. We know that, to split 

a batch of samples provided by the data iterator for data parallel training on a single 

worker we can use mxnet.gluon.utils.split_and_load and then, load each part of the 

batch on the device which will process it further. 

On the other hand, in case of distributed training, at beginning we need to divide the 

dataset into n different parts so that every worker gets a different part. Once got, each 

worker can then use split_and_load to again divide that part of the dataset across 

different devices on a single machine. All this happen through data iterator. 

mxnet.io.MNISTIterator and mxnet.io.ImageRecordIter are two such iterators in 

MXNet that support this feature. 

Weights updating 

For updating the weights, KVStore supports following two modes: 

 First method aggregates the gradients and updates the weights by using those 

gradients. 

 In the second method the server only aggregates gradients.  

If you are using Gluon, there is an option to choose between above stated methods by 

passing update_on_kvstore variable. Let’s understand it by creating the trainer object 

as follows: 

trainer = gluon.Trainer(net.collect_params(), optimizer='sgd', 

                        optimizer_params={'learning_rate': opt.lr, 
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                                          'wd': opt.wd, 

                                          'momentum': opt.momentum, 

                                          'multi_precision': True}, 

                        kvstore=kv, 

                        update_on_kvstore=True) 

Modes of Distributed Training 

If the KVStore creation string contains the word dist, it means the distributed training is 

enabled. Following are different modes of distributed training that can be enabled by using 

different types of KVStore: 

dist_sync 

As name implies, it denotes synchronous distributed training. In this, all the workers use 

the same synchronized set of model parameters at the start of every batch.  

The drawback of this mode is that, after each batch the server should have to wait to 

receive gradients from each worker before it updates the model parameters. This means 

that if a worker crashes, it would halt the progress of all workers. 

dist_async 

As name implies, it denotes synchronous distributed training. In this, the server receives 

gradients from one worker and immediately updates its store. Server uses the updated 

store to respond to any further pulls.  

The advantage, in comparison of dist_sync mode, is that a worker who finishes 

processing a batch can pull the current parameters from server and start the next batch. 

The worker can do so, even if the other worker has not yet finished processing the earlier 

batch. It is also faster than dist_sync mode because, it can take more epochs to converge 

without any cost of synchronization.  

dist_sync_device 

This mode is same as dist_sync mode. The only difference is that, when there are multiple 

GPUs being used on every node dist_sync_device aggregates gradients and updates 

weights on GPU whereas, dist_sync aggregates gradients and updates weights on CPU 

memory.  

It reduces expensive communication between GPU and CPU. That is why, it is faster than 

dist_sync. The drawback is that it increases the memory usage on GPU. 

dist_async_device 

This mode works same as dist_sync_device mode, but in asynchronous mode. 
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In this chapter we will learn about the Python Packages available in Apache MXNet. 

Important MXNet Python packages 

MXNet has the following important Python packages which we will be discussing one by 

one: 

 Autograd (Automatic Differentiation) 

 NDArray 

 KVStore 

 Gluon 

 Visualization 

First let us start with Autograd Python package for Apache MXNet. 

Autograd 

Autograd stands for automatic differentiation used to backpropagate the gradients 

from the loss metric back to each of the parameters. Along with backpropagation it uses 

a dynamic programming approach to efficiently calculate the gradients. It is also called 

reverse mode automatic differentiation. This technique is very efficient in ‘fan-in’ situations 

where, many parameters effect a single loss metric. 

What are gradients? 

Gradients are the fundamentals to the process of neural network training. They basically 

tell us how to change the parameters of the network to improve its performance.  

As we know that, neural networks (NN) are composed of operators such as sums, product, 

convolutions, etc. These operators, for their computations, use parameters such as the 

weights in convolution kernels. We should have to find the optimal values for these 

parameters and gradients shows us the way and lead us to the solution as well.  

 

8. Apache MXNet — Python Packages 
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We are interested in the effect of changing a parameter on performance of the network 

and gradients tell us, how much a given variable increases or decreases when we change 

a variable it depends on. The performance is usually defined by using a loss metric that 

we try to minimise. For example, for regression we might try to minimise L2 loss between 

our predictions and exact value, whereas for classification we might minimise the cross-

entropy loss. 

Once we calculate the gradient of each parameter with reference to the loss, we can then 

use an optimiser, such as stochastic gradient descent.  

How to calculate gradients? 

We have the following options to calculate gradients: 

 Symbolic Differentiation: The very first option is Symbolic Differentiation, which 

calculates the formulas for each gradient. The drawback of this method is that, it 

will quickly lead to incredibly long formulas as the network get deeper and 

operators get more complex. 

 Finite Differencing: Another option is, to use finite differencing which try slight 

differences on each parameter and see how the loss metric responds. The drawback 

of this method is that, it would be computationally expensive and may have poor 

numerical precision.  
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 Automatic differentiation: The solution to the drawbacks of the above methods 

is, to use automatic differentiation to backpropagate the gradients from the loss 

metric back to each of the parameters. Propagation allows us a dynamic 

programming approach to efficiently calculate the gradients. This method is also 

called reverse mode automatic differentiation.  

Automatic Differentiation (autograd) 

Here, we will understand in detail the working of autograd. It basically works in following 

two stages: 

Stage 1: This stage is called ‘Forward Pass’ of training. As name implies, in this stage 

it creates the record of the operator used by the network to make predictions and calculate 

the loss metric.  

Stage 2: This stage is called ‘Backward Pass’ of training. As name implies, in this stage 

it works backwards through this record. Going backwards, it evaluates the partial 

derivatives of each operator, all the way back to the network parameter.  

 

Advantages of autograd 

Following are the advantages of using Automatic Differentiation (autograd): 
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 Flexible: Flexibility, that it gives us when defining our network, is one of the huge 

benefits of using autograd. We can change the operations on every iteration. These 

are called the dynamic graphs, which are much more complex to implement in 

frameworks requiring static graph. Autograd, even in such cases, will still be able 

to backpropagate the gradients correctly. 

 Automatic: Autograd is automatic, i.e. the complexities of the backpropagation 

procedure are taken care of by it for you. We just need to specify what gradients 

we are interested in calculating. 

 Efficient: Autogard calculates the gradients very efficiently. 

 Can use native Python control flow operators: We can use the native Python 

control flow operators such as if condition and while loop. The autograd will still 

be able to backpropagate the gradients efficiently and correctly.   

Using autograd in MXNet Gluon 

Here, with the help of an example, we will see how we can use autograd in MXNet Gluon. 

Implementation Example 

In the following example, we will implement the regression model having two layers. After 

implementing, we will use autograd to automatically calculate the gradient of the loss with 

reference to each of the weight parameters: 

First import the autogrard and other required packages as follows: 

from mxnet import autograd 

import mxnet as mx 

from mxnet.gluon.nn import HybridSequential, Dense 

from mxnet.gluon.loss import L2Loss 

Now, we need to define the network as follows: 

N_net = HybridSequential() 

N_net.add(Dense(units=3)) 

N_net.add(Dense(units=1)) 

N_net.initialize() 

Now we need to define the loss as follows: 

loss_function = L2Loss() 

Next, we need to create the dummy data as follows: 

x = mx.nd.array([[0.5, 0.9]]) 
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y = mx.nd.array([[1.5]]) 

Now, we are ready for our first forward pass through the network. We want autograd to 

record the computational graph so that we can calculate the gradients. For this, we need 

to run the network code in the scope of autograd.record context as follows: 

with autograd.record(): 

    y_hat = N_net(x) 

    loss = loss_function(y_hat, y) 

Now, we are ready for the backward pass, which we start by calling the backward method 

on the quantity of interest. The quatity of interest in our example is loss because we are 

trying to calculate the gradient of loss with reference to the parameters: 

loss.backward()  

Now, we have gradients for each parameter of the network, which will be used by the 

optimiser to update the parameter value for improved performance. Let’s check out the 

gradients of the 1st layer as follows: 

N_net[0].weight.grad() 

Output 

The output is as follows: 

[[-0.00470527 -0.00846948] 

 [-0.03640365 -0.06552657] 

 [ 0.00800354  0.01440637]] 

<NDArray 3x2 @cpu(0)> 

Complete implementation example 

Given below is the complete implementation example. 

from mxnet import autograd 

import mxnet as mx 

from mxnet.gluon.nn import HybridSequential, Dense 

from mxnet.gluon.loss import L2Loss 

N_net = HybridSequential() 

N_net.add(Dense(units=3)) 

N_net.add(Dense(units=1)) 

N_net.initialize() 

loss_function = L2Loss() 

x = mx.nd.array([[0.5, 0.9]]) 

y = mx.nd.array([[1.5]]) 
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with autograd.record(): 

    y_hat = N_net(x) 

    loss = loss_function(y_hat, y) 

loss.backward()  

N_net[0].weight.grad() 
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In this chapter, we will be discussing about MXNet’s multi-dimensional array format called 

ndarray.  

Handling data with NDArray 

First, we are going see how we can handle data with NDArray. Following are the 

prerequisites for the same: 

Prerequisites 

To understand how we can handle data with this multi-dimensional array format, we need 

to fulfil the following prerequisites: 

 MXNet installed in a Python environment 

 Python 2.7.x or Python 3.x 

Implementation Example 

Let us understand the basic functionality with the help of an example given below: 

First, we need to import MXNet and ndarray from MXNet as follows: 

import mxnet as mx 

from mxnet import nd 

Once we import the necessary libraries, we will go with the following basic functionalities: 

A simple 1-D array with a python list 

x = nd.array([1,2,3,4,5,6,7,8,9,10]) 

print(x) 

Output 

The output is as mentioned below: 

[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.] 

<NDArray 10 @cpu(0)> 

A 2-D array with a python list 

y = nd.array([[1,2,3,4,5,6,7,8,9,10], [1,2,3,4,5,6,7,8,9,10], 

[1,2,3,4,5,6,7,8,9,10]]) 

9. Apache MXNet — NDArray 



Apache MXNet        

   61 

 

print(y) 

Output 

The output is as stated below: 

[[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.] 

 [ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.] 

 [ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]] 

<NDArray 3x10 @cpu(0)> 

Creating an NDArray without any initialisation  

Here, we will create a matrix with 3 rows and 4 columns by using .empty function. We 

will also use .full function, which will take an additional operator for what value you want 

to fill in the array. 

x = nd.empty((3, 4)) 

print(x) 

x = nd.full((3,4), 8) 

print(x) 

Output 

The output is given below: 

[[0.000e+00 0.000e+00 0.000e+00 0.000e+00] 

 [0.000e+00 0.000e+00 2.887e-42 0.000e+00] 

 [0.000e+00 0.000e+00 0.000e+00 0.000e+00]] 

<NDArray 3x4 @cpu(0)> 

 

[[8. 8. 8. 8.] 

 [8. 8. 8. 8.] 

 [8. 8. 8. 8.]] 

<NDArray 3x4 @cpu(0)> 

Matrix of all zeros with the .zeros function  

x = nd.zeros((3, 8)) 

print(x) 

Output 

The output is as follows: 

[[0. 0. 0. 0. 0. 0. 0. 0.] 
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 [0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0.]] 

<NDArray 3x8 @cpu(0)> 

Matrix of all ones with the .ones function  

x = nd.ones((3, 8)) 

print(x) 

Output 

The output is mentioned below: 

[[1. 1. 1. 1. 1. 1. 1. 1.] 

 [1. 1. 1. 1. 1. 1. 1. 1.] 

 [1. 1. 1. 1. 1. 1. 1. 1.]] 

<NDArray 3x8 @cpu(0)> 

Creating array whose values are sampled randomly  

y = nd.random_normal(0, 1, shape=(3, 4)) 

print(y) 

Output 

The output is given below: 

[[ 1.2673576  -2.0345826  -0.32537818 -1.4583491 ] 

 [-0.11176403  1.3606371  -0.7889914  -0.17639421] 

 [-0.2532185  -0.42614475 -0.12548696  1.4022992 ]] 

<NDArray 3x4 @cpu(0)> 

Finding dimension of each NDArray   

y.shape 

Output 

The output is as follows: 

(3, 4) 

Finding the size of each NDArray   

y.size 
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Output 

12 

Finding the datatype of each NDArray   

y.dtype 

Output 

numpy.float32 

NDArray Operations 

In this section, we will introduce you to MXNet’s array operations. NDArray support large 

number of standard mathematical as well as In-place operations. 

Standard Mathematical Operations 

Following are standard mathematical operations supported by NDArray: 

Element-wise addition 

First, we need to import MXNet and ndarray from MXNet as follows: 

import mxnet as mx 

from mxnet import nd 

x = nd.ones((3, 5)) 

y = nd.random_normal(0, 1, shape=(3, 5)) 

print('x=', x) 

print('y=', y) 

x = x + y 

print('x = x + y, x=', x) 

Output 

The output is given herewith: 

x=  

[[1. 1. 1. 1. 1.] 

 [1. 1. 1. 1. 1.] 

 [1. 1. 1. 1. 1.]] 

<NDArray 3x5 @cpu(0)> 

y=  

[[-1.0554522  -1.3118273  -0.14674698  0.641493   -0.73820823] 
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 [ 2.031364    0.5932667   0.10228804  1.179526   -0.5444829 ] 

 [-0.34249446  1.1086396   1.2756858  -1.8332436  -0.5289873 ]] 

<NDArray 3x5 @cpu(0)> 

x = x + y, x=  

[[-0.05545223 -0.3118273   0.853253    1.6414931   0.26179177] 

 [ 3.031364    1.5932667   1.102288    2.1795259   0.4555171 ] 

 [ 0.6575055   2.1086397   2.2756858  -0.8332436   0.4710127 ]] 

<NDArray 3x5 @cpu(0)> 

Element-wise multiplication 

x = nd.array([1, 2, 3, 4]) 

y = nd.array([2, 2, 2, 1]) 

x * y 

Output 

You will see the following output: 

[2. 4. 6. 4.] 

<NDArray 4 @cpu(0)> 

Exponentiation 

nd.exp(x) 

Output 

When you run the code, you will see the following output: 

[ 2.7182817  7.389056  20.085537  54.59815  ] 

<NDArray 4 @cpu(0)> 

Matrix transpose to compute matrix-matrix product 

nd.dot(x, y.T) 

Output 

Given below is the output of the code: 

[16.] 

<NDArray 1 @cpu(0)> 
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In-place Operations 

Every time, in the above example, we ran an operation, we allocated a new memory to 

host its result.  

For example, if we write A = A+B, we will dereference the matrix that A used to point to 

and instead point it at the newly allocated memory. Let us understand it with the example 

given below, using Python’s id() function: 

print('y=', y) 

print('id(y):', id(y)) 

y = y + x 

print('after y=y+x, y=', y) 

print('id(y):', id(y)) 

Output 

Upon execution, you will receive the following output: 

y=  

[2. 2. 2. 1.] 

<NDArray 4 @cpu(0)> 

id(y): 2438905634376 

after y=y+x, y=  

[3. 4. 5. 5.] 

<NDArray 4 @cpu(0)> 

id(y): 2438905685664 

In fact, we can also assign the result to a previously allocated array as follows: 

print('x=', x) 

z = nd.zeros_like(x) 

print('z is zeros_like x, z=', z) 

print('id(z):', id(z)) 

print('y=', y) 

z[:] = x + y 

print('z[:] = x + y, z=', z) 

print('id(z) is the same as before:', id(z)) 

Output 

The output is shown below: 

x=  

[1. 2. 3. 4.] 
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<NDArray 4 @cpu(0)> 

z is zeros_like x, z=  

[0. 0. 0. 0.] 

 

<NDArray 4 @cpu(0)> 

 

id(z): 2438905790760 

y=  

[3. 4. 5. 5.] 

<NDArray 4 @cpu(0)> 

z[:] = x + y, z=  

[4. 6. 8. 9.] 

<NDArray 4 @cpu(0)> 

id(z) is the same as before: 2438905790760 

From the above output, we can see that x+y will still allocate a temporary buffer to store 

the result before copying it to z. So now, we can perform operations in-place to make 

better use of memory and to avoid temporary buffer. To do this, we will specify the out 

keyword argument every operator support as follows: 

print('x=', x, 'is in id(x):', id(x)) 

print('y=', y, 'is in id(y):', id(y)) 

print('z=', z, 'is in id(z):', id(z)) 

nd.elemwise_add(x, y, out=z) 

print('after nd.elemwise_add(x, y, out=z), x=', x, 'is in id(x):', id(x)) 

print('after nd.elemwise_add(x, y, out=z), y=', y, 'is in id(y):', id(y)) 

print('after nd.elemwise_add(x, y, out=z), z=', z, 'is in id(z):', id(z)) 

Output 

On executing the above program, you will get the following result: 

x=  

[1. 2. 3. 4.] 

<NDArray 4 @cpu(0)> is in id(x): 2438905791152 

y=  

[3. 4. 5. 5.] 

<NDArray 4 @cpu(0)> is in id(y): 2438905685664 

z=  

[4. 6. 8. 9.] 

<NDArray 4 @cpu(0)> is in id(z): 2438905790760 
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after nd.elemwise_add(x, y, out=z), x=  

[1. 2. 3. 4.] 

