
Apache MXNet

 i

Apache MXNet

 ii

About the Tutorial

Apache MXNet is a powerful open-source deep learning software framework instrument

helping developers build, train, and deploy Deep Learning models. Past few years, from

healthcare to transportation to manufacturing and, in fact, in every aspect of our daily life,

the impact of deep learning has been widespread. Nowadays, deep learning is sought by

companies to solve some hard problems like Face recognition, object detection, Optical

Character Recognition (OCR), Speech Recognition, and Machine Translation.

Audience

This tutorial will be useful for graduates, post-graduates, and research students who either

have an interest in the field of AI, Machine Learning and Deep Learning or have it as a

part of their curriculum. The reader can be a beginner or an advanced learner.

Prerequisites

The reader must have basic knowledge about Artificial Intelligence. He/she should also be

aware about Python language and its functions. If you are new to any of these concepts,

we recommend you take up tutorials concerning these topics before you dig further into

this tutorial.

Copyright & Disclaimer

 Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Apache MXNet

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Apache MXNet — Introduction ... 1

What is MXNet? ... 1

Why Apache MXNet? .. 1

Various features .. 1

Latest version MXNet 1.6.0 ... 3

Improvements on existing features ... 3

Optimizations .. 4

2. Apache MXNet — Installing MXNet .. 5

Linux OS ... 5

Central Processing Unit (CPU) ... 7

MacOS ... 9

Central Processing Unit (CPU) ... 11

Windows OS .. 12

Install with CUDA and MKL Support .. 13

Central Processing Unit (CPU) ... 17

Installing MXNet On Cloud and Devices .. 18

Installing MXNet On Cloud .. 18

Installing MXNet on Devices .. 19

Native Build (from source) .. 20

NVIDIA Jetson Devices ... 21

Native Build (from source) .. 23

Apache MXNet

 iv

3. Apache MXNet — Toolkits and Ecosystem .. 25

ToolKits .. 25

Ecosystem .. 27

4. Apache MXNet — System Architecture ... 33

MXNet Modules... 33

User-facing Modules ... 34

System Modules .. 34

5. Apache MXNet — System Components .. 35

Execution Engine ... 35

Core Interface .. 35

Function ... 35

Context .. 36

VarHandle .. 36

Push and Wait.. 37

Operators .. 37

Operator Interface ... 38

Example for Creating an Operator .. 40

6. Apache MXNet — Unified Operator API .. 43

SimpleOp ... 43

Defining Shapes ... 43

Defining Functions ... 44

Defining Gradients ... 46

Register SimpleOp to MXNet ... 47

SimpleOp on EnvArguments .. 48

Building Tensor Operation ... 49

7. Apache MXNet — Distributed Training ... 50

Modes of Computation ... 50

Kinds of Parallelism ... 50

Apache MXNet

 v

Working of distributed training ... 51

Modes of Distributed Training ... 53

8. Apache MXNet — Python Packages .. 54

Important MXNet Python packages .. 54

Autograd .. 54

What are gradients? .. 54

How to calculate gradients? .. 55

Automatic Differentiation (autograd) ... 56

Using autograd in MXNet Gluon .. 57

9. Apache MXNet — NDArray ... 60

Handling data with NDArray .. 60

NDArray Operations .. 63

Standard Mathematical Operations .. 63

In-place Operations ... 65

NDArray Contexts .. 67

NumPy array vs. NDArray .. 67

Converting NDArray to NumPy Array .. 68

Minimising impact of blocking calls ... 69

10. Apache MXNet — Gluon ... 72

Blocks ... 72

Custom Block ... 74

Custom Layers ... 74

Hybridisation ... 76

Difference between Block and HybridBlock .. 77

Custom layer parameters .. 78

11. Apache MXNet — KVStore and Visualization .. 80

KVStore package .. 80

Data Push-In and Pull-Out ... 80

Apache MXNet

 vi

Handling Key-Value Pairs ... 83

Visualization package .. 84

12. Apache MXNet — Python API ndarray .. 86

Mxnet.ndarray ... 86

Classes ... 87

Functions and their parameters .. 87

ndarray.contrib .. 89

ndarray.image ... 92

ndarray.random ... 97

ndarray.utils .. 100

13. Apache MXNet — Python API gluon.. 103

gluon.nn ... 103

gluon.rnn ... 107

gluon.loss ... 110

gluon.parameter .. 112

gluon.trainer .. 114

gluon.data .. 115

gluon.data.vision.datasets ... 116

gluon.utils .. 118

14. Apache MXNet — Python API autograd and initializer .. 119

mxnet.autograd ... 119

mxnet.intializer .. 122

15. Apache MXNet — Python API Symbol ... 125

Mxnet.ndarray ... 125

symbol.contrib ... 129

symbol.image .. 132

symbol.random ... 134

symbol.sparse .. 137

Apache MXNet

 vii

16. Apache MXNet — Python API Module .. 140

BaseModule([logger]) .. 140

BucketingModule(sym_gen[…]) .. 144

Module(symbol[,data_names, label_names,…]) ... 145

PythonLossModule([name,data_names,…]) ... 147

PythonModule([data_names,label_names…]) .. 148

SequentialModule([logger]) .. 149

Apache MXNet

 1

This chapter highlights the features of Apache MXNet and talks about the latest version of

this deep learning software framework.

What is MXNet?

Apache MXNet is a powerful open-source deep learning software framework instrument

helping developers build, train, and deploy Deep Learning models. Past few years, from

healthcare to transportation to manufacturing and, in fact, in every aspect of our daily life,

the impact of deep learning has been widespread. Nowadays, deep learning is sought by

companies to solve some hard problems like Face recognition, object detection, Optical

Character Recognition (OCR), Speech Recognition, and Machine Translation.

That’s the reason Apache MXNet is supported by:

 Some big companies like Intel, Baidu, Microsoft, Wolfram Research, etc.

 Public cloud providers including Amazon Web Services (AWS), and Microsoft Azure

 Some big research institutes like Carnegie Mellon, MIT, the University of

Washington, and the Hong Kong University of Science & Technology.

Why Apache MXNet?

There are various deep learning platforms like Torch7, Caffe, Theano, TensorFlow, Keras,

Microsoft Cognitive Toolkit, etc. existed then you might wonder why Apache MXNet? Let’s

check out some of the reasons behind it:

 Apache MXNet solves one of the biggest issues of existing deep learning platforms.

The issue is that in order to use deep learning platforms one must need to learn

another system for a different programming flavor.

 With the help of Apache MXNet developers can exploit the full capabilities of GPUs

as well as cloud computing.

 Apache MXNet can accelerate any numerical computation and places a special

emphasis on speeding up the development and deployment of large-scale DNN

(deep neural networks).

 It provides the users the capabilities of both imperative and symbolic

programming.

Various features

If you are looking for a flexible deep learning library to quickly develop cutting-edge deep

learning research or a robust platform to push production workload, your search ends at

Apache MXNet. It is because of the following features of it:

1. Apache MXNet — Introduction

Apache MXNet

 2

Distributed Training

Whether it is multi-gpu or multi-host training with near-linear scaling efficiency, Apache

MXNet allows developers to make most out of their hardware. MXNet also support

integration with Horovod, which is an open source distributed deep learning framework

created at Uber.

For this integration, following are some of the common distributed APIs defined in

Horovod:

 horovod.broadcast()

 horovod.allgather()

 horovod.allreduce()

In this regard, MXNet offer us the following capabilities:

 Device Placement: With the help of MXNet we can easily specify each data

structure (DS).

 Automatic Differentiation: Apache MXNet automates the differentiation i.e.

derivative calculations.

 Multi-GPU training: MXNet allows us to achieve scaling efficiency with number of

available GPUs.

 Optimized Predefined Layers: We can code our own layers in MXNet as well as

the optimized the predefined layers for speed also.