<NDArray 4 @cpu(0)> is in id(x): 2438905791152 

after nd.elemwise_add(x, y, out=z), y=  

 

[3. 4. 5. 5.] 

<NDArray 4 @cpu(0)> is in id(y): 2438905685664 

after nd.elemwise_add(x, y, out=z), z=  

[4. 6. 8. 9.] 

<NDArray 4 @cpu(0)> is in id(z): 2438905790760 

NDArray Contexts 

In Apache MXNet, each array has a context and one context could be the CPU, whereas 

other contexts might be several GPUs. The things can get even worst, when we deploy the 

work across multiple servers. That’s why, we need to assign arrays to contexts 

intelligently. It will minimise the time spent transferring data between devices.  

For example, try initialising an array as follows: 

from mxnet import nd 

z = nd.ones(shape=(3,3), ctx=mx.cpu(0)) 

print(z)  

Output 

When you execute the above code, you should see the following output: 

[[1. 1. 1.] 

 [1. 1. 1.] 

 [1. 1. 1.]] 

<NDArray 3x3 @cpu(0)> 

We can copy the given NDArray from one context to another context by using the 

copyto() method as follows: 

x_gpu = x.copyto(gpu(0)) 

print(x_gpu) 

NumPy array vs. NDArray  

We all the familiar with NumPy arrays but Apache MXNet offers its own array 

implementation named NDArray. Actually, it was initially designed to be similar to NumPy 

but there is a key difference: 
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The key difference is in the way calculations are executed in NumPy and NDArray. Every 

NDArray manipulation in MXNet is done in asynchronous and non-blocking way, which 

means that, when we write code like c = a * b, the function is pushed to the Execution 

Engine, which will start the calculation.  

Here, a and b both are NDArrays. The benefit of using it is that, the function immediately 

returns back, and the user thread can continue execution despite the fact that the previous 

calculation may not have been completed yet.    

Working of Execution Engine 

If we talk about the working of execution engine, it builds the computation graph. The 

computation graph may reorder or combine some calculations, but it always honors 

dependency order.  

For example, if there are other manipulation with ‘X’ done later in the programming code, 

the Execution Engine will start doing them once the result of ‘X’ is available. Execution 

engine will handle some important works for the users, such as writing of callbacks to start 

execution of subsequent code.  

In Apache MXNet, with the help of NDArray, to get the result of computation we only need 

to access the resulting variable. The flow of the code will be blocked until the computation 

results are assigned to the resulting variable. In this way, it increases code performance 

while still supporting imperative programming mode.    

Converting NDArray to NumPy Array 

Let us learn how can we convert NDArray to NumPy Array in MXNet. 

Combining higher-level operator with the help of few lower-level operators 

Sometimes, we can assemble a higher-level operator by using the existing operators. One 

of the best examples of this is, the np.full_like() operator, which is not there in NDArray 

API. It can easily be replaced with a combination of existing operators as follows: 

from mxnet import nd 

import numpy as np 

np_x = np.full_like(a=np.arange(7, dtype=int), fill_value=15) 

nd_x = nd.ones(shape=(7,)) * 15 

np.array_equal(np_x, nd_x.asnumpy())  

Output 

We will get the output similar as follows: 

True 

Finding similar operator with different name and/or signature 

Among all the operators, some of them have slightly different name, but they are similar 

in the terms of functionality. An example of this is nd.ravel_index() with np.ravel() 

functions. In the same way, some operators may have similar names, but they have 

different signatures. An example of this is np.split() and nd.split() are similar.  
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Let’s understand it with the following programming example: 

def pad_array123(data, max_length): 

     

    data_expanded = data.reshape(1, 1, 1, data.shape[0]) 

 

    data_padded = nd.pad(data_expanded, 

                             mode='constant', 

                             pad_width=[0, 0, 0, 0, 0, 0, 0, max_length - 

data.shape[0]], 

                             constant_value=0) 

 

     

    data_reshaped_back = data_padded.reshape(max_length) 

    return data_reshaped_back 

pad_array123(nd.array([1, 2, 3]), max_length=10) 

Output 

The output is stated below: 

[1. 2. 3. 0. 0. 0. 0. 0. 0. 0.] 

<NDArray 10 @cpu(0)> 

Minimising impact of blocking calls 

In some of the cases, we have to use either .asnumpy() or .asscalar() methods, but 

this will force MXNet to block the execution, until the result can be retrieved. We can 

minimise the impact of a blocking call by calling .asnumpy() or. asscalar() methods in 

the moment, when we think the calculation of this value is already done. 

Implementation Example 

 from __future__ import print_function 

import mxnet as mx 

from mxnet import gluon, nd, autograd 

from mxnet.ndarray import NDArray 

from mxnet.gluon import HybridBlock 

import numpy as np 

 

class LossBuffer(object): 

    """ 
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    Simple buffer for storing loss value 

    """ 

    def __init__(self): 

        self._loss = None 

 

    def new_loss(self, loss): 

        ret = self._loss 

        self._loss = loss 

        return ret 

 

    @property 

    def loss(self): 

        return self._loss 

 

net = gluon.nn.Dense(10) 

ce = gluon.loss.SoftmaxCELoss() 

net.initialize() 

data = nd.random.uniform(shape=(1024, 100)) 

label = nd.array(np.random.randint(0, 10, (1024,)), dtype='int32') 

train_dataset = gluon.data.ArrayDataset(data, label) 

train_data = gluon.data.DataLoader(train_dataset, batch_size=128, shuffle=True, 

num_workers=2) 

trainer = gluon.Trainer(net.collect_params(), optimizer='sgd') 

loss_buffer = LossBuffer() 

for data, label in train_data: 

    with autograd.record(): 

        out = net(data) 

        # This call saves new loss and returns previous loss 

        prev_loss = loss_buffer.new_loss(ce(out, label)) 

    loss_buffer.loss.backward() 

    trainer.step(data.shape[0]) 

    if prev_loss is not None: 

        print("Loss: {}".format(np.mean(prev_loss.asnumpy()))) 

Output 

The output is cited below: 

Loss: 2.3373236656188965 
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Loss: 2.3656985759735107 

Loss: 2.3613128662109375 

Loss: 2.3197104930877686 

Loss: 2.3054862022399902 

Loss: 2.329197406768799 

Loss: 2.318927526473999 
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Another most important MXNet Python package is Gluon. In this chapter, we will be 

discussing this package. Gluon provides a clear, concise, and simple API for DL projects. 

It enables Apache MXNet to prototype, build, and train DL models without forfeiting the 

training speed.   

Blocks 

Blocks form the basis of more complex network designs. In a neural network, as the 

complexity of neural network increases, we need to move from designing single to entire 

layers of neurons. For example, NN design like ResNet-152 have a very fair degree of 

regularity by consisting of blocks of repeated layers.   

Example 

In the example given below, we will write code a simple block, namely block for a 

multilayer perceptron.  

from mxnet import nd 

from mxnet.gluon import nn 

x = nd.random.uniform(shape=(2, 20)) 

N_net = nn.Sequential() 

N_net.add(nn.Dense(256, activation='relu')) 

N_net.add(nn.Dense(10)) 

N_net.initialize() 

N_net(x) 

Output 

This produces the following output: 

[[ 0.09543004  0.04614332 -0.00286655 -0.07790346 -0.05130241  0.02942038 

   0.08696645 -0.0190793  -0.04122177  0.05088576] 

 [ 0.0769287   0.03099706  0.00856576 -0.044672   -0.06926838  0.09132431 

   0.06786592 -0.06187843 -0.03436674  0.04234696]] 

<NDArray 2x10 @cpu(0)> 

Steps needed to go from defining layers to defining blocks of one or more layers: 

Step 1: Block take the data as input. 

Step 2: Now, blocks will store the state in the form of parameters. For example, in the 

above coding example the block contains two hidden layers and we need a place to store 

parameters for it. 

10. Apache MXNet — Gluon 
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Step 3: Next block will invoke the forward function to perform forward propagation. It is 

also called forward computation. As a part of first forward call, blocks initialize the 

parameters in a lazy fashion.  

Step 4:   At last the blocks will invoke backward function and calculate the gradient with 

reference to their input. Typically, this step is performed automatically. 

Sequential Block 

A sequential block is a special kind of block in which the data flows through a sequence of 

blocks. In this, each block applied to the output of one before with the first block being 

applied on the input data itself. 

Let us see how sequential class works: 

from mxnet import nd 

from mxnet.gluon import nn 

class MySequential(nn.Block): 

    def __init__(self, **kwargs): 

        super(MySequential, self).__init__(**kwargs) 

 

    def add(self, block): 

        self._children[block.name] = block 

    def forward(self, x): 

        for block in self._children.values(): 

            x = block(x) 

        return x 

x = nd.random.uniform(shape=(2, 20)) 

N_net = MySequential() 

N_net.add(nn.Dense(256, activation 

='relu')) 

N_net.add(nn.Dense(10)) 

N_net.initialize() 

N_net(x) 

Output 

The output is given herewith: 

[[ 0.09543004  0.04614332 -0.00286655 -0.07790346 -0.05130241  0.02942038 

   0.08696645 -0.0190793  -0.04122177  0.05088576] 

 [ 0.0769287   0.03099706  0.00856576 -0.044672   -0.06926838  0.09132431 

   0.06786592 -0.06187843 -0.03436674  0.04234696]] 

<NDArray 2x10 @cpu(0)> 
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Custom Block 

We can easily go beyond concatenation with sequential block as defined above. But, if we 

would like to make customisations then the Block class also provides us the required 

functionality. Block class has a model constructor provided in nn module. We can inherit 

that model constructor to define the model we want.   

In the following example, the MLP class overrides the __init__ and forward functions of 

the Block class.  

Let us see how it works. 

class MLP(nn.Block): 

     

    def __init__(self, **kwargs): 

        super(MLP, self).__init__(**kwargs) 

        self.hidden = nn.Dense(256, activation='relu')  # Hidden layer 

        self.output = nn.Dense(10)  # Output layer 

 

     

    def forward(self, x): 

        hidden_out = self.hidden(x) 

        return self.output(hidden_out) 

x = nd.random.uniform(shape=(2, 20)) 

N_net = MLP() 

N_net.initialize() 

N_net(x) 

Output 

When you run the code, you will see the following output: 

[[ 0.07787763  0.00216403  0.01682201  0.03059879 -0.00702019  0.01668715 

   0.04822846  0.0039432  -0.09300035 -0.04494302] 

 [ 0.08891078 -0.00625484 -0.01619131  0.0380718  -0.01451489  0.02006172 

   0.0303478   0.02463485 -0.07605448 -0.04389168]] 

<NDArray 2x10 @cpu(0)> 

Custom Layers 

Apache MXNet’s Gluon API comes with a modest number of pre-defined layers. But still at 

some point, we may find that a new layer is needed. We can easily add a new layer in 

Gluon API. In this section, we will see how we can create a new layer from scratch. 

The Simplest Custom Layer 
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To create a new layer in Gluon API, we must have to create a class inherits from the Block 

class which provides the most basic functionality. We can inherit all the pre-defined layers 

from it directly or via other subclasses.    

For creating the new layer, the only instance method needed to be implemented is 

forward (self, x). This method defines, what exactly our layer is going to do during 

forward propagation. As discussed earlier also, the back-propagation pass for blocks will 

be done by Apache MXNet itself automatically. 

Example 

In the example below, we will be defining a new layer. We will also implement forward() 

method to normalise the input data by fitting it into a range of [0, 1]. 

from __future__ import print_function 

import mxnet as mx 

from mxnet import nd, gluon, autograd 

from mxnet.gluon.nn import Dense 

mx.random.seed(1) 

class NormalizationLayer(gluon.Block): 

    def __init__(self): 

        super(NormalizationLayer, self).__init__() 

 

    def forward(self, x): 

        return (x - nd.min(x)) / (nd.max(x) - nd.min(x)) 

x = nd.random.uniform(shape=(2, 20)) 

N_net = NormalizationLayer() 

N_net.initialize() 

N_net(x) 

Output 

On executing the above program, you will get the following result: 

[[0.5216355  0.03835821 0.02284337 0.5945146  0.17334817 0.69329053 

  0.7782702  1.         0.5508242  0.         0.07058554 0.3677264 

  0.4366546  0.44362497 0.7192635  0.37616986 0.6728799  0.7032008 

 

  0.46907538 0.63514024] 

 [0.9157533  0.7667402  0.08980197 0.03593295 0.16176797 0.27679572 

  0.07331014 0.3905285  0.6513384  0.02713427 0.05523694 0.12147208 

  0.45582628 0.8139887  0.91629887 0.36665893 0.07873632 0.78268915 

  0.63404864 0.46638715]] 
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<NDArray 2x20 @cpu(0)> 

Hybridisation 

It may be defined as a process used by Apache MXNet’s to create a symbolic graph of a 

forward computation. Hybridisation allows MXNet to upsurge the computation performance 

by optimising the computational symbolic graph. Rather than directly inheriting from 

Block, in fact, we may find that while implementing existing layers a block inherits from 

a HybridBlock.  

Following are the reasons for this: 

 Allows us to write custom layers: HybridBlock allows us to write custom layers 

that can further be used in imperative and symbolic programming both. 

 Increase computation performance: HybridBlock optimise the computational 

symbolic graph which allows MXNet to increase computation performance.    

Example 

In this example, we will be rewriting our example layer, created above, by using 

HybridBlock: 

class NormalizationHybridLayer(gluon.HybridBlock): 

    def __init__(self): 

        super(NormalizationHybridLayer, self).__init__() 

 

    def hybrid_forward(self, F, x): 

        return F.broadcast_div(F.broadcast_sub(x, F.min(x)), 

(F.broadcast_sub(F.max(x), F.min(x)))) 

 

layer_hybd = NormalizationHybridLayer() 

layer_hybd(nd.array([1, 2, 3, 4, 5, 6], ctx=mx.cpu())) 

Output 

The output is stated below: 

[0.  0.2 0.4 0.6 0.8 1. ] 

<NDArray 6 @cpu(0)> 

Hybridisation has nothing to do with computation on GPU and one can train hybridised as 

well as non-hybridised networks on both CPU and GPU.  
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Difference between Block and HybridBlock 

If we will compare the Block Class and HybridBlock, we will see that HybridBlock 

already has its forward() method implemented. HybridBlock defines a 

hybrid_forward() method that needs to be implemented while creating the layers. F 

argument creates the main difference between forward() and hybrid_forward(). In 

MXNet community, F argument is referred to as a backend. F can either refer to 

mxnet.ndarray API (used for imperative programming) or mxnet.symbol API (used 

for Symbolic programming). 

How to add custom layer to a network? 

Instead of using custom layers separately, these layers are used with predefined layers. 

We can use either Sequential or HybridSequential containers to from a sequential 

neural network. As discussed earlier also, Sequential container inherit from Block and 

HybridSequential inherit from HybridBlock respectively.    

Example 

In the example below, we will be creating a simple neural network with a custom layer. 

The output from Dense (5) layer will be the input of NormalizationHybridLayer.  The 

output of NormalizationHybridLayer will become the input of Dense (1) layer. 

net = gluon.nn.HybridSequential()                          

with net.name_scope():                                     

    net.add(Dense(5))                                      

    net.add(NormalizationHybridLayer())         

    net.add(Dense(1))                                      

 

 

net.initialize(mx.init.Xavier(magnitude=2.24))             

net.hybridize()                                            

input = nd.random_uniform(low=-10, high=10, shape=(10, 2))  

net(input) 

Output 

You will see the following output: 

[[-1.1272651] 

 [-1.2299833] 

 [-1.0662932] 

 [-1.1805027] 

 [-1.3382034] 

 [-1.2081106] 

 [-1.1263978] 
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 [-1.2524893] 

 

 [-1.1044774] 

 

 [-1.316593 ]] 

<NDArray 10x1 @cpu(0)> 

Custom layer parameters 

In a neural network, a layer has a set of parameters associated with it. We sometimes 

refer them as weights, which is internal state of a layer. These parameters play different 

roles: 

 Sometimes these are the ones that we want to learn during backpropagation step. 

 Sometimes these are just constants we want to use during forward pass. 

If we talk about the programming concept, these parameters (weights) of a block are 

stored and accessed via ParameterDict class which helps in initialisation, updation, 

saving, and loading of them.  

Example 

In the example below, we will be defining two following sets of parameters: 

 Parameter weights: This is trainable, and its shape is unknown during 

construction phase. It will be inferred on the first run of forward propagation. 

 Parameter scale: This is a constant whose value doesn’t change. As opposite to 

parameter weights, its shape is defined during construction. 

class NormalizationHybridLayer(gluon.HybridBlock): 

    def __init__(self, hidden_units, scales): 

        super(NormalizationHybridLayer, self).__init__() 

 

        with self.name_scope(): 

            self.weights = self.params.get('weights', 

 

                                           shape=(hidden_units, 0), 

                                           allow_deferred_init=True) 

 

            self.scales = self.params.get('scales', 

                                      shape=scales.shape, 

                                      init=mx.init.Constant(scales.asnumpy()), 

                                      differentiable=False) 
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    def hybrid_forward(self, F, x, weights, scales): 

        normalized_data = F.broadcast_div(F.broadcast_sub(x, F.min(x)),  

(F.broadcast_sub(F.max(x), F.min(x)))) 

        weighted_data = F.FullyConnected(normalized_data, weights, 

num_hidden=self.weights.shape[0], no_bias=True) 

        scaled_data = F.broadcast_mul(scales, weighted_data) 

        return scaled_data 
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This chapter deals with the python packages KVStore and visualization. 

KVStore package 

KV stores stands for Key-Value store. It is critical component used for multi-device 

training. It is important because, the communication of parameters across devices on 

single as well as across multiple machines is transmitted through one or more servers with 

a KVStore for the parameters.  

Let us understand the working of KVStore with the help of following points: 

 Each value in KVStore is represented by a key and a value. 

 Each parameter array in the network is assigned a key and the weights of that 

parameter array is referred by value.  

 After that, the worker nodes push gradients after processing a batch. They also 

pull updated weights before processing a new batch. 

In simple words, we can say that KVStore is a place for data sharing where, each device 

can push data in and pull data out. 

Data Push-In and Pull-Out 

KVStore can be thought of as single object shared across different devices such as GPUs 

& computers, where each device is able to push data in and pull data out.  

Following are the implementation steps that needs to be followed by devices to push data 

in and pull data out: 

Implementation steps 

Initialisation: First step is to initialise the values. Here for our example, we will be 

initialising a pair (int, NDArray) pair into KVStrore and after that pulling the values out: 

import mxnet as mx 

kv = mx.kv.create('local') # create a local KVStore. 

shape = (3,3) 

kv.init(3, mx.nd.ones(shape)*2) 

a = mx.nd.zeros(shape) 

kv.pull(3, out = a) 

print(a.asnumpy()) 

Output 

This produces the following output: 

11. Apache MXNet — KVStore and Visualization  
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[[2. 2. 2.] 

 [2. 2. 2.] 

 [2. 2. 2.]] 

Push, Aggregate, and Update: Once initialised, we can push a new value into KVStore 

with the same shape to the key: 

kv.push(3, mx.nd.ones(shape)*8) 

kv.pull(3, out = a)  

print(a.asnumpy()) 

Output 

The output is given below: 

[[8. 8. 8.] 

 [8. 8. 8.] 

 [8. 8. 8.]] 

The data used for pushing can be stored on any device such as GPUs or computers. We 

can also push multiple values into the same key. In this case, the KVStore will first sum 

all of these values and then push the aggregated value as follows: 

contexts = [mx.cpu(i) for i in range(4)] 

b = [mx.nd.ones(shape, ctx) for ctx in contexts] 

kv.push(3, b) 

kv.pull(3, out = a) 

print(a.asnumpy())  

Output 

You will see the following output: 

[[4. 4. 4.] 

 [4. 4. 4.] 

 [4. 4. 4.]] 

For each push you applied, KVStore will combine the pushed value with the value already 

stored. It will be done with the help of an updater. Here, the default updater is ASSIGN. 

def update(key, input, stored): 

    print("update on key: %d" % key) 

 

    stored += input * 2 

kv.set_updater(update) 
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kv.pull(3, out=a) 

print(a.asnumpy()) 

Output 

When you execute the above code, you should see the following output: 

[[4. 4. 4.] 

 [4. 4. 4.] 

 [4. 4. 4.]] 

 

kv.push(3, mx.nd.ones(shape)) 

kv.pull(3, out=a) 

print(a.asnumpy()) 

Output 

Given below is the output of the code: 

update on key: 3 

[[6. 6. 6.] 

 [6. 6. 6.] 

 [6. 6. 6.]] 

Pull: As like Push, we can also pull the value onto several devices with a single call as 

follows: 

b = [mx.nd.ones(shape, ctx) for ctx in contexts] 

kv.pull(3, out = b) 

print(b[1].asnumpy()) 

Output 

The output is stated below: 

[[6. 6. 6.] 

 [6. 6. 6.] 

 [6. 6. 6.]] 

Complete Implementation Example 

Given below is the complete implementation example: 

import mxnet as mx 
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kv = mx.kv.create('local')  

shape = (3,3) 

kv.init(3, mx.nd.ones(shape)*2) 

a = mx.nd.zeros(shape) 

kv.pull(3, out = a) 

print(a.asnumpy()) 

kv.push(3, mx.nd.ones(shape)*8) 

kv.pull(3, out = a) # pull out the value 

print(a.asnumpy()) 

contexts = [mx.cpu(i) for i in range(4)] 

b = [mx.nd.ones(shape, ctx) for ctx in contexts] 

kv.push(3, b) 

kv.pull(3, out = a) 

print(a.asnumpy()) 

def update(key, input, stored): 

    print("update on key: %d" % key) 

    stored += input * 2 

kv._set_updater(update) 

kv.pull(3, out=a) 

print(a.asnumpy()) 

kv.push(3, mx.nd.ones(shape)) 

kv.pull(3, out=a) 

print(a.asnumpy()) 

b = [mx.nd.ones(shape, ctx) for ctx in contexts] 

kv.pull(3, out = b) 

print(b[1].asnumpy()) 

Handling Key-Value Pairs 

All the operations we have implemented above involves a single key, but KVStore also 

provides an interface for a list of key-value pairs: 

For a single device 

Following is an example to show an KVStore interface for a list of key-value pairs for a 

single device: 

keys = [5, 7, 9] 

kv.init(keys, [mx.nd.ones(shape)]*len(keys)) 

kv.push(keys, [mx.nd.ones(shape)]*len(keys)) 
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b = [mx.nd.zeros(shape)]*len(keys) 

kv.pull(keys, out = b) 

print(b[1].asnumpy()) 

Output 

You will receive the following output: 

update on key: 5 

update on key: 7 

update on key: 9 

[[3. 3. 3.] 

 [3. 3. 3.] 

 [3. 3. 3.]] 

For multiple device 

Following is an example to show an KVStore interface for a list of key-value pairs for 

multiple device: 

b = [[mx.nd.ones(shape, ctx) for ctx in contexts]] * len(keys) 

kv.push(keys, b) 

kv.pull(keys, out = b) 

print(b[1][1].asnumpy()) 

Output 

You will see the following output: 

update on key: 5 

update on key: 7 

update on key: 9 

[[11. 11. 11.] 

 [11. 11. 11.] 

 [11. 11. 11.]] 

Visualization package 

Visualization package is Apache MXNet package used to represents the neural network 

(NN) as a computation graph that consists of nodes and edges. 

Visualize neural network 

In the example below we will use mx.viz.plot_network to visualize neural network. 

Followings are the prerequisites for this: 
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Prerequisites 

 Jupyter notebook 

 Graphviz library  

Implementation Example 

In the example below we will visualize a sample NN for linear matrix factorisation: 

import mxnet as mx 

user = mx.symbol.Variable('user') 

item = mx.symbol.Variable('item') 

score = mx.symbol.Variable('score') 

 

# Set the dummy dimensions 

k = 64 

max_user = 100 

max_item = 50 

 

# The user feature lookup 

user = mx.symbol.Embedding(data = user, input_dim = max_user, output_dim = k) 

 

# The item feature lookup 

item = mx.symbol.Embedding(data = item, input_dim = max_item, output_dim = k) 

 

# predict by the inner product and then do sum 

N_net = user * item 

N_net = mx.symbol.sum_axis(data = N_net, axis = 1) 

N_net = mx.symbol.Flatten(data = N_net) 

 

# Defining the loss layer 

N_net = mx.symbol.LinearRegressionOutput(data = N_net, label = score) 

 

# Visualize the network 

mx.viz.plot_network(N_net) 
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This chapter explains the ndarray library which is available in Apache MXNet. 

Mxnet.ndarray 

Apache MXNet’s NDArray library defines the core DS (data structures) for all the 

mathematical computations. Two fundamental jobs of NDArray are as follows: 

 It supports fast execution on a wide range of hardware configurations. 

 It automatically parallelises multiple operations across available hardware. 

The example given below shows how one can create an NDArray by using 1-D and 2-D 

‘array’ from a regular Python list: 

import mxnet as mx 

from mxnet import nd 

 

x = nd.array([1,2,3,4,5,6,7,8,9,10]) 

print(x) 

Output 

The output is given below: 

[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.] 

<NDArray 10 @cpu(0)> 

 

y = nd.array([[1,2,3,4,5,6,7,8,9,10], [1,2,3,4,5,6,7,8,9,10], 

[1,2,3,4,5,6,7,8,9,10]]) 

print(y) 

Output 

This produces the following output: 

[[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.] 

 [ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.] 

 [ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10.]] 

<NDArray 3x10 @cpu(0)> 

 

12. Apache MXNet — Python API ndarray 



Apache MXNet        

   87 

 

Now let us discuss in detail about the classes, functions, and parameters of ndarray API 

of MXNet. 

 Classes 

Following table consists of the classes of ndarray API of MXNet: 

Class Definition 

CachedOp(sym[, 

flags]) 

It is used for Cached operator handle. 

NDArray(handle[, 

writable]) 

It is used as an array object that represents a multi-

dimensional, homogeneous array of fixed-size items. 

Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.ndarray API: 

Function & its Parameters Definition 

Activation([data, act_type, out, name]) 

It applies an activation function 

element-wise to the input. It 

supports relu, sigmoid, tanh, 

softrelu, softsign activation 

functions. 

BatchNorm([data, gamma, beta, moving_mean, …]) 

It is used for batch 

normalisation. This function 

normalises a data batch by 

mean and variance. It applies a 

scale gamma and offset beta. 

BilinearSampler([data, grid, cudnn_off, …]) 

This function applies bilinear 

sampling to input feature map. 

Actually it is the key of “Spatial 

Transformer Networks”.  

If you are familiar with remap 

function in OpenCV, the usage 

of this function is quite similar 

to that. The only difference is 

that it has the backward pass. 

BlockGrad([data, out, name]) 

As name specifies, this function 

stops gradient computation. It 

basically stops the accumulated 

gradient of the inputs from 

flowing through this operator in 

backward direction. 

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Activation
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BatchNorm
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BilinearSampler
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BlockGrad
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cast([data, dtype, out, name]) 

This function will cast all 

elements of the input to a new 

type. 

Implementation Examples 

In the example below, we will be using the function BilinierSampler() for zooming out the 

data two times and shifting the data horizontally by -1 pixel: 

import mxnet as mx 

from mxnet import nd 

data = nd.array([[[[2, 5, 3, 6], 

                [1, 8, 7, 9], 

                [0, 4, 1, 8], 

                [2, 0, 3, 4]]]]) 

 

affine_matrix = nd.array([[2, 0, 0], 

                       [0, 2, 0]]) 

 

affine_matrix = nd.reshape(affine_matrix, shape=(1, 6)) 

 

grid = nd.GridGenerator(data=affine_matrix, transform_type='affine', 

target_shape=(4, 4)) 

 

output = nd.BilinearSampler(data, grid) 

output 

Output 

When you execute the above code, you should see the following output: 

[[[[0.        0.        0.        0.       ] 

   [0.        4.0000005 6.25      0.       ] 

   [0.        1.5       4.        0.       ] 

   [0.        0.        0.        0.       ]]]] 

<NDArray 1x1x4x4 @cpu(0)> 

The above output shows the zooming out of data two times. 

Example of shifting the data by -1 pixel is as follows:  

import mxnet as mx 

from mxnet import nd 

data = nd.array([[[[2, 5, 3, 6], 

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Cast
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                [1, 8, 7, 9], 

                [0, 4, 1, 8], 

                [2, 0, 3, 4]]]]) 

 

warp_matrix = nd.array([[[[1, 1, 1, 1], 

                        [1, 1, 1, 1], 

                        [1, 1, 1, 1], 

                        [1, 1, 1, 1]], 

                       [[0, 0, 0, 0], 

                        [0, 0, 0, 0], 

                        [0, 0, 0, 0], 

                        [0, 0, 0, 0]]]]) 

grid = nd.GridGenerator(data=warp_matrix, transform_type='warp') 

output = nd.BilinearSampler(data, grid) 

output 

Output 

The output is stated below: 

[[[[5. 3. 6. 0.] 

   [8. 7. 9. 0.] 

   [4. 1. 8. 0.] 

   [0. 3. 4. 0.]]]] 

<NDArray 1x1x4x4 @cpu(0)> 

Similarly, following example shows the use of cast() function: 

nd.cast(nd.array([300, 10.1, 15.4, -1, -2]), dtype='uint8') 

Output 

Upon execution, you will receive the following output: 

[ 44  10  15 255 254] 

<NDArray 5 @cpu(0)> 

ndarray.contrib 

The Contrib NDArray API is defined in the ndarray.contrib package. It typically provides 

many useful experimental APIs for new features. This API works as a place for the 

community where they can try out the new features. The feature contributor will get the 

feedback as well.   
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Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.ndarray.contrib API: 

Function & its Parameters Definition 

rand_zipfian(true_classes, num_sampled, …) 

This function draws random samples 

from an approximately Zipfian 

distribution. The base distribution of 

this function is Zipfian distribution. 

This function randomly samples 

num_sampled candidates and the 

elements of sampled_candidates are 

drawn from the base distribution 

given above. 

foreach(body, data, init_states) 

As name implies, this function runs a 

for loop with user-defined 

computation over NDArrays on 

dimension 0. This function simulates 

a for loop and body has the 

computation for an iteration of the for 

loop. 

while_loop(cond, func, loop_vars[, …]) 

As name implies, this function runs a 

while loop with user-defined 

computation and loop condition. This 

function simulates a while loop that 

literately does customized 

computation if the condition is 

satisfied.  

cond(pred, then_func, else_func) 

As name implies, this function run an 

if-then-else using user-defined 

condition and computation. This 

function simulates an if-like branch 

which chooses to do one of the two 

customised computations according 

to the specified condition. 

isinf(data) 

This function performs an element-

wise check to determine if the 

NDArray contains an infinite element 

or not. 

getnnz([data, axis, out, name]) 

This function gives us the number of 

stored values for a sparse tensor. It 

also includes explicit zeros. It only 

supports CSR matrix on CPU. 

requantize([data, min_range, max_range, …]) 

This function requantise the given 

data that is quantised in int32 and the 

corresponding thresholds, into int8 

using min and max thresholds either 

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.rand_zipfian
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.foreach
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.while_loop
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.cond
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.isinf
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.getnnz
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.requantize
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calculated at runtime or from 

calibration. 

Implementation Examples 

In the example below, we will be using the function rand_zipfian for drawing random 

samples from an approximately Zipfian distribution: 

import mxnet as mx 

from mxnet import nd 

trueclass = mx.nd.array([2]) 

samples, exp_count_true, exp_count_sample = 

mx.nd.contrib.rand_zipfian(trueclass, 3, 4) 

samples 

Output 

You will see the following output: 

[0 0 1] 

<NDArray 3 @cpu(0)> 

 

exp_count_true 

Output 

The output is given below: 

[0.53624076] 

<NDArray 1 @cpu(0)> 

 

exp_count_sample 

Output 

This produces the following output: 

[1.29202967 1.29202967 0.75578891] 

<NDArray 3 @cpu(0)> 

In the example below, we will be using the function while_loop for running a while loop 

for user-defined computation and loop condition: 

cond = lambda i, s: i <= 7 
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func = lambda i, s: ([i + s], [i + 1, s + i]) 

loop_var = (mx.nd.array([0], dtype="int64"), mx.nd.array([1], dtype="int64")) 

outputs, states = mx.nd.contrib.while_loop(cond, func, loop_vars, 

max_iterations=10) 

outputs 

Output 

The output is shown below: 

[ 

 [[            1] 

  [            2] 

  [            4] 

  [            7] 

  [           11] 

  [           16] 

  [           22] 

  [           29] 

  [3152434450384] 

  [          257]] 

 <NDArray 10x1 @cpu(0)>] 

 

States 

Output 

This produces the following output: 

[ 

 [8] 

 <NDArray 1 @cpu(0)>,  

 [29] 

 <NDArray 1 @cpu(0)>] 

ndarray.image 

The Image NDArray API is defined in the ndarray.image package. As name implies, it 

typically used for images and their features. 

Functions and their parameters 
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Following are some of the important functions & their parameters covered by 

mxnet.ndarray.image API: 

Function & its Parameters Definition 

adjust_lighting([data, alpha, out, name]) 

As name implies, this function 

adjusts the lighting level of the 

input. It follows the AlexNet 

style. 

crop([data, x, y, width, height, out, name]) 

With the help of this function, we 

can crop an image NDArray of 

shape (H x W x C) or (N x H x W 

x C) to the size given by user. 

normalize([data, mean, std, out, name]) 

It will normalise a tensor of shape 

(C x H x W) or (N x C x H x W) 

with mean and standard 

deviation(SD). 

random_crop([data, xrange, yrange, width, …]) 

Similar to crop(), it randomly 

crop an image NDArray of shape 

(H x W x C) or (N x H x W x C) to 

the size given by the user. It will 

upsample the result if src is 

smaller than the size. 

random_lighting([data, alpha_std, out, name]) 

As name implies, this function 

adds the PCA noise randomly. It 

also follows the AlexNet style. 

random_resized_crop([data, xrange, yrange, …]) 

It also crops an image randomly 

NDArray of shape (H x W x C) or 

(N x H x W x C) to the given size. 