Hybridization:

Apache MXNet provides its users a hybrid front-end. With the help of the Gluon Python

API it can bridge the gap between its imperative and symbolic capabilities. It can be

done by calling it’s hybridize functionality.

Faster computation

The linear operations like tens or hundreds of matrix multiplications are the computational

bottleneck for deep neural nets. To solve this bottleneck MXNet provides:

 Optimized numerical computation for GPUs

 Optimized numerical computation for distributed ecosystems

 Automation of common workflows with the help of which the standard NN can be

expressed briefly.

Language Bindings

MXNet has deep integration into high-level languages like Python and R. It also provides

support for other programming languages such as-

 Scala

 Julia

 Clojure

Apache MXNet

 3

 Java

 C/C++

 Perl

We do not need to learn any new programming language instead MXNet, combined with

hybridization feature, allows an exceptionally smooth transition from Python to

deployment in the programming language of our choice.

Latest version MXNet 1.6.0

Apache Software Foundation (ASF) has released the stable version 1.6.0 of Apache MXNet

on 21st February 2020 under Apache License 2.0. This is the last MXNet release to support

Python 2 as MXNet community voted to no longer support Python 2 in further releases.

Let us check out some of the new features this release brings for its users.

NumPy-Compatible interface

Due to its flexibility and generality, NumPy has been widely used by Machine Learning

practitioners, scientists, and students. But as we know that, these days’ hardware

accelerators like Graphical Processing Units (GPUs) have become increasingly assimilated

into various Machine Learning (ML) toolkits, the NumPy users, to take advantage of the

speed of GPUs, need to switch to new frameworks with different syntax.

With MXNet 1.6.0, Apache MXNet is moving toward a NumPy-compatible programming

experience. The new interface provides equivalent usability as well as expressiveness to

the practitioners familiar with NumPy syntax. Along with that MXNet 1.6.0 also enables

the existing Numpy system to utilize hardware accelerators like GPUs to speed-up large-

scale computations.

Integration with Apache TVM

Apache TVM, an open-source end-to-end deep learning compiler stack for hardware-

backends such as CPUs, GPUs, and specialized accelerators, aims to fill the gap between

the productivity-focused deep-learning frameworks and performance-oriented hardware

backends. With the latest release MXNet 1.6.0, users can leverage Apache(incubating)

TVM to implement high-performance operator kernels in Python programming language.

Two main advantages of this new feature are following:

 Simplifies the former C++ based development process.

 Enables sharing the same implementation across multiple hardware backend such

as CPUs, GPUs, etc.

Improvements on existing features

Apart from the above listed features of MXNet 1.6.0, it also provides some improvements

over the existing features. The improvements are as follows:

Grouping element-wise operation for GPU

As we know the performance of element-wise operations is memory-bandwidth and that

is the reason, chaining such operations may reduce overall performance. Apache MXNet

Apache MXNet

 4

1.6.0 does element-wise operation fusion, that actually generates just-in-time fused

operations as and when possible. Such element-wise operation fusion also reduces storage

needs and improve overall performance.

Simplifying common expressions

MXNet 1.6.0 eliminates the redundant expressions and simplify the common expressions.

Such enhancement also improves memory usage and total execution time.

Optimizations

MXNet 1.6.0 also provides various optimizations to existing features & operators, which

are as follows:

 Automatic Mixed Precision

 Gluon Fit API

 MKL-DNN

 Large tensor Support

 TensorRT integration

 Higher-order gradient support

 Operators

 Operator performance profiler

 ONNX import/export

 Improvements to Gluon APIs

 Improvements to Symbol APIs

 More than 100 bug fixes

Apache MXNet

 5

To get started with MXNet, the first thing we need to do, is to install it on our computer.

Apache MXNet works on pretty much all the platforms available, including Windows, Mac,

and Linux.