It will upsample the result, if src 

is smaller than the size. It will 

randomise the area and aspect 

ration as well. 

resize([data, size, keep_ratio, interp, …]) 

As name implies, this function 

will resize an image NDArray of 

shape (H x W x C) or (N x H x W 

x C) to the size given by user. 

to_tensor([data, out, name]) 

It converts an image NDArray of 

shape (H x W x C) or (N x H x W 

x C) with the values in the range 

[0, 255] to a tensor NDArray of 

shape (C x H x W) or (N x C x H 

x W) with the values in the range 

[0, 1]. 

Implementation Examples 

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.adjust_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.normalize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_resized_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.resize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.to_tensor
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In the example below, we will be using the function to_tensor to convert image NDArray 

of shape (H x W x C) or (N x H x W x C) with the values in the range [0, 255] to a tensor 

NDArray of shape (C x H x W) or (N x C x H x W) with the values in the range [0, 1]. 

import numpy as np 

 

img = mx.nd.random.uniform(0, 255, (4, 2, 3)).astype(dtype=np.uint8) 

 

mx.nd.image.to_tensor(img) 

Output 

You will see the following output: 

[[[0.972549   0.5058824 ] 

  [0.6039216  0.01960784] 

  [0.28235295 0.35686275] 

  [0.11764706 0.8784314 ]] 

 

 [[0.8745098  0.9764706 ] 

  [0.4509804  0.03529412] 

  [0.9764706  0.29411766] 

  [0.6862745  0.4117647 ]] 

 

 [[0.46666667 0.05490196] 

  [0.7372549  0.4392157 ] 

  [0.11764706 0.47843137] 

  [0.31764707 0.91764706]]] 

<NDArray 3x4x2 @cpu(0)> 

 

img = mx.nd.random.uniform(0, 255, (2, 4, 2, 3)).astype(dtype=np.uint8) 

 

mx.nd.image.to_tensor(img) 

Output 

When you run the code, you will see the following output: 

[[[[0.0627451  0.5647059 ] 

   [0.2627451  0.9137255 ] 

   [0.57254905 0.27450982] 
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   [0.6666667  0.64705884]] 

 

  [[0.21568628 0.5647059 ] 

   [0.5058824  0.09019608] 

   [0.08235294 0.31764707] 

   [0.8392157  0.7137255 ]] 

 

  [[0.6901961  0.8627451 ] 

   [0.52156866 0.91764706] 

   [0.9254902  0.00784314] 

   [0.12941177 0.8392157 ]]] 

 

 

 [[[0.28627452 0.39607844] 

   [0.01960784 0.36862746] 

   [0.6745098  0.7019608 ] 

   [0.9607843  0.7529412 ]] 

 

  [[0.2627451  0.58431375] 

   [0.16470589 0.00392157] 

   [0.5686275  0.73333335] 

   [0.43137255 0.57254905]] 

 

  [[0.18039216 0.54901963] 

   [0.827451   0.14509805] 

   [0.26666668 0.28627452] 

   [0.24705882 0.39607844]]]] 

<NDArray 2x3x4x2 @cpu(0)> 

In the example below, we will be using the function normalize to normalise a tensor of 

shape (C x H x W) or (N x C x H x W) with mean and standard deviation(SD). 

 

img = mx.nd.random.uniform(0, 1, (3, 4, 2)) 

 

mx.nd.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1)) 

Output 
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This produces the following output: 

[[[ 0.29391178  0.3218054 ] 

  [ 0.23084386  0.19615503] 

  [ 0.24175143  0.21988946] 

  [ 0.16710812  0.1777354 ]] 

 

 [[-0.02195817 -0.3847335 ] 

  [-0.17800489 -0.30256534] 

  [-0.28807247 -0.19059572] 

  [-0.19680339 -0.26256624]] 

 

 [[-1.9808068  -1.5298678 ] 

  [-1.6984252  -1.2839255 ] 

  [-1.3398265  -1.712009  ] 

  [-1.7099224  -1.6165378 ]]] 

<NDArray 3x4x2 @cpu(0)> 

 

img = mx.nd.random.uniform(0, 1, (2, 3, 4, 2)) 

 

mx.nd.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1)) 

Output 

When you execute the above code, you should see the following output: 

[[[[ 2.0600514e-01  2.4972327e-01] 

   [ 1.4292289e-01  2.9281738e-01] 

   [ 4.5158025e-02  3.4287784e-02] 

   [ 9.9427439e-02  3.0791296e-02]] 

 

  [[-2.1501756e-01 -3.2297665e-01] 

   [-2.0456362e-01 -2.2409186e-01] 

   [-2.1283737e-01 -4.8318747e-01] 

   [-1.7339960e-01 -1.5519112e-02]] 

 

  [[-1.3478968e+00 -1.6790028e+00] 

   [-1.5685816e+00 -1.7787373e+00] 
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   [-1.1034534e+00 -1.8587360e+00] 

   [-1.6324382e+00 -1.9027401e+00]]] 

 

 

 [[[ 1.4528830e-01  3.2801408e-01] 

   [ 2.9730779e-01  8.6780310e-02] 

   [ 2.6873133e-01  1.7900752e-01] 

   [ 2.3462953e-01  1.4930873e-01]] 

 

  [[-4.4988656e-01 -4.5021546e-01] 

   [-4.0258706e-02 -3.2384416e-01] 

   [-1.4287934e-01 -2.6537544e-01] 

   [-5.7649612e-04 -7.9429924e-02]] 

 

  [[-1.8505517e+00 -1.0953522e+00] 

   [-1.1318740e+00 -1.9624406e+00] 

   [-1.8375070e+00 -1.4916846e+00] 

   [-1.3844404e+00 -1.8331525e+00]]]] 

<NDArray 2x3x4x2 @cpu(0)> 

ndarray.random 

The Random NDArray API is defined in the ndarray.random package. As name implies, it 

is random distribution generator NDArray API of MXNet. 

Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.ndarray.random API: 

Function and its Parameters Definition 

uniform([low, high, shape, dtype, ctx, out]) 

It generates random samples 

from a uniform distribution. 

normal([loc, scale, shape, dtype, ctx, out]) 

It generates random samples 

from a normal (Gaussian) 

distribution. 

randn(*shape, **kwargs) 

It generates random samples 

from a normal (Gaussian) 

distribution. 

poisson([lam, shape, dtype, ctx, out]) 

It generates random samples 

from a Poisson distribution. 

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randn
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson
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exponential([scale, shape, dtype, ctx, out]) 

It generates samples from an 

exponential distribution. 

gamma([alpha, beta, shape, dtype, ctx, out]) 

It generates random samples 

from a gamma distribution. 

multinomial(data[, shape, get_prob, out, dtype]) 

It generates concurrent sampling 

from multiple multinomial 

distributions. 

negative_binomial([k, p, shape, dtype, ctx, out]) 

It generates random samples 

from a negative binomial 

distribution. 

generalized_negative_binomial([mu, alpha, …]) 

It generates random samples 

from a generalised negative 

binomial distribution. 

shuffle(data, **kwargs) 

It shuffles the elements 

randomly. 

randint(low, high[, shape, dtype, ctx, out]) 

It generates random samples 

from a discrete uniform 

distribution. 

exponential_like([data, lam, out, name]) 

It generates random samples 

from an exponential distribution 

according to the input array 

shape. 

gamma_like([data, alpha, beta, out, name]) 

It generates random samples 

from a gamma distribution 

according to the input array 

shape. 

generalized_negative_binomial_like([data, …]) 

It generates random samples 

from a generalised negative 

binomial distribution, according 

to the input array shape. 

negative_binomial_like([data, k, p, out, name]) 

It generates random samples 

from a negative binomial 

distribution, according to the 

input array shape. 

normal_like([data, loc, scale, out, name]) 

It generates random samples 

from a normal (Gaussian) 

distribution, according to the 

input array shape. 

poisson_like([data, lam, out, name]) 

It generates random samples 

from a Poisson distribution, 

according to the input array 

shape. 

uniform_like([data, low, high, out, name]) 
It generates random samples 

from a uniform distribution, 

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.multinomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.shuffle
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randint
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform_like
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according to the input array 

shape. 

Implementation Examples 

In the example below, we are going to draw random samples from a uniform distribution. 

For this will be using the function uniform(). 

mx.nd.random.uniform(0, 1) 

Output 

The output is mentioned below: 

[0.12381998] 

<NDArray 1 @cpu(0)> 

 

mx.nd.random.uniform(-1, 1, shape=(2,))  

Output 

The output is given below: 

[0.558102   0.69601643] 

<NDArray 2 @cpu(0)> 

 

low = mx.nd.array([1,2,3]) 

high = mx.nd.array([2,3,4]) 

mx.nd.random.uniform(low, high, shape=2) 

Output 

You will see the following output: 

[[1.8649333 1.8073189] 

 [2.4113967 2.5691009] 

 [3.1399727 3.4071832]] 

<NDArray 3x2 @cpu(0)> 

In the example below, we are going to draw random samples from a generalized negative 

binomial distribution. For this, we will be using the function 

generalized_negative_binomial(). 



Apache MXNet        

   100 

 

mx.nd.random.generalized_negative_binomial(10, 0.5) 

Output 

When you execute the above code, you should see the following output: 

[1.] 

<NDArray 1 @cpu(0)> 

 

mx.nd.random.generalized_negative_binomial(10, 0.5, shape=(2,)) 

Output 

The output is given herewith: 

[16. 23.] 

<NDArray 2 @cpu(0)> 

 

mu = mx.nd.array([1,2,3]) 

alpha = mx.nd.array([0.2,0.4,0.6]) 

mx.nd.random.generalized_negative_binomial(mu, alpha, shape=2) 

Output 

Given below is the output of the code: 

[[0. 0.] 

 [4. 1.] 

 [9. 3.]] 

<NDArray 3x2 @cpu(0)> 

ndarray.utils 

The utility NDArray API is defined in the ndarray.utils package. As name implies, it provides 

the utility functions for NDArray and BaseSparseNDArray. 

Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.ndarray.utils API: 

Function and its Parameters Definition 

zeros(shape[, ctx, dtype, stype]) 
This function will return a new array of given shape 

and type, filled with zeros. 

https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.zeros
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empty(shape[, ctx, dtype, stype]) 
It will returns a new array of given shape and type, 

without initialising entries. 

array(source_array[, ctx, dtype]) 
As name implies, this function will create an array 

from any object exposing the array interface. 

load(fname) It will load an array from file. 

load_frombuffer(buf) 
As name implies, this function will load an array 

dictionary or list from a buffer 

save(fname, data) 
This function will save a list of arrays or a dict of 

str->array to file. 

Implementation Examples 

In the example below, we are going to return a new array of given shape and type, filled 

with zeros. For this, we will be using the function zeros(). 

mx.nd.zeros((1,2), mx.cpu(), stype='csr') 

Output 

This produces the following output: 

<CSRNDArray 1x2 @cpu(0)> 

 

mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy() 

 

Output 

You will receive the following output: 

array([[0., 0.]], dtype=float16) 

In the example below, we are going to save a list of arrays and a dictionary of strings. For 

this, we will be using the function save(). 

x = mx.nd.zeros((2,3)) 

y = mx.nd.ones((1,4)) 

mx.nd.save('list', [x,y]) 

mx.nd.save('dict', {'x':x, 'y':y}) 

mx.nd.load('list') 

Output 

Upon execution, you will receive the following output: 

https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.empty
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.array
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.load
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.load_frombuffer
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.save
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[ 

 [[0. 0. 0.] 

  [0. 0. 0.]] 

 <NDArray 2x3 @cpu(0)>,  

 [[1. 1. 1. 1.]] 

 <NDArray 1x4 @cpu(0)>] 

 

mx.nd.load('my_dict') 

Output 

The output is shown below: 

{'x':  

 [[0. 0. 0.] 

  [0. 0. 0.]] 

 <NDArray 2x3 @cpu(0)>, 'y':  

 [[1. 1. 1. 1.]] 

 <NDArray 1x4 @cpu(0)>} 
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As we have already discussed in previous chapters that, MXNet Gluon provides a clear, 

concise, and simple API for DL projects. It enables Apache MXNet to prototype, build, and 

train DL models without forfeiting the training speed.   

Core Modules 

Let us learn the core modules of Apache MXNet Python application programming interface 

(API) gluon. 

gluon.nn 

Gluon provides a large number of build-in NN layers in gluon.nn module. That is the 

reason it is called the core module. 

Methods and their parameters 

Following are some of the important methods and their parameters covered by 

mxnet.gluon.nn core module: 

Methods and its Parameters Definition 

Activation(activation, **kwargs) 

As name implies, this method 

applies an activation function to 

input. 

AvgPool1D([pool_size, strides, padding, …]) 

This is average pooling operation 

for temporal data. 

AvgPool2D([pool_size, strides, padding, …]) 

This is average pooling operation 

for spatial data. 

AvgPool3D([pool_size, strides, padding, …]) 

This is Average pooling operation 

for 3D data. The data can be 

spatial or spatio-temporal. 

BatchNorm([axis, momentum, epsilon, center, …]) 

It represents batch normalisation 

layer. 

BatchNormReLU([axis, momentum, epsilon, …]) 

It also represents batch 

normalisation layer but with Relu 

activation function. 

Block([prefix, params]) 

It gives the base class for all 

neural network layers and 

models. 

Conv1D(channels, kernel_size[, strides, …]) 

This method is used for 1-D 

convolution layer. For example, 

temporal convolution. 

13. Apache MXNet — Python API gluon 

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Activation
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.BatchNorm
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.BatchNormReLU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Block
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv1D
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Conv1DTranspose(channels, kernel_size[, …]) 

This method is used for 

Transposed 1D convolution layer. 

Conv2D(channels, kernel_size[, strides, …]) 

This method is used for 2D 

convolution layer. For example, 

spatial convolution over images). 

Conv2DTranspose(channels, kernel_size[, …]) 

This method is used for 

Transposed 2D convolution layer. 

Conv3D(channels, kernel_size[, strides, …]) 

This method is used for 3D 

convolution layer. For example, 

spatial convolution over volumes. 

Conv3DTranspose(channels, kernel_size[, …]) 

This method is used for 

Transposed 3D convolution layer. 

Dense(units[, activation, use_bias, …]) 

This method represents for your 

regular densely-connected NN 

layer. 

Dropout(rate[, axes]) 

As name implies, the method 

applies Dropout to the input. 

ELU([alpha]) 

This method is used for 

Exponential Linear Unit (ELU). 

Embedding(input_dim, output_dim[, dtype, …]) 

It turns non-negative integers 

into dense vectors of fixed size. 

Flatten(**kwargs) 

This method flattens the input to 

2-D. 

GELU(**kwargs) 

This method is used for Gaussian 

Exponential Linear Unit (GELU). 

GlobalAvgPool1D([layout]) 

With the help of this method, we 

can do global average pooling 

operation for temporal data. 

GlobalAvgPool2D([layout]) 

With the help of this method, we 

can do global average pooling 

operation for spatial data. 

GlobalAvgPool3D([layout]) 

With the help of this method, we 

can do global average pooling 

operation for 3-D data. 

GlobalMaxPool1D([layout]) 

With the help of this method, we 

can do global max pooling 

operation for 1-D data. 

GlobalMaxPool2D([layout]) 

With the help of this method, we 

can do global max pooling 

operation for 2-D data. 

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv1DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv2DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv3DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Dense
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Dropout
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.ELU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Embedding
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Flatten
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GELU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool2D
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GlobalMaxPool3D([layout]) 

With the help of this method, we 

can do global max pooling 

operation for 3-D data. 

GroupNorm([num_groups, epsilon, center, …]) 

This method applies group 

normalization to the n-D input 

array. 

HybridBlock([prefix, params]) 

This method supports forwarding 

with both Symbol and NDArray. 

HybridLambda(function[, prefix]) 

With the help of this method we 

can wrap an operator or an 

expression as a HybridBlock 

object. 

HybridSequential([prefix, params]) 

It stacks HybridBlocks 

sequentially. 

InstanceNorm([axis, epsilon, center, scale, …]) 

This method applies instance 

normalisation to the n-D input 

array. 

Implementation Examples 

In the example below, we are going to use Block() which gives the base class for all neural 

network layers and models. 

from mxnet.gluon import Block, nn 

class Model(Block): 

    def __init__(self, **kwargs): 

        super(Model, self).__init__(**kwargs) 

        # use name_scope to give child Blocks appropriate names. 

        with self.name_scope(): 

            self.dense0 = nn.Dense(20) 

            self.dense1 = nn.Dense(20) 

    def forward(self, x): 

 

        x = mx.nd.relu(self.dense0(x)) 

        return mx.nd.relu(self.dense1(x)) 

 

model = Model() 

model.initialize(ctx=mx.cpu(0)) 

model(mx.nd.zeros((5, 5), ctx=mx.cpu(0))) 

Output 

You will see the following output: 

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GroupNorm
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridBlock
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridLambda
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridSequential
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.InstanceNorm
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[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] 

<NDArray 5x20 @cpu(0)> 

In the example below, we are going to use HybridBlock() that supports forwarding with 

both Symbol and NDArray. 

import mxnet as mx 

from mxnet.gluon import HybridBlock, nn 

 

class Model(HybridBlock): 

    def __init__(self, **kwargs): 

        super(Model, self).__init__(**kwargs) 

        # use name_scope to give child Blocks appropriate names. 

        with self.name_scope(): 

            self.dense0 = nn.Dense(20) 

            self.dense1 = nn.Dense(20) 

 

    def forward(self, x): 

        x = nd.relu(self.dense0(x)) 

        return nd.relu(self.dense1(x)) 

model = Model() 

model.initialize(ctx=mx.cpu(0)) 

 

model.hybridize() 

model(mx.nd.zeros((5, 5), ctx=mx.cpu(0))) 

Output 

The output is mentioned below: 

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]] 

<NDArray 5x20 @cpu(0)> 
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gluon.rnn 

Gluon provides a large number of build-in recurrent neural network (RNN) layers in 

gluon.rnn module. That is the reason, it is called the core module. 

Methods and their parameters 

Following are some of the important methods and their parameters covered by 

mxnet.gluon.nn core module: 

Methods and its Parameters Definition 

BidirectionalCell(l_cell, r_cell[, …]) 

It is used for Bidirectional Recurrent 

Neural Network (RNN) cell. 

DropoutCell(rate[, axes, prefix, params]) 

This method will apply dropout on the 

given input. 

GRU(hidden_size[, num_layers, layout, …]) 

It applies a multi-layer gated 

recurrent unit (GRU) RNN to a given 

input sequence. 

GRUCell(hidden_size[, …]) 

It is used for Gated Rectified Unit 

(GRU) network cell. 

HybridRecurrentCell([prefix, params]) 
This method supports hybridize. 

HybridSequentialRNNCell([prefix, params]) 

With the help of this method we can 

sequentially stack multiple HybridRNN 

cells. 

LSTM(hidden_size[, num_layers, layout, …]) 

It applies a multi-layer long short-

term memory (LSTM) RNN to a given 

input sequence. 

LSTMCell(hidden_size[, …]) 

It is used for Long-Short Term 

Memory (LSTM) network cell. 

ModifierCell(base_cell) 
It is the Base class for modifier cells. 

RNN(hidden_size[, num_layers, activation, …]) 

It applies a multi-layer Elman RNN 

with tanh or ReLU non-linearity to a 

given input sequence. 

RNNCell(hidden_size[, activation, …]) 

It is used for Elman RNN recurrent 

neural network cell. 

RecurrentCell([prefix, params]) 

It represents the abstract base class 

for RNN cells. 

SequentialRNNCell([prefix, params]) 

With the help of this method we can 

sequentially stack multiple RNN cells. 

ZoneoutCell(base_cell[, zoneout_outputs, …]) 

This method applies Zoneout on the 

base cell. 

Implementation Examples 

https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.BidirectionalCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.DropoutCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.GRU
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.GRUCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.HybridRecurrentCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.HybridSequentialRNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.LSTM
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.LSTMCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.ModifierCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RNN
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RecurrentCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.SequentialRNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.ZoneoutCell
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In the example below, we are going to use GRU() which applies a multi-layer gated 

recurrent unit (GRU) RNN to a given input sequence. 

layer = mx.gluon.rnn.GRU(100, 3) 

layer.initialize() 

input_seq = mx.nd.random.uniform(shape=(5, 3, 10)) 

out_seq = layer(input_seq) 

h0 = mx.nd.random.uniform(shape=(3, 3, 100)) 

out_seq, hn = layer(input_seq, h0) 

out_seq 

Output 

This produces the following output: 

[[[ 1.50152072e-01  5.19012511e-01  1.02390535e-01 ...  4.35803324e-01 

    1.30406499e-01  3.30152437e-02] 

  [ 2.91542172e-01  1.02243155e-01  1.73325196e-01 ...  5.65296151e-02 

    1.76546033e-02  1.66693389e-01] 

  [ 2.22257316e-01  3.76294643e-01  2.11277917e-01 ...  2.28903517e-01 

    3.43954474e-01  1.52770668e-01]] 

 

 

 [[ 1.40634328e-01  2.93247789e-01  5.50393537e-02 ...  2.30207980e-01 

    6.61415309e-02  2.70989928e-02] 

  [ 1.11081995e-01  7.20834285e-02  1.08342394e-01 ...  2.28330195e-02 

    6.79589901e-03  1.25501186e-01] 

  [ 1.15944080e-01  2.41565228e-01  1.18612610e-01 ...  1.14908054e-01 

    1.61080107e-01  1.15969211e-01]] 

…………………………. 

 

hn 

Output 

This produces the following output: 

[[[-6.08105101e-02  3.86217088e-02  6.64453954e-03  8.18805695e-02 

     3.85607071e-02 -1.36945639e-02  7.45836645e-03 -5.46515081e-03 

     9.49622393e-02  6.39371723e-02 -6.37890724e-03  3.82240303e-02 

     9.11015049e-02 -2.01375950e-02 -7.29381144e-02  6.93765879e-02 
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     2.71829776e-02 -6.64435029e-02 -8.45306814e-02 -1.03075653e-01 

     6.72040805e-02 -7.06537142e-02 -3.93818803e-02  5.16211614e-03 

    -4.79770005e-02  1.10734522e-01  1.56721435e-02 -6.93409378e-03 

     1.16915874e-01 -7.95962065e-02 -3.06530762e-02  8.42394680e-02 

     7.60370195e-02  2.17055440e-01  9.85361822e-03  1.16660878e-01 

     4.08297703e-02  1.24978097e-02  8.25245082e-02  2.28673983e-02 

    -7.88266212e-02 -8.04114193e-02  9.28791538e-02 -5.70827350e-03 

    -4.46166918e-02 -6.41122833e-02  1.80885363e-02 -2.37745279e-03 

     4.37298454e-02  1.28888980e-01 -3.07202265e-02  2.50503756e-02 

     4.00907174e-02  3.37077095e-03 -1.78839862e-02  8.90695080e-02 

     6.30150884e-02  1.11416787e-01  2.12221760e-02 -1.13236710e-01 

     5.39616570e-02  7.80710578e-02 -2.28817668e-02  1.92073174e-02 

…………………………. 

In the example below we are going to use LSTM() which applies a long-short term memory 

(LSTM) RNN to a given input sequence. 

layer = mx.gluon.rnn.LSTM(100, 3) 

layer.initialize() 

 

input_seq = mx.nd.random.uniform(shape=(5, 3, 10)) 

out_seq = layer(input_seq) 

h0 = mx.nd.random.uniform(shape=(3, 3, 100)) 

c0 = mx.nd.random.uniform(shape=(3, 3, 100)) 

out_seq, hn = layer(input_seq,[h0,c0]) 

out_seq 

Output 

The output is mentioned below: 

[[[ 9.00025964e-02  3.96071747e-02  1.83841765e-01 ...  3.95872220e-02 

    1.25569820e-01  2.15555862e-01] 

  [ 1.55962542e-01 -3.10300849e-02  1.76772922e-01 ...  1.92474753e-01 

    2.30574399e-01  2.81707942e-02] 

  [ 7.83204585e-02  6.53361529e-03  1.27262697e-01 ...  9.97719541e-02 

    1.28254429e-01  7.55299702e-02]] 

 

 [[ 4.41036932e-02  1.35250352e-02  9.87644792e-02 ...  5.89378644e-03 

    5.23949116e-02  1.00922674e-01] 
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  [ 8.59075040e-02 -1.67027581e-02  9.69351009e-02 ...  1.17763653e-01 

    9.71239135e-02  2.25218050e-02] 

  [ 4.34580036e-02  7.62207608e-04  6.37005866e-02 ...  6.14888743e-02 

    5.96345589e-02  4.72368896e-02]] 

…………… 

 

hn 

Output 

When you run the code, you will see the following output: 

[ 

 [[[ 2.21408084e-02  1.42750628e-02  9.53067932e-03 -1.22849066e-02 

     1.78788435e-02  5.99269159e-02  5.65306023e-02  6.42553642e-02 

     6.56616641e-03  9.80876666e-03 -1.15729487e-02  5.98640442e-02 

    -7.21173314e-03 -2.78371759e-02 -1.90690923e-02  2.21447181e-02 

     8.38765781e-03 -1.38521893e-02 -9.06938594e-03  1.21346042e-02 

 

     6.06449470e-02 -3.77471633e-02  5.65885007e-02  6.63008019e-02 

    -7.34188128e-03  6.46054149e-02  3.19911093e-02  4.11194898e-02 

     4.43960279e-02  4.92892228e-02  1.74766723e-02  3.40303481e-02 

    -5.23341820e-03  2.68163737e-02 -9.43402853e-03 -4.11836170e-02 

     1.55221792e-02 -5.05655073e-02  4.24557598e-03 -3.40388380e-02 

…………………… 

Training Modules 

The training modules in Gluon are as follows: 

gluon.loss 

In mxnet.gluon.loss module, Gluon provides pre-defined loss function. Basically, it has 

the losses for training neural network. That is the reason it is called the training module. 

Methods and their parameters 

Following are some of the important methods and their parameters covered by 

mxnet.gluon.loss training module: 

Methods and its Parameters Definition 

Loss(weight, batch_axis, **kwargs) 
This acts as the base class for loss. 

https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.Loss
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L2Loss([weight, batch_axis]) 

It calculates the mean squared 

error (MSE) 

between label and prediction(pr

ed). 

L1Loss([weight, batch_axis]) 

It calculates the mean absolute 

error (MAE) 

between label and pred. 

SigmoidBinaryCrossEntropyLoss([…]) 

This method is used for the cross-

entropy loss for binary 

classification. 

SigmoidBCELoss 

This method is used for the cross-

entropy loss for binary 

classification. 

SoftmaxCrossEntropyLoss([axis, …]) 

It computes the softmax cross-

entropy loss (CEL). 

SoftmaxCELoss 

It also computes the softmax cross 

entropy loss. 

KLDivLoss([from_logits, axis, weight, …]) 

It is used for the Kullback-Leibler 

divergence loss. 

CTCLoss([layout, label_layout, weight]) 

It is used for connectionist 

Temporal Classification Loss (TCL). 

HuberLoss([rho, weight, batch_axis]) 

It calculates smoothed L1 loss. The 

smoothed L1 loss will be equal to 

L1 loss if absolute error exceeds 

rho but is equal to L2 loss 

otherwise. 

HingeLoss([margin, weight, batch_axis]) 

This method calculates the hinge 

loss function often used in SVMs: 

SquaredHingeLoss([margin, weight, batch_axis

]) 

This method calculates the soft-

margin loss function used in SVMs: 

LogisticLoss([weight, batch_axis, label_format]) 

This method calculates the logistic 

loss. 

TripletLoss([margin, weight, batch_axis]) 

This method calculates triplet loss 

given three input tensors and a 

positive margin. 

PoissonNLLLoss([weight, from_logits, …]) 

The function calculates the 

Negative Log likelihood loss. 

CosineEmbeddingLoss([weight, batch_axis, ma

rgin]) 

The function computes the cosine 

distance between the vectors. 

SDMLLoss([smoothing_parameter, weight, …]) 

This method calculates Batchwise 

Smoothed Deep Metric Learning 

(SDML) Loss given two input 

https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.L2Loss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.L1Loss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SigmoidBCELoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SoftmaxCrossEntropyLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SoftmaxCELoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.KLDivLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.CTCLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.HuberLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.HingeLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SquaredHingeLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.LogisticLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.TripletLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.PoissonNLLLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.CosineEmbeddingLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SDMLLoss
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tensors and a smoothing weight 

SDM Loss. It learns similarity 

between paired samples by using 

unpaired samples in the minibatch 

as potential negative examples. 

Example 

As we know that mxnet.gluon.loss.loss will calculate the MSE(Mean Squared Error) 

between label and prediction (pred). It is done with the help of following formula: 

𝐿 =  
1

2
∑ |𝑙𝑎𝑏𝑒𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖|

2
𝑖   

gluon.parameter 

mxnet.gluon.parameter is a container that holds the parameters i.e. weights of the 

Blocks. 

Methods and their parameters 

Following are some of the important methods and their parameters covered by 

mxnet.gluon.parameter training module: 

Methods and its Parameters Definition 

cast(dtype) 

This method will cast data and gradient of this 

Parameter to a new data type. 

data([ctx]) 

This method will return a copy of this parameter 

on one context. 

grad([ctx]) 

This method will return a gradient buffer for this 

parameter on one context. 

initialize([init, ctx, default_init, …]) 

This method will initialize parameter and gradient 

arrays. 

list_ctx() 

This method will return a list of contexts this 

parameter is initialized on. 

list_data() 

This method will return copies of this parameter 

on all contexts. It will be done in the same order 

as creation. 

list_grad() 

This method will return gradient buffers on all 

contexts. This will be done in the same order 

as values(). 

list_row_sparse_data(row_id) 

This method will return copies of the ‘row_sparse’ 

parameter on all contexts. This will be done in 

the same order as creation. 

reset_ctx(ctx) 

This method will re-assign Parameter to other 

contexts. 

https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.cast
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.grad
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.initialize
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_ctx
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_grad
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_row_sparse_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.reset_ctx
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row_sparse_data(row_id) 

This method will return a copy of the ‘row_sparse’ 

parameter on the same context as row_id’s. 

set_data(data) 

This method will set this parameter’s value on all 

contexts. 

var() 

This method will return a symbol representing 

this parameter. 

zero_grad() 

This method will set the gradient buffer on all 

contexts to 0. 

Implementation Example 

In the example below, we will initialize parameters and the gradients arrays by using 

initialize() method as follows: 

weight = mx.gluon.Parameter('weight', shape=(2, 2)) 

weight.initialize(ctx=mx.cpu(0)) 

weight.data() 

Output: 

The output is mentioned below: 

[[-0.0256899   0.06511251] 

 [-0.00243821 -0.00123186]] 

<NDArray 2x2 @cpu(0)> 

 

weight.grad() 

Output 

The output is given below: 

[[0. 0.] 

 [0. 0.]] 

<NDArray 2x2 @cpu(0)> 

 

weight.initialize(ctx=[mx.gpu(0), mx.gpu(1)]) 

weight.data(mx.gpu(0)) 

Output 

You will see the following output: 

https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.row_sparse_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.set_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.var
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.zero_grad
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[[-0.00873779 -0.02834515] 

 [ 0.05484822 -0.06206018]] 

<NDArray 2x2 @gpu(0)> 

 

 

weight.data(mx.gpu(1)) 

Output 

When you execute the above code, you should see the following output: 

[[-0.00873779 -0.02834515] 

 [ 0.05484822 -0.06206018]] 

<NDArray 2x2 @gpu(1)> 

gluon.trainer 

mxnet.gluon.trainer applies an Optimizer on a set of parameters. It should be used 

together with autograd.  

Methods and their parameters 

Following are some of the important methods and their parameters covered by 

mxnet.gluon.trainer training module: 

Methods and its Parameters Definition 

allreduce_grads() 

This method will reduce the gradients from 

different contexts for each parameter 

(weight).  

load_states(fname) 

As name implies, this method will load 

trainer states. 

save_states(fname) 

As name implies, this method will save 

trainer states. 

set_learning_rate(lr) 

This method will set a new learning rate of 

the optimizer. 

step(batch_size[, ignore_stale_grad]) 

This method will make one step of 

parameter update. It should be called after 

autograd.backward() and outside of 

record() scope. 

update(batch_size[, ignore_stale_grad]) 

This method will also make one step of 

parameter update. It should be called after 

autograd.backward() and outside of 

record() scope and after trainer.update(). 

https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.allreduce_grads
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.load_states
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.save_states
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.set_learning_rate
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.step
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.update
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Data Modules 

The data modules of Gluon are explained below: 

gluon.data 

Gluon provides a large number of build-in dataset utilities in gluon.data module. That is 

the reason it is called the data module. 

Classes and their parameters 

Following are some of the important methods and their parameters covered by 

mxnet.gluon.data core module. These methods are typically related to Datasets, 

Sampling, and DataLoader.  

Methods and its Parameters Definition 

ArrayDataset(*args) 

This method represents a dataset 

which combines two or more than 

two dataset-like objects. For 

example, Datasets, lists, arrays, 

etc. 

BatchSampler(sampler, batch_size[, last_batch]) 

This method wraps over 

another Sampler. Once wrapped 

it returns the mini batches of 

samples. 

DataLoader(dataset[, batch_size, shuffle, …]) 

Similar to BatchSampler but this 

method loads data from a dataset. 

Once loaded it returns the mini 

batches of data. 

Dataset 

This represents the abstract 

dataset class. 

FilterSampler(fn, dataset) 

This method represents the 

samples elements from a Dataset 

for which fn (function) returns 

True. 

RandomSampler(length) 

This method represents samples 

elements from [0, length) 

randomly without replacement. 

RecordFileDataset(filename) 

It represents a dataset wrapping 

over a RecordIO file. The 

extension of the file is .rec. 

Sampler 
This is the base class for samplers. 