Linux OS

We can install MXNet on Linux OS in the following ways:

Graphical Processing Unit (GPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when

we are using GPU for processing:

By using Pip method

You can use the following command to install MXNet on your Linus OS:

pip install mxnet

Apache MXNet also offers MKL pip packages, which are much faster when running on intel

hardware. Here for example mxnet-cu101mkl means that:

 The package is built with CUDA/cuDNN

 The package is MKL-DNN enabled

 The CUDA version is 10.1

For other option you can also refer to https://pypi.org/project/mxnet/.

By using Docker

You can find the docker images with MXNet at DockerHub, which is available at

https://hub.docker.com/u/mxnet Let us check out the steps below to install MXNet by

using Docker with GPU:

Step 1: First, by following the docker installation instructions which are available at

https://docs.docker.com/engine/install/ubuntu/. We need to install Docker on our

machine.

Step 2: To enable the usage of GPUs from the docker containers, next we need to install

nvidia-docker-plugin. You can follow the installation instructions given at

https://github.com/NVIDIA/nvidia-docker/wiki.

Step 3: By using the following command, you can pull the MXNet docker image:

 $ sudo docker pull mxnet/python:gpu

2. Apache MXNet — Installing MXNet

https://pypi.org/project/mxnet/
https://hub.docker.com/u/mxnet
https://docs.docker.com/engine/install/ubuntu/
https://github.com/NVIDIA/nvidia-docker/wiki

Apache MXNet

 6

Now in order to see if mxnet/python docker image pull was successful, we can list docker

images as follows:

 $ sudo docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet

with Intel MKL-DNN. Check the commands below:

$ sudo docker pull mxnet/python:1.3.0_cpu_mkl

$ sudo docker images

From source

To build the MXNet shared library from source with GPU, first we need to set up the

environment for CUDA and cuDNN as follows:

 Download and install CUDA toolkit, here CUDA 9.2 is recommended.

 Next download cuDNN 7.1.4.

 Now we need to unzip the file. It is also required to change to the cuDNN root

directory. Also move the header and libraries to local CUDA Toolkit folder as follows:

tar xvzf cudnn-9.2-linux-x64-v7.1

sudo cp -P cuda/include/cudnn.h /usr/local/cuda/include

sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda/lib64

sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

sudo ldconfig

After setting up the environment for CUDA and cuDNN, follow the steps below to build the

MXNet shared library from source:

Step 1: First, we need to install the prerequisite packages. These dependencies are

required on Ubuntu version 16.04 or later.

sudo apt-get update

sudo apt-get install -y build-essential git ninja-build ccache libopenblas-dev

libopencv-dev cmake

Apache MXNet

 7

Step 2: In this step, we will download MXNet source and configure. First let us clone the

repository by using following command:

git clone –recursive https://github.com/apache/incubator-mxnet.git mxnet

 cd mxnet

 cp config/linux_gpu.cmake #for build with CUDA

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build

mkdir -p build && cd build

cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet

project root, you will find libmxnet.so which is required to install language

bindings(optional).

Central Processing Unit (CPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when

we are using CPU for processing:

By using Pip method

You can use the following command to install MXNet on your Linus OS:

pip install mxnet

Apache MXNet also offers MKL-DNN enabled pip packages which are much faster, when

running on intel hardware.

pip install mxnet-mkl

Apache MXNet

 8

By using Docker

You can find the docker images with MXNet at DockerHub, which is available at

https://hub.docker.com/u/mxnet. Let us check out the steps below to install MXNet by

using Docker with CPU:

Step 1: First, by following the docker installation instructions which are available at

https://docs.docker.com/engine/install/ubuntu/. We need to install Docker on our

machine.

Step 2: By using the following command, you can pull the MXNet docker image:

 $ sudo docker pull mxnet/python

Now, in order to see if mxnet/python docker image pull was successful, we can list docker

images as follows:

 $ sudo docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet

with Intel MKL-DNN.

Check the commands below:

$ sudo docker pull mxnet/python:1.3.0_cpu_mkl

$ sudo docker images

From source

 To build the MXNet shared library from source with CPU, follow the steps below:

Step 1: First, we need to install the prerequisite packages. These dependencies are

required on Ubuntu version 16.04 or later.

sudo apt-get update

sudo apt-get install -y build-essential git ninja-build ccache libopenblas-dev

libopencv-dev cmake

Step 2: In this step we will download MXNet source and configure. First let us clone the

repository by using following command:

git clone –recursive https://github.com/apache/incubator-mxnet.git mxnet

 cd mxnet

cp config/linux.cmake config.cmake

https://hub.docker.com/u/mxnet
https://docs.docker.com/engine/install/ubuntu/

Apache MXNet

 9

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build

mkdir -p build && cd build

cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet

project root, you will find libmxnet.so, which is required to install language

bindings(optional).

MacOS

We can install MXNet on MacOS in the following ways:

Graphical Processing Unit (GPU)

If you plan to build MXNet on MacOS with GPU, then there is NO Pip and Docker method

available. The only method in this case is to build it from source.

From source

To build the MXNet shared library from source with GPU, first we need to set up the

environment for CUDA and cuDNN. You need to follow the NVIDIA CUDA Installation

Guide which is available at https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-

x/index.html and cuDNN Installation Guide, which is available at

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-mac for mac

OS.

Please note that in 2019 CUDA stopped supporting macOS. In fact, future versions of

CUDA may also not support macOS.

Once you set up the environment for CUDA and cuDNN, follow the steps given below to

install MXNet from source on OS X (Mac):

Step 1: As we need some dependencies on OS x, First, we need to install the prerequisite

packages.

https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#install-mac

Apache MXNet

 10

xcode-select –-install #Install OS X Developer Tools

/usr/bin/ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)" #Install

Homebrew

brew install cmake ninja ccache opencv # Install dependencies

We can also build MXNet without OpenCV as opencv is an optional dependency.

Step 2: In this step we will download MXNet source and configure. First let us clone the

repository by using following command:

git clone –-recursive https://github.com/apache/incubator-mxnet.git mxnet

 cd mxnet

cp config/linux.cmake config.cmake

For a GPU-enabled, it is necessary to install the CUDA dependencies first because when

one tries to build a GPU-enabled build on a machine without GPU, MXNet build cannot

autodetect your GPU architecture. In such cases MXNet will target all available GPU

architectures.

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build

mkdir -p build && cd build

cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet

project root, you will find libmxnet.dylib, which is required to install language

bindings(optional).

https://raw.githubusercontent.com/Homebrew/install/master/install

Apache MXNet

 11

Central Processing Unit (CPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when

we are using CPU for processing:

By using Pip method

You can use the following command to install MXNet on your Linus OS

pip install mxnet

By using Docker

You can find the docker images with MXNet at DockerHub, which is available at

https://hub.docker.com/u/mxnet. Let us check out the steps below to install MXNet by

using Docker with CPU:

Step 1: First, by following the docker installation instructions which are available at

https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac we

need to install Docker on our machine.

Step 2: By using the following command, you can pull the MXNet docker image:

 $ docker pull mxnet/python

Now in order to see if mxnet/python docker image pull was successful, we can list docker

images as follows:

 $ docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet

with Intel MKL-DNN. Check the commands below:

$ docker pull mxnet/python:1.3.0_cpu_mkl

$ docker images

From source

Follow the steps given below to install MXNet from source on OS X (Mac):

Step 1: As we need some dependencies on OS x, first, we need to install the prerequisite

packages.

xcode-select –-install #Install OS X Developer Tools

/usr/bin/ruby -e "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)" #Install

Homebrew

https://hub.docker.com/u/mxnet
https://hub.docker.com/u/mxnet
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac
https://raw.githubusercontent.com/Homebrew/install/master/install

Apache MXNet

 12

brew install cmake ninja ccache opencv # Install dependencies

We can also build MXNet without OpenCV as opencv is an optional dependency.