SequentialSampler(length[, start]) 

It represents the sample elements 

from the set [start, start+length) 

sequentially. 

https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.ArrayDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.BatchSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.DataLoader
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.Dataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.FilterSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.RandomSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.RecordFileDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.Sampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.SequentialSampler
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SimpleDataset(data) 

This represents the simple Dataset 

wrapper especially for lists and 

arrays. 

Implementation Examples 

In the example below, we are going to use gluon.data.BatchSampler() API, which 

wraps over another sampler. It returns the mini batches of samples. 

import mxnet as mx 

from mxnet.gluon import data 

sampler = mx.gluon.data.SequentialSampler(15) 

batch_sampler = mx.gluon.data.BatchSampler(sampler, 4, 'keep') 

list(batch_sampler) 

Output 

The output is mentioned below: 

[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14]] 

gluon.data.vision.datasets 

Gluon provides a large number of pre-defined vision dataset functions in 

gluon.data.vision.datasets module.  

Classes and their parameters 

MXNet provides us useful and important datasets, whose classes and parameters are given 

below:  

Classes and its Parameters Definition 

MNIST([root, train, transform]) 

This is a useful dataset providing us the 

handwritten digits. The url for MNIST 

dataset is 

http://yann.lecun.com/exdb/mnist 

FashionMNIST([root, train, transform]) 

This dataset consists of Zalando’s article 

images consisting of fashion products. It is a 

drop-in replacement of original MNIST 

dataset. You can get this dataset from 

https://github.com/zalandoresearch/fashio

n-mnist 

CIFAR10([root, train, transform]) 

This is an image classification dataset 

from https://www.cs.toronto.edu/~kriz/cifa

r.html. In this dataset each sample is an 

image with shape (32, 32, 3). 

https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.SimpleDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.MNIST
http://yann.lecun.com/exdb/mnist
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.FashionMNIST
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.CIFAR10
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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CIFAR100([root, fine_label, train, trans

form]) 

This is CIFAR100 image classification 

dataset 

from https://www.cs.toronto.edu/~kriz/cifa

r.html. It also has each sample is an image 

with shape (32, 32, 3).  

ImageRecordDataset 

(filename[, flag, transform]) 

This dataset is wrapping over a RecordIO file 

that contains images. In this each sample is 

an image with its corresponding label. 

ImageFolderDataset 

(root[, flag, transform]) 

This is a dataset for loading image files that 

are stored in a folder structure. 

ImageListDataset 

([root, imglist, flag]) 

This is a dataset for loading image files that 

are specified by a list of entries. 

Example 

In the example below, we are going to show the use of ImageListDataset(), which is used 

for loading image files that are specified by a list of entries: 

# written to text file *.lst 

 

0       0       root/cat/0001.jpg 

1       0       root/cat/xxxa.jpg 

2       0       root/cat/yyyb.jpg 

3       1       root/dog/123.jpg 

4       1       root/dog/023.jpg 

5       1       root/dog/wwww.jpg 

 

# A pure list, each item is a list [imagelabel: float or list of float, 

imgpath] 

 

[[0, root/cat/0001.jpg] 

 [0, root/cat/xxxa.jpg] 

 [0, root/cat/yyyb.jpg] 

 [1, root/dog/123.jpg] 

 [1, root/dog/023.jpg] 

 [1, root/dog/wwww.jpg]] 

Utility Modules 

The utility modules in Gluon are as follows: 

https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.CIFAR100
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageRecordDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageFolderDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageListDataset
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gluon.utils 

Gluon provides a large number of build-in parallelisation utility optimiser in gluon.utils 

module. It provides variety of utilities for training. That is the reason it is called the utility 

module. 

Functions and their parameters 

Following are the functions and their parameters consisting in this utility module named 

gluon.utils: 

Functions and its Parameters Definition 

split_data(data, num_slice[, batch_axis, …]) 

This function is usually use for data 

parallelism and each slice is sent to 

one device i.e. GPU. It splits an 

NDArray into num_slice slices 

along batch_axis. 

split_and_load(data, ctx_list[, batch_axis, …]) 

This function splits an NDArray 

into len(ctx_list) slices 

along batch_axis. The only 

difference from above split_data () 

function is that, it also loads each 

slice to one context in ctx_list. 

clip_global_norm(arrays, max_norm[, …]) 

The job of this function is to rescale 

NDArrays in such a way that the sum 

of their 2-norm is smaller 

than max_norm. 

check_sha1(filename, sha1_hash) 

This function will check whether the 

sha1 hash of the file content 

matches the expected hash or not. 

download(url[, path, overwrite, sha1_hash, …]) 

As name specifies, this function will 

download a given URL. 

replace_file(src, dst) 

This function will implement atomic 

os.replace. it will be done with 

Linux and OSX. 

 

https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.split_data
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.split_and_load
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.clip_global_norm
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.check_sha1
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.download
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.replace_file


Apache MXNet        

   119 

 

This chapter deals with the autograd and initializer API in MXNet. 

mxnet.autograd 

This is MXNet’ autograd API for NDArray. It has the following class: 

Class: Function() 

It is used for customised differentiation in autograd. It can be written as 

mxnet.autograd.Function. If, for any reason, the user do not want to use the gradients 

that are computed by the default chain-rule, then he/she can use Function class of 

mxnet.autograd to customize differentiation for computation. It has two methods namely 

Forward() and Backward().  

Let us understand the working of this class with the help of following points: 

 First, we need to define our computation in the forward method. 

 Then, we need to provide the customized differentiation in the backward method.  

 Now during gradient computation, instead of user-defined backward function, 

mxnet.autograd will use the backward function defined by the user. We can also 

cast to numpy array and back for some operations in forward as well as backward. 

Example 

Before using the mxnet.autograd.function class, let’s define a stable sigmoid function with 

backward as well as forward methods as follows: 

class sigmoid(mx.autograd.Function): 

    def forward(self, x): 

        y = 1 / (1 + mx.nd.exp(-x)) 

        self.save_for_backward(y) 

        return y 

 

    def backward(self, dy): 

        y, = self.saved_tensors 

        return dy * y * (1-y)  

Now, the function class can be used as follows: 

func = sigmoid() 

x = mx.nd.random.uniform(shape=(10,)) 

 

14. Apache MXNet — Python API autograd and 
initializer  
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x.attach_grad() 

 

with mx.autograd.record(): 

    m = func(x) 

    m.backward() 

dx_grad = x.grad.asnumpy() 

dx_grad 

 

Output 

When you run the code, you will see the following output: 

array([0.21458015, 0.21291625, 0.23330082, 0.2361367 , 0.23086983, 

       0.24060014, 0.20326573, 0.21093895, 0.24968489, 0.24301809], 

      dtype=float32) 

Methods and their parameters 

Following are the methods and their parameters of mxnet.autogard.function class: 

Methods and its Parameters Definition 

forward (heads[, head_grads, retain_graph, …]) This method is used for forward 

computation. 

backward(heads[, head_grads, retain_graph, …]) 

This method is used for backward 

computation. It computes the 

gradients of heads with respect 

to previously marked variables. 

This method takes as many 

inputs as forward’s output. It also 

returns as many NDArray’s as 

forward’s inputs. 

 

get_symbol(x) 

This method is used to retrieve 

recorded computation history 

as Symbol. 

grad(heads, variables[, head_grads, …]) 

This method computes the 

gradients of heads with respect 

to variables. Once computed, 

instead of storing into 

variable.grad, gradients will be 

returned as new NDArrays. 

https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.backward
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.get_symbol
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.grad
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is_recording() 

With the help of this method we 

can get status on recording and 

not recording. 

is_training() 

With the help of this method we 

can get status on training and 

predicting. 

mark_variables(variables, gradients[, grad_reqs]) 

This method will mark NDArrays 

as variables to compute gradient 

for autograd. This method is 

same as function .attach_grad() 

in a variable but the only 

difference is that with this call we 

can set the gradient to any value. 

pause([train_mode]) 

This method returns a scope 

context to be used in ‘with’ 

statement for codes which do not 

need gradients to be calculated. 

predict_mode() 

This method returns a scope 

context to be used in ‘with’ 

statement in which forward pass 

behavior is set to inference mode 

and that is without changing the 

recording states. 

record([train_mode]) 

It will return an autograd 

recording scope context to be 

used in ‘with’ statement and 

captures code which needs 

gradients to be calculated. 

set_recording(is_recording) 

Similar to is_recoring(), with the 

help of this method we can get 

status on recording and not 

recording. 

set_training(is_training) 

Similar to is_traininig(), with the 

help of this method we can set 

status to training or predicting. 

train_mode() 

This method will return a scope 

context to be used in ‘with’ 

statement in which forward pass 

behavior is set to training mode 

and that is without changing the 

recording states. 

Implementation Example 

In the below example, we will be using mxnet.autograd.grad() method to compute the 

gradient of head with respect to variables: 

https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.is_recording
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.is_training
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.mark_variables
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.pause
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.predict_mode
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.record
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.set_recording
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.set_training
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.train_mode
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x = mx.nd.ones((2,)) 

x.attach_grad() 

with mx.autograd.record(): 

    z = mx.nd.elemwise_add(mx.nd.exp(x), x) 

dx_grad = mx.autograd.grad(z, [x], create_graph=True) 

dx_grad 

Output 

The output is mentioned below: 

[ 

 [3.7182817 3.7182817] 

 <NDArray 2 @cpu(0)>] 

We can use mxnet.autograd.predict_mode() method to return a scope to be used in ‘with’ 

statement: 

with mx.autograd.record(): 

    y = model(x) 

    with mx.autograd.predict_mode(): 

        y = sampling(y) 

    backward([y]) 

mxnet.intializer 

This is MXNet’ API for weigh initializer. It has the following classes: 

Classes and their parameters 

Following are the methods and their parameters of mxnet.autogard.function class: 

Classes and its Parameters Definition 

Bilinear() 

With the help of this class we can 

initialize weight for up-sampling 

layers. 

Constant(value) 

This class initializes the weights to 

a given value. The value can be a 

scalar as well as NDArray that 

matches the shape of the 

parameter to be set. 

FusedRNN(init, num_hidden, num_layers, mode) 

As name implies, this class 

initialize parameters for the fused 

Recurrent Neural Network (RNN) 

layers. 

https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Bilinear
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Constant
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.FusedRNN
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InitDesc 

It acts as the descriptor for the 

initialization pattern. 

Initializer(**kwargs) 

This is the base class of an 

initializer. 

LSTMBias([forget_bias]) 

This class initialize all biases of an 

LSTMCell to 0.0 but  except for the 

forget gate whose bias is set to a 

custom value. 

Load(param[, default_init, verbose]) 

This class initialize the variables by 

loading data from file or dictionary. 

MSRAPrelu([factor_type, slope]) 

As name implies, this class 

Initialize the weight according to a 

MSRA paper. 

Mixed(patterns, initializers) 

It initializes the parameters using 

multiple initializers. 

Normal([sigma]) 

Normal() class initializes weights 

with random values sampled from 

a normal distribution with a mean 

of zero and standard deviation 

(SD) of sigma. 

One() 

It initializes the weights of 

parameter to one. 

Orthogonal([scale, rand_type]) 

As name implies, this class 

initialize weight as orthogonal 

matrix. 

Uniform([scale]) 

It initializes weights with random 

values which is uniformly sampled 

from a given range. 

Xavier([rnd_type, factor_type, magnitude]) 

It actually returns an initializer that 

performs “Xavier” initialization for 

weights. 

Zero() 

It initializes the weights of 

parameter to zero. 

Implementation Example 

In the below example, we will be using mxnet.init.Normal() class create an initializer 

and retrieve its parameters: 

init = mx.init.Normal(0.8) 

init.dumps() 

Output 

The output is given below: 

https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.InitDesc
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Initializer
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.LSTMBias
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Load
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.MSRAPrelu
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Mixed
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Normal
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.One
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Orthogonal
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Uniform
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Xavier
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Zero
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'["normal", {"sigma": 0.8}]' 

 

init = mx.init.Xavier(factor_type="in", magnitude=2.45) 

init.dumps() 

Output 

The output is shown below: 

'["xavier", {"rnd_type": "uniform", "factor_type": "in", "magnitude": 2.45}]' 

In the below example, we will be using mxnet.initializer.Mixed() class to initialize 

parameters using multiple initializers: 

init = mx.initializer.Mixed(['bias', '.*'], [mx.init.Zero(),  

mx.init.Uniform(0.1)]) 

module.init_params(init) 

 

for dictionary in module.get_params(): 

     for key in dictionary: 

         print(key) 

         print(dictionary[key].asnumpy()) 

Output 

The output is shown below: 

fullyconnected1_weight 

[[ 0.0097627   0.01856892  0.04303787]] 

fullyconnected1_bias 

[ 0.] 
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In this chapter, we will learn about an interface in MXNet which is termed as Symbol. 

Mxnet.ndarray 

Apache MXNet’s Symbol API is an interface for symbolic programming. Symbol API 

features the use of the following: 

 Computational graphs 

 Reduced memory usage 

 Pre-use function optimization 

The example given below shows how one can create a simple expression by using MXNet’s 

Symbol API: 

An NDArray by using 1-D and 2-D ‘array’ from a regular Python list: 

import mxnet as mx 

# Two placeholders namely x and y will be created with mx.sym.variable 

x = mx.sym.Variable('x') 

y = mx.sym.Variable('y') 

# The symbol here is constructed using the plus ‘+’ operator. 

z = x + y 

Output 

You will see the following output: 

<Symbol _plus0> 

 

(x, y, z)  

Output 

The output is given below: 

(<Symbol x>, <Symbol y>, <Symbol _plus0>) 

Now let us discuss in detail about the classes, functions, and parameters of ndarray API 

of MXNet. 

 Classes 

15. Apache MXNet — Python API Symbol 
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Following table consists of the classes of Symbol API of MXNet: 

Class Definition 

Symbol(handle) This class namely symbol is the symbolic graph of the Apache 

MXNet. 

Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.Symbol API: 

Function and its Parameters Definition 

Activation([data, act_type, out, name]) 

It applies an activation function 

element-wise to the input. It 

supports relu, sigmoid, tanh, 

softrelu, softsign activation 

functions. 

BatchNorm([data, gamma, beta, moving_mean, …]) 

It is used for batch 

normalization. This function 

normalizes a data batch by 

mean and variance. It applies a 

scale gamma and offset beta. 

BilinearSampler([data, grid, cudnn_off, …]) 

This function applies bilinear 

sampling to input feature map. 

Actually it is the key of “Spatial 

Transformer Networks”. If you 

are familiar with remap 

function in OpenCV, the usage 

of this function is quite similar 

to that. The only difference is 

that it has the backward pass. 

BlockGrad([data, out, name]) 

As name specifies, this function 

stops gradient computation. It 

basically stops the accumulated 

gradient of the inputs from 

flowing through this operator in 

backward direction. 

cast([data, dtype, out, name]) 

This function will cast all 

elements of the input to a new 

type. 

zeros(shape[, dtype]) 

This function, as name 

specified, returns a new symbol 

of given shape and type, filled 

with zeros. 

ones(shape[, dtype]) 
This function, as name 

specified return a new symbol 

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Activation
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BatchNorm
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BilinearSampler
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BlockGrad
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Cast
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.zeros
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.ones


Apache MXNet        

   127 

 

of given shape and type, filled 

with ones. 

full(shape, val[, dtype]) 

This function, as name 

specified returns a new array of 

given shape and type, filled 

with the given value val. 

arange(start[, stop, step, repeat, …]) 

It will return evenly spaced 

values within a given interval. 

The values are generated 

within half open interval [start, 

stop) which means that the 

interval includes start but 

excludes stop. 

linspace(start, stop, num[, endpoint, name, …]) 

It will return evenly spaced 

numbers within a specified 

interval. Similar to the function 

arrange(), the values are 

generated within half open 

interval [start, stop) which 

means that the interval 

includes start but excludes 

stop.  

histogram(a[, bins, range]) 

As name implies, this function 

will compute the histogram of 

the input data. 

power(base, exp) 

As name implies, this function 

will return element-wise result 

of base element raised to 

powers from exp element. Both 

inputs i.e. base and exp, can be 

either Symbol or scalar. Here 

note that broadcasting is not 

allowed. You can use 

broadcast_pow if you want to 

use the feature of broadcast. 

SoftmaxActivation([data, mode, name, attr, out]) 

This function applies softmax 

activation to input. It is 

intended for internal layers. It 

is actually deprecated, we can 

use softmax() instead. 

Implementation Examples 

In the example below we will be using the function power() which will return element-

wise result of base element raised to the powers from exp element: 

import mxnet as mx 

https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.full
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.arange
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.linspace
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.histogram
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.power
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.SoftmaxActivation
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mx.sym.power(3, 5) 

Output 

You will see the following output: 

243 

 

x = mx.sym.Variable('x') 

y = mx.sym.Variable('y') 

z = mx.sym.power(x, 3) 

z.eval(x=mx.nd.array([1,2]))[0].asnumpy() 

Output 

This produces the following output: 

array([1., 8.], dtype=float32) 

 

 

z = mx.sym.power(4, y) 

z.eval(y=mx.nd.array([2,3]))[0].asnumpy() 

Output 

When you execute the above code, you should see the following output: 

array([16., 64.], dtype=float32) 

 

 

z = mx.sym.power(x, y) 

z.eval(x=mx.nd.array([4,5]), y=mx.nd.array([2,3]))[0].asnumpy() 

Output 

The output is mentioned below: 

array([ 16., 125.], dtype=float32) 

In the example given below, we will be using the function SoftmaxActivation() (or 

softmax()) which will be applied to input and is intended for internal layers. 

input_data = mx.nd.array([[2., 0.9, -0.5, 4., 8.], [4., -.7, 9.,   2., 0.9]]) 

soft_max_act = mx.nd.softmax(input_data) 

print (soft_max_act.asnumpy()) 
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Output 

You will see the following output: 

[[2.4258138e-03 8.0748333e-04 1.9912292e-04 1.7924475e-02 9.7864312e-01] 

 [6.6843745e-03 6.0796250e-05 9.9204916e-01 9.0463174e-04 3.0112563e-04]] 

symbol.contrib 

The Contrib NDArray API is defined in the symbol.contrib package. It typically provides 

many useful experimental APIs for new features. This API works as a place for the 

community where they can try out the new features. The feature contributor will get the 

feedback as well.   

Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.symbol.contrib API: 

Function and its Parameters Definition 

rand_zipfian(true_classes, num_sampled, …) 

This function draws random 

samples from an approximately 

Zipfian distribution. The base 

distribution of this function is 

Zipfian distribution. This function 

randomly samples num_sampled 

candidates and the elements of 

sampled_candidates are drawn 

from the base distribution given 

above. 

foreach(body, data, init_states) 

As name implies, this function runs 

a loop with user-defined 

computation over NDArrays on 

dimension 0. This function 

simulates a for loop and body has 

the computation for an iteration of 

the for loop. 

while_loop(cond, func, loop_vars[, …]) 

As name implies, this function runs 

a while loop with user-defined 

computation and loop condition. 

This function simulates a while loop 

that literately does customized 

computation if the condition is 

satisfied.  

cond(pred, then_func, else_func) 

As name implies, this function run 

an if-then-else using user-defined 

condition and computation. This 

function simulates an if-like branch 

which chooses to do one of the two 

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.rand_zipfian
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.foreach
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.while_loop
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.cond
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customized computations according 

to the specified condition. 

getnnz([data, axis, out, name]) 

This function gives us the number 

of stored values for a sparse tensor. 

It also includes explicit zeros. It 

only supports CSR matrix on CPU. 

requantize([data, min_range, max_range, …]) 

This function requantize the given 

data that is quantized in int32 and 

the corresponding thresholds, into 

int8 using min and max thresholds 

either calculated at runtime or from 

calibration. 

index_copy([old_tensor, index_vector, …]) 

This function copies the elements of 

a new_tensor into 

the old_tensor by selecting the 

indices in the order given in 

index. The output of this 

operator will be a new tensor 

that contains the rest elements 

of old tensor and the copied 

elements of new tensor. 

interleaved_matmul_encdec_qk([queries, …]) 

This operator compute the matrix 

multiplication between the 

projections of queries and keys in 

multi-head attention use as 

encoder-decoder. The condition is 

that the inputs should be a tensor 

of projections of queries that 

follows the layout: (seq_length, 

batch_size, num_heads*, 

head_dim). 

Implementation Examples 

In the example below we will be using the function rand_zipfian for drawing random 

samples from an approximately Zipfian distribution: 

import mxnet as mx 

true_cls = mx.sym.Variable('true_cls') 

samples, exp_count_true, exp_count_sample = 

mx.sym.contrib.rand_zipfian(true_cls, 5, 6) 

samples.eval(true_cls=mx.nd.array([3]))[0].asnumpy() 

Output 

You will see the following output: 

array([4, 0, 2, 1, 5], dtype=int64) 

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.getnnz
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.requantize
https://mxnet.apache.org/api/python/docs/api/symbol/contrib/index.html#mxnet.symbol.contrib.index_copy
https://mxnet.apache.org/api/python/docs/api/symbol/contrib/index.html#mxnet.symbol.contrib.interleaved_matmul_encdec_qk
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exp_count_true.eval(true_cls=mx.nd.array([3]))[0].asnumpy() 

Output 

The output is mentioned below: 

array([0.57336551]) 

 

exp_count_sample.eval(true_cls=mx.nd.array([3]))[0].asnumpy() 

Output 

You will see the following output: 

array([1.78103594, 0.46847373, 1.04183923, 0.57336551, 1.04183923]) 

In the example below we will be using the function while_loop for running a while loop 

for user-defined computation and loop condition: 

cond = lambda i, s: i <= 7 

func = lambda i, s: ([i + s], [i + 1, s + i]) 

loop_vars = (mx.sym.var('i'), mx.sym.var('s')) 

outputs, states = mx.sym.contrib.while_loop(cond, func, loop_vars, 

max_iterations=10) 

print(outputs) 

Output 

The output is given below: 

[<Symbol _while_loop0>] 

 

Print(States) 

Output 

This produces the following output: 

[<Symbol _while_loop0>, <Symbol _while_loop0>] 

In the example below we will be using the function index_copy that copies the elements 

of new_tensor into the old_tensor.  
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import mxnet as mx 

a = mx.nd.zeros((6,3)) 

b = mx.nd.array([[1,2,3],[4,5,6],[7,8,9]]) 

index = mx.nd.array([0,4,2]) 

mx.nd.contrib.index_copy(a, index, b) 

Output 

When you execute the above code, you should see the following output: 

[[1. 2. 3.] 

 [0. 0. 0.] 

 [7. 8. 9.] 

 [0. 0. 0.] 

 [4. 5. 6.] 

 [0. 0. 0.]] 

<NDArray 6x3 @cpu(0)> 

symbol.image 

The Image Symbol API is defined in the symbol.image package. As name implies, it 

typically used for images and their features. 

Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.symbol.image API: 

Function and its Parameters Definition 

adjust_lighting([data, alpha, out, name]) 

As name implies, this function 

adjusts the lighting level of the 

input. It follows the AlexNet 

style. 

crop([data, x, y, width, height, out, name]) 

With the help of this function we 

can crop an image NDArray of 

shape (H x W x C) or (N x H x W 

x C) to the size given by user. 

normalize([data, mean, std, out, name]) 

It will normalize an tensor of 

shape (C x H x W) or (N x C x H 

x W) with mean and standard 

deviation(SD). 

random_crop([data, xrange, yrange, width, …]) 

Similar to crop(), it randomly 

crop an image NDArray of shape 

(H x W x C) or (N x H x W x C) to 

the size given by the user. It will 

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.adjust_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.normalize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_crop
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upsample the result if src is 

smaller than the size. 

random_lighting([data, alpha_std, out, name]) 

As name implies, this function 

adds the PCA noise randomly. It 

also follows the AlexNet style. 

random_resized_crop([data, xrange, yrange, …]) 

It also crops an image randomly 

NDArray of shape (H x W x C) or 

(N x H x W x C) to the given size. 

It will upsample the result if src 

is smaller than the size. It will 

randomize the area and aspect 

ration as well. 

resize([data, size, keep_ratio, interp, …]) 

As name implies, this function 

will resize an image NDArray of 

shape (H x W x C) or (N x H x W 

x C) to the size given by user. 

to_tensor([data, out, name]) 

It converts an image NDArray of 

shape (H x W x C) or (N x H x W 

x C) with the values in the range 

[0, 255] to a tensor NDArray of 

shape (C x H x W) or (N x C x H 

x W) with the values in the range 

[0, 1]. 

Implementation Examples 

In the example below, we will be using the function to_tensor to convert image NDArray 

of shape (H x W x C) or (N x H x W x C) with the values in the range [0, 255] to a tensor 

NDArray of shape (C x H x W) or (N x C x H x W) with the values in the range [0, 1]. 

import numpy as np 

 

img = mx.sym.random.uniform(0, 255, (4, 2, 3)).astype(dtype=np.uint8) 

 

mx.sym.image.to_tensor(img) 

Output 

The output is stated below: 

<Symbol to_tensor4> 

 

img = mx.sym.random.uniform(0, 255, (2, 4, 2, 3)).astype(dtype=np.uint8) 

 

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_resized_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.resize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.to_tensor
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mx.sym.image.to_tensor(img) 

Output 

The output is mentioned below: 

<Symbol to_tensor5> 

In the example below, we will be using the function normalize() to normalize an tensor 

of shape (C x H x W) or (N x C x H x W) with mean and standard deviation(SD). 

img = mx.sym.random.uniform(0, 1, (3, 4, 2)) 

 

mx.sym.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1)) 

Output 

Given below is the output of the code: 

<Symbol normalize0> 

 

img = mx.sym.random.uniform(0, 1, (2, 3, 4, 2)) 

 

mx.sym.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1)) 

Output 

The output is shown below: 

<Symbol normalize1> 

symbol.random 

The Random Symbol API is defined in the symbol.random package. As name implies, it is 

random distribution generator Symbol API of MXNet. 

Functions and their parameters 

Following are some of the important functions and their parameters covered by 

mxnet.symbol.random API: 

Function and its Parameters Definition 

uniform([low, high, shape, dtype, ctx, out]) 

It generates random samples 

from a uniform distribution. 

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform
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normal([loc, scale, shape, dtype, ctx, out]) 

It generates random samples 

from a normal (Gaussian) 

distribution. 

randn(*shape, **kwargs) 

It generates random samples 

from a normal (Gaussian) 

distribution. 

poisson([lam, shape, dtype, ctx, out]) 

It generates random samples 

from a Poisson distribution. 

exponential([scale, shape, dtype, ctx, out]) 

It generates samples from an 

exponential distribution. 

gamma([alpha, beta, shape, dtype, ctx, out]) 

It generates random samples 

from a gamma distribution. 

multinomial(data[, shape, get_prob, out, dtype]) 

It generates concurrent sampling 

from multiple multinomial 

distributions. 

negative_binomial([k, p, shape, dtype, ctx, out]) 

It generates random samples 

from a negative binomial 

distribution. 

generalized_negative_binomial([mu, alpha, …]) 

It generates random samples 

from a generalized negative 

binomial distribution. 

shuffle(data, **kwargs) 

It shuffles the elements 

randomly. 

randint(low, high[, shape, dtype, ctx, out]) 

It generates random samples 

from a discrete uniform 

distribution. 

exponential_like([data, lam, out, name]) 

It generates random samples 

from an exponential distribution 

according to the input array 

shape. 

gamma_like([data, alpha, beta, out, name]) 

It generates random samples 

from a gamma distribution 

according to the input array 

shape. 

generalized_negative_binomial_like([data, …]) 

It generates random samples 

from a generalized negative 

binomial distribution according to 

the input array shape. 

negative_binomial_like([data, k, p, out, name]) 

It generates random samples 

from a negative binomial 

distribution according to the input 

array shape. 

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randn
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.multinomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.shuffle
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randint
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial_like
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normal_like([data, loc, scale, out, name]) 

It generates random samples 

from a normal (Gaussian) 

distribution according to the input 

array shape. 

poisson_like([data, lam, out, name]) 

It generates random samples 

from a Poisson distribution 

according to the input array 

shape. 

uniform_like([data, low, high, out, name]) 

It generates random samples 

from a uniform distribution 

according to the input array 

shape. 

Implementation Examples 

In the example below, we are going to shuffle the elements randomly using shuffle() 

function. It will shuffle the array along the first axis. 

data = mx.nd.array([[0, 1, 2], [3, 4, 5], [6, 7, 8],[9,10,11]]) 

x = mx.sym.Variable('x') 

y = mx.sym.random.shuffle(x) 

y.eval(x=data) 

Output 

You will see the following output: 

[ 

 [[ 9. 10. 11.] 

  [ 0.  1.  2.] 

  [ 6.  7.  8.] 

  [ 3.  4.  5.]] 

 <NDArray 4x3 @cpu(0)>] 

 

y.eval(x=data) 

Output 

When you execute the above code, you should see the following output: 

[ 

 [[ 6.  7.  8.] 

 

  [ 0.  1.  2.] 

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform_like
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  [ 3.  4.  5.] 

  [ 9. 10. 11.]] 

 <NDArray 4x3 @cpu(0)>] 

In the example below, we are going to draw random samples from a generalized negative 

binomial distribution. For this will be using the function 

generalized_negative_binomial(). 

mx.sym.random.generalized_negative_binomial(10, 0.1) 

Output 

The output is given below: 

<Symbol _random_generalized_negative_binomial0> 

symbol.sparse 

The Sparse Symbol API is defined in the mxnet.symbol.sparse package. As name implies, 

it provides sparse neural network graphs and auto-differentiation on CPU. 

Functions and their parameters 

Following are some of the important functions (includes Symbol creation routines, Symbol 

Manipulation routines, Mathematical functions, Trigonometric function, Hyberbolic 

functions, Reduce functions, Rounding, Powers, Neural Network) and their parameters 

covered by mxnet.symbol.sparse API: 

Function and its Parameters Definition 

ElementWiseSum(*args, **kwargs) 

This function will add all input 

arguments element wise. For 

example, 𝑎𝑑𝑑_𝑛(𝑎1, 𝑎2, … 𝑎𝑛 = 𝑎1 +

𝑎2 + ⋯ + 𝑎𝑛). Here, we can see that 

add_n is potentially more efficient 

than calling add by n times. 

Embedding([data, weight, input_dim, …]) 

It will map the integer indices to 

vector representations i.e. 

embeddings.  It actually maps words 

to real-valued vectors in high-

dimensional space which is called 

word embeddings. 

LinearRegressionOutput([data, label, …]) 

It computes and optimizes for 

squared loss during backward 

propagation giving just output data 

during forward propagation.  

LogisticRegressionOutput([data, label, …]) 
Applies a logistic function which is 

also called the sigmoid function to 

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.ElementWiseSum
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.Embedding
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.LinearRegressionOutput
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.LogisticRegressionOutput
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the input. The function is computed 

as 
1

1+exp (−𝑥)
.  

MAERegressionOutput([data, label, …]) 

This operator computes mean 

absolute error of the input. MAE is 

actually a risk metric corresponding 

to the expected value of absolute 

error. 

abs([data, name, attr, out]) 

As name implies, this function will 

return element-wise absolute value 

of the input. 

adagrad_update([weight, grad, history, lr, …]) 

It is an update function for AdaGrad 

optimizer. 

adam_update([weight, grad, mean, var, lr, …]) 

It is an update function for Adam 

optimizer. 

add_n(*args, **kwargs) 

As name implies it will adds all input 

arguments element-wise. 

arccos([data, name, attr, out]) 

This function will returns element-

wise inverse cosine of the input 

array. 

dot([lhs, rhs, transpose_a, transpose_b, …]) 

As name implies, it will give the dot 

product of two arrays. It will depend 

upon the input array dimension: 

1-D: inner product of vectors 

2-D: matrix multiplication 

N-D: A sum product over the last 

axis of the first input and the first 

axis of the second input. 

elemwise_add([lhs, rhs, name, attr, out]) 

As name implies it will add 

arguments element wise. 

elemwise_div([lhs, rhs, name, attr, out]) 

As name implies it will divide 

arguments element wise. 

elemwise_mul([lhs, rhs, name, attr, out]) 

As name implies it will Multiply 

arguments element wise. 

elemwise_sub([lhs, rhs, name, attr, out]) 

As name implies it will Subtract 

arguments element wise. 

exp([data, name, attr, out]) 

This function will return element 

wise exponential value of the given 

input. 

sgd_update([weight, grad, lr, wd, …]) 

It acts as an update function for 

Stochastic Gradient Descent 

optimizer. 

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.MAERegressionOutput
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.abs
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.adagrad_update
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.adam_update
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.add_n
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.arccos
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.dot
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_add
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_div
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_mul
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_sub
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.exp
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sgd_update
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sigmoid([data, name, attr, out]) 

As name implies it will compute 

sigmoid of x element wise. 

sign([data, name, attr, out]) 

It will return the element wise sign 

of the given input. 

sin([data, name, attr, out]) 

As name implies, this function will 

computes the element wise sine of 

the given input array. 

Implementation Example 

In the example below, we are going to shuffle the elements randomly using 

ElementWiseSum() function. It will map integer indices to vector representations i.e. 

word embeddings. 

input_dim = 4 

output_dim = 5 

 

/* Here every row in weight matrix y represents a word. So, y = (w0,w1,w2,w3) 

y = [[  0.,   1.,   2.,   3.,   4.], 

     [  5.,   6.,   7.,   8.,   9.], 

     [ 10.,  11.,  12.,  13.,  14.], 

     [ 15.,  16.,  17.,  18.,  19.]] 

 

/* Here input array x represents n-grams(2-gram). So, x = [(w1,w3), (w0,w2)] 

x = [[ 1.,  3.], 

     [ 0.,  2.]] 

 

/* Now, Mapped input x to its vector representation y. 

Embedding(x, y, 4, 5) = [[[  5.,   6.,   7.,   8.,   9.], 

                          [ 15.,  16.,  17.,  18.,  19.]], 

 

                         [[  0.,   1.,   2.,   3.,   4.], 

                          [ 10.,  11.,  12.,  13.,  14.]]] 

 

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sigmoid
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sign
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sin
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Apache MXNet’s module API is like a FeedForward model and it is easier to compose similar 

to Torch module. It consists of following classes: 

BaseModule([logger]) 

It represents the base class of a module. A module can be thought of as computation 

component or computation machine. The job of a module is to execute forward and 

backward passes. It also updates parameters in a model. 

Methods 

Following table shows the methods consisted in BaseModule class: 

Methods Definition 

backward([out_grads]) 

As name implies this method 

implements the backward 

computation. 

bind(data_shapes[, label_shapes, …]) 

It binds the symbols to construct 

executors and it is necessary 

before one can perform 

computation with the module. 

fit(train_data[, eval_data, eval_metric, …]) 

This method trains the module 

parameters. 

forward(data_batch[, is_train]) 

As name implies this method 

implements the Forward 

computation. This method 

supports data batches with various 

shapes like different batch sizes or 

different image sizes. 

forward_backward(data_batch) 

It is a convenient function, as 

name implies, that calls 

both forward and backward. 

get_input_grads([merge_multi_context]) 

This method will gets the gradients 

to the inputs which is computed in 

the previous backward 

computation. 

get_outputs([merge_multi_context]) 

As name implies, this method will 

gets outputs of the previous 

forward computation. 

get_params() 
It gets the parameters especially 

those which are potentially copies 

16. Apache MXNet — Python API Module 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.fit
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
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of the actual parameters used to do 

computation on the device. 

get_states([merge_multi_context]) 

This method will get states from all 

devices 

init_optimizer([kvstore, optimizer, …]) 

This method installs and initialize 

the optimizers. It also initializes 

kvstore for distribute training. 

init_params([initializer, arg_params, …]) 

As name implies, this method will 

initialize the parameters and 

auxiliary states. 

install_monitor(mon) 

This method will install monitor on 

all executors. 

iter_predict(eval_data[, num_batch, reset, …]) 

This method will iterate over 

predictions. 

load_params(fname) 

It will, as name specifies, load 

model parameters from file. 

predict(eval_data[, num_batch, …]) 

It will run the prediction and 

collects the outputs as well.  

prepare(data_batch[, sparse_row_id_fn]) 

The operator prepares the module 

for processing a given data batch. 

save_params(fname) 

As name specifies, this function will 

save the model parameters to file. 

score(eval_data, eval_metric[, num_batch, …]) 

It runs the prediction 

on eval_data and also evaluates 

the performance according to the 

given eval_metric. 

set_params(arg_params, aux_params[, …]) 

This method will assign the 

parameter and aux state values. 

set_states([states, value]) 

This method, as name implies, sets 

value for states. 

update() 

This method updates the given 

parameters according to the 

installed optimizer. It also updates 

the gradients computed in the 

previous forward-backward batch. 

update_metric(eval_metric, labels[, pre_sliced]) 

This method, as name implies, 

evaluates and accumulates the 

evaluation metric on outputs of the 

last forward computation. 

 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.iter_predict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.load_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.predict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.score
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric
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Methods Definition 

backward([out_grads]) 

As name implies this method 

implements  

the backward computation. 

bind(data_shapes[, label_shapes, …]) 

It set up the buckets and binds the 

executor for the default bucket 

key. This method represents  

the binding for a 

BucketingModule. 

forward(data_batch[, is_train]) 

As name implies this method 

implements  

the Forward computation. This 

method  

supports data  

batches with various shapes like 

different  

batch sizes or  

different image sizes. 

get_input_grads([merge_multi_context]) 

This method will get the gradients 

to the  

inputs which is computed in the 

previous  

backward computation. 

get_outputs([merge_multi_context]) 

As name implies, this method will 

get  

outputs from the previous forward  

computation. 

get_params() 

It gets the current parameters 

especially  

those which are potentially copies 

of the  

actual parameters used to do 

computation  

on the device. 

get_states([merge_multi_context]) 

This method will get states from all 

devices. 

init_optimizer([kvstore, optimizer, …]) 

This method installs and initialize 

the  

optimizers. It also initializes 

kvstore for  

distribute training. 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
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init_params([initializer, arg_params, …]) 

As name implies, this method will 

initialize  

the parameters and auxiliary 

states. 

install_monitor(mon) 

This method will install monitor on 

all  

executors. 

load(prefix, epoch[, sym_gen, …]) 

This method will create a model 

from the  

previously saved checkpoint. 

load_dict([sym_dict, sym_gen, …]) 

This method will create a model 

from a  

dictionary (dict) mapping 

bucket_key to  

symbols. It also shares 

arg_params and aux_params. 

prepare(data_batch[, sparse_row_id_fn]) 

The operator prepares the module 

for  

processing a given data batch. 

save_checkpoint(prefix, epoch[, remove_amp_

cast]) 

This method, as name implies, 

saves the  

current progress to the checkpoint 

for all  

buckets in BucketingModule. It is  

recommended to 

use mx.callback.module_checkpoin

t as  

epoch_end_callback to save during 

training. 

set_params(arg_params, aux_params[,…]) 

As name specifies, this function will 

assign parameters and aux state 

values. 

set_states([states, value]) 

This method, as name implies, sets 

value for states. 

switch_bucket(bucket_key, data_shapes[, …]) 
It will switche to a different bucket. 

update() 

This method updates the given 

parameters according to the 

installed optimizer. It also updates 

the gradients computed in the 

previous forward-backward batch. 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load_dict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.save_checkpoint
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.switch_bucket
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
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Attributes 

Following table shows the attributes consisted in the methods of BaseModule class: 

Attributes Definition 

data_names It consists of the list of names for data required by this module. 

data_shapes 
It consists of the list of (name, shape) pairs specifying the data inputs 

to this module. 

label_shapes 
It shows the list of (name, shape) pairs specifying the label inputs to 

this module. 

output_names It consists of the list of names for the outputs of this module. 

output_shapes 
It consists of the list of (name, shape) pairs specifying the outputs of 

this module. 

symbol 
As name specified, this attribute gets the symbol associated with this 

module. 

 

data_shapes: You can refer the link available at 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for details. 

output_shapes: More information is available at 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward. 

BucketingModule(sym_gen[…]) 

It represents the Bucketingmodule class of a Module which helps to deal efficiently with 

varying length inputs. 

Methods 

Following table shows the methods consisted in BucketingModule class: 

Attributes 

Following table shows the attributes consisted in the methods of BaseModule class: 

Attributes Definition 

data_names It consists of the list of names for data required by this module. 

update_metric(eval_metric, labels[, pre_sliced]

) 

This method, as name implies, 

evaluates  

and accumulates the evaluation 

metric on outputs of the last 

forward computation. 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric
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data_shapes 
It consists of the list of (name, shape) pairs specifying the data inputs 

to this module. 

label_shapes 
It shows the list of (name, shape) pairs specifying the label inputs to 

this module. 

output_names It consists of the list of names for the outputs of this module. 

output_shapes 
It consists of the list of (name, shape) pairs specifying the outputs of 

this module. 

Symbol 
As name specified, this attribute gets the symbol associated with this 

module. 

data_shapes: You can refer the link at 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for more information. 

output_shapes: You can refer the link at 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward for more information. 

Module(symbol[,data_names, label_names,…]) 

It represents a basic module that wrap a symbol.  

Methods 

Following table shows the methods consisted in Module class: 

Methods Definition 

backward([out_grads]) 

As name implies this method 

implements the backward 

computation. 

bind(data_shapes[, label_shapes, …]) 

It binds the symbols to construct 

executors and it is necessary before 

one can perform computation with 

the module. 

borrow_optimizer(shared_module) 

As name implies, this method will 

borrow the optimizer from a shared 

module. 

forward(data_batch[, is_train]) 

As name implies this method 

implements the Forward 

computation. This method supports 

data batches with various shapes like 

different batch sizes or different 

image sizes. 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.borrow_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
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get_input_grads([merge_multi_context]) 

This method will gets the gradients 

to the inputs which is computed in 

the previous backward computation. 

get_outputs([merge_multi_context]) 

As name implies, this method will 

gets outputs of the previous forward 

computation. 

get_params() 

It gets the parameters especially 

those which are potentially copies of 

the actual parameters used to do 

computation on the device. 

get_states([merge_multi_context]) 

This method will get states from all 

devices 

init_optimizer([kvstore, optimizer, …]) 

This method installs and initialize the 

optimizers. It also initializes kvstore 

for distribute training. 

init_params([initializer, arg_params, …]) 

As name implies, this method will 

initialize the parameters and 

auxiliary states. 

install_monitor(mon) 

This method will install monitor on all 

executors. 

load(prefix, epoch[, sym_gen, …]) 

This method will create a model from 

the previously saved checkpoint. 

load_optimizer_states(fname) 

This method will load an optimizer 

i.e. the updater state from a file. 

prepare(data_batch[, sparse_row_id_fn]) 

The operator prepares the module 

for processing a given data batch. 

reshape(data_shapes[, label_shapes]) 

This method, as name implies, 

reshape the module for new input 

shapes. 

save_checkpoint(prefix, epoch[, …]) 

It saves the current progress to 

checkpoint. 

save_optimizer_states(fname) 

This method saves the optimizer or 

the updater state to a file. 

set_params(arg_params, aux_params[,…]) 

As name specifies, this function will 

assign parameters and aux state 

values. 

set_states([states, value]) 

This method, as name implies, sets 

value for states. 

update() 

This method updates the given 

parameters according to the installed 

optimizer. It also updates the 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.load_optimizer_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.reshape
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.save_checkpoint
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.save_optimizer_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
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gradients computed in the previous 

forward-backward batch. 

update_metric(eval_metric, labels[, pre_sliced]) 

This method, as name implies, 

evaluates and accumulates the 

evaluation metric on outputs of the 

last forward computation. 

Attributes 

Following table shows the attributes consisted in the methods of Module class: 

Attributes Definition 

data_names It consists of the list of names for data required by this module. 

data_shapes 
It consists of the list of (name, shape) pairs specifying the data inputs 

to this module. 

label_shapes 
It shows the list of (name, shape) pairs specifying the label inputs to 

this module. 

output_names It consists of the list of names for the outputs of this module. 

output_shapes 
It consists of the list of (name, shape) pairs specifying the outputs of 

this module. 

label_names It consists of the list of names for labels required by this module. 

data_shapes: Visit the link 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for further details. 

output_shapes: The link given herewith 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward will offer other important information. 

PythonLossModule([name,data_names,…]) 

The base of this class is mxnet.module.python_module.PythonModule. 

PythonLossModule class is a convenient module class which implements all or many of the 

module APIs as empty functions.   

Methods 

Following table shows the methods consisted in PythonLossModule class: 

Methods Definition 

backward([out_grads]) 

As name implies this method implements 

the backward computation. 

forward(data_batch[, is_train]) 

As name implies this method implements 

the Forward computation. This method 

supports data batches with various 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
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shapes like different batch sizes or 

different image sizes. 

get_input_grads([merge_multi_context]) 

This method will gets the gradients to the 

inputs which is computed in the previous 

backward computation. 

get_outputs([merge_multi_context]) 

As name implies, this method will gets 

outputs of the previous forward 

computation. 

install_monitor(mon) 

This method will install monitor on all 

executors. 

PythonModule([data_names,label_names…])  

The base of this class is mxnet.module.base_module.BaseModule. PythonModule 

class also is a convenient module class which implements all or many of the module APIs 

as empty functions.   

Methods 

Following table shows the methods consisted in PythonModule class: 

Methods Definition 

bind(data_shapes[, label_shapes, …]) 

It binds the symbols to construct 

executors and it is necessary 

before one can perform 

computation with the module. 

get_params() 

It gets the parameters especially 

those which are potentially copies 

of the actual parameters used to do 

computation on the device. 

init_optimizer([kvstore, optimizer, …]) 

This method installs and initialize 

the optimizers. It also initializes 

kvstore for distribute training. 

init_params([initializer, arg_params, …]) 

As name implies, this method will 

initialize the parameters and 

auxiliary states. 

update() 

This method updates the given 

parameters according to the 

installed optimizer. It also updates 

the gradients computed in the 

previous forward-backward batch. 

update_metric(eval_metric, labels[, pre_sliced]) 

This method, as name implies, 

evaluates and accumulates the 

evaluation metric on outputs of the 

last forward computation. 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric
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Attributes 

Following table shows the attributes consisted in the methods of PythonModule class: 

Attributes Definition 

data_names It consists of the list of names for data required by this module. 

data_shapes 
It consists of the list of (name, shape) pairs specifying the data inputs 

to this module. 

label_shapes 
It shows the list of (name, shape) pairs specifying the label inputs to 

this module. 

output_names It consists of the list of names for the outputs of this module. 

output_shapes 
It consists of the list of (name, shape) pairs specifying the outputs of 

this module. 

data_shapes: Follow the link 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for details. 

output_shapes: For more details, visit the link available at 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward. 

SequentialModule([logger]) 

The base of this class is mxnet.module.base_module.BaseModule. 

SequentialModule class also is a container module that can chain more than two 

(multiple) modules together.   

Methods 

Following table shows the methods consisted in SequentialModule class: 

Methods Definition 

add(module, **kwargs) 

This is most important function of 

this class. It adds a module to the 

chain. 

backward([out_grads]) 

As name implies this method 

implements the backward 

computation. 

bind(data_shapes[, label_shapes, …]) 

It binds the symbols to construct 

executors and it is necessary 

before one can perform 

computation with the module. 

forward(data_batch[, is_train]) 

As name implies this method 

implements the Forward 

computation. This method 

supports data batches with various 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.SequentialModule.add
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
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shapes like different batch sizes or 

different image sizes. 

get_input_grads([merge_multi_context]) 

This method will gets the gradients 

to the inputs which is computed in 

the previous backward 

computation. 

get_outputs([merge_multi_context]) 

As name implies, this method will 

gets outputs of the previous 

forward computation. 

get_params() 

It gets the parameters especially 

those which are potentially copies 

of the actual parameters used to do 

computation on the device. 

init_optimizer([kvstore, optimizer, …]) 

This method installs and initialize 

the optimizers. It also initializes 

kvstore for distribute training. 

init_params([initializer, arg_params, …]) 

As name implies, this method will 

initialize the parameters and 

auxiliary states. 

install_monitor(mon) 

This method will install monitor on 

all executors. 

update() 

This method updates the given 

parameters according to the 

installed optimizer. It also updates 

the gradients computed in the 

previous forward-backward batch. 

update_metric(eval_metric, labels[, pre_sliced]) 

This method, as name implies, 

evaluates and accumulates the 

evaluation metric on outputs of the 

last forward computation. 

Attributes 

Following table shows the attributes consisted in the methods of BaseModule class: 

Attributes Definition 

data_names It consists of the list of names for data required by this module. 

data_shapes 
It consists of the list of (name, shape) pairs specifying the data inputs 

to this module. 

label_shapes 
It shows the list of (name, shape) pairs specifying the label inputs to 

this module. 

output_names It consists of the list of names for the outputs of this module. 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric
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output_shapes 
It consists of the list of (name, shape) pairs specifying the outputs of 

this module. 

data_shapes: The link given herewith 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind will help you in understanding the attribute in much detail. 

output_shapes: Follow the link available at 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward for details. 

Implementation Examples 

In the example below, we are going create a mxnet module. 

import mxnet as mx 

input_data = mx.symbol.Variable('input_data') 

f_connected1  = mx.symbol.FullyConnected(data, name='f_connected1', 

num_hidden=128) 

activation_1 = mx.symbol.Activation(f_connected1, name='relu1', 

act_type="relu") 

f_connected2  = mx.symbol.FullyConnected(activation_1, name = 'f_connected2', 

num_hidden = 64) 

activation_2 = mx.symbol.Activation(f_connected2, name='relu2',  

act_type="relu") 

f_connected3  = mx.symbol.FullyConnected(activation_2, name='fc3', 

num_hidden=10) 

out  = mx.symbol.SoftmaxOutput(f_connected3, name = 'softmax') 

 

mod = mx.mod.Module(out) 

print(out) 

Output 

The output is mentioned below: 

<Symbol softmax> 

 

print(mod) 

Output 

The output is shown below: 

<mxnet.module.module.Module object at 0x00000123A9892F28> 

 

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
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In this example below, we will be implementing forward computation 

import mxnet as mx 

from collections import namedtuple 

Batch = namedtuple('Batch', ['data']) 

data = mx.sym.Variable('data') 

out = data * 2 

mod = mx.mod.Module(symbol=out, label_names=None) 

mod.bind(data_shapes=[('data', (1, 10))]) 

mod.init_params() 

data1 = [mx.nd.ones((1, 10))] 

mod.forward(Batch(data1)) 

print (mod.get_outputs()[0].asnumpy()) 

Output 

When you execute the above code, you should see the following output: 

[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]] 

   

     data2 = [mx.nd.ones((3, 5))] 

 

     mod.forward(Batch(data2)) 

     print (mod.get_outputs()[0].asnumpy()) 

Output 

Given below is the output of the code: 

[[2. 2. 2. 2. 2.] 

 [2. 2. 2. 2. 2.] 

 [2. 2. 2. 2. 2.]] 

 

 

 

 