Step 2: In this step we will download MXNet source and configure. First, let us clone the

repository by using following command:

git clone –-recursive https://github.com/apache/incubator-mxnet.git mxnet

 cd mxnet

cp config/linux.cmake config.cmake

Step 3: By using the following commands, you can build MXNet core shared library:

rm -rf build

mkdir -p build && cd build

cmake -GNinja ..

cmake --build .

Two important points regarding the above step is as follows:

If you want to build the Debug version, then specify the as follows:

cmake -DCMAKE_BUILD_TYPE=Debug -GNinja ..

In order to set the number of parallel compilation jobs, specify the following:

cmake --build . --parallel N

Once you successfully build MXNet core shared library, in the build folder in your MXNet

project root, you will find libmxnet.dylib, which is required to install language

bindings(optional).

Windows OS

To install MXNet on Windows, following are the prerequisites:

Minimum System Requirements

 Windows 7, 10, Server 2012 R2, or Server 2016

 Visual Studio 2015 or 2017 (any type)

 Python 2.7 or 3.6

 pip

Recommended System Requirements

 Windows 10, Server 2012 R2, or Server 2016

Apache MXNet

 13

 Visual Studio 2017

 At least one NVIDIA CUDA-enabled GPU

 MKL-enabled CPU: Intel® Xeon® processor, Intel® Core™ processor family, Intel

Atom® processor, or Intel® Xeon Phi™ processor

 Python 2.7 or 3.6

 pip

Graphical Processing Unit (GPU)

By using Pip method:

If you plan to build MXNet on Windows with NVIDIA GPUs, there are two options for

installing MXNet with CUDA support with a Python package:

Install with CUDA Support

Below are the steps with the help of which, we can setup MXNet with CUDA.

Step 1: First install Microsoft Visual Studio 2017 or Microsoft Visual Studio 2015.

Step 2: Next, download and install NVIDIA CUDA. It is recommended to use CUDA

versions 9.2 or 9.0 because some issues with CUDA 9.1 have been identified in the past.

Step 3: Now, download and install NVIDIA_CUDA_DNN.

Step 4: Finally, by using following pip command, install MXNet with CUDA:

pip install mxnet-cu92

Install with CUDA and MKL Support

Below are the steps with the help of which, we can setup MXNet with CUDA and MKL.

Step 1: First install Microsoft Visual Studio 2017 or Microsoft Visual Studio 2015.

Step 2: Next, download and install intel MKL

Step 3: Now, download and install NVIDIA CUDA.

Step 4: Now, download and install NVIDIA_CUDA_DNN.

Step 5: Finally, by using following pip command, install MXNet with MKL.

pip install mxnet-cu92mkl

From source

To build the MXNet core library from source with GPU, we have the following two options:

Apache MXNet

 14

Option 1: Build with Microsoft Visual Studio 2017

In order to build and install MXNet yourself by using Microsoft Visual Studio 2017, you

need the following dependencies.

Install/update Microsoft Visual Studio.

 If Microsoft Visual Studio is not already installed on your machine, first download

and install it.

 It will prompt about installing Git. Install it also.

 If Microsoft Visual Studio is already installed on your machine but you want to

update it then proceed to the next step to modify your installation. Here you will

be given the opportunity to update Microsoft Visual Studio as well.

Follow the instructions for opening the Visual Studio Installer available at

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-

2019 to modify Individual components.

In the Visual Studio Installer application, update as required. After that look for and

check VC++ 2017 version 15.4 v14.11 toolset and click Modify.

Now by using the following command, change the version of the Microsoft VS2017 to

v14.11:

"C:\Program Files (x86)\Microsoft Visual

Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat" -vcvars_ver=14.11

Next, you need to download and install CMake available at

https://cmake.org/download/ It is recommended to use CMake v3.12.2 which is

available at https://cmake.org/download/ because it is tested with MXNet.

Now, download and run the OpenCV package available at

https://sourceforge.net/projects/opencvlibrary/which will unzip several files. It is up to

you if you want to place them in another directory or not. Here, we will use the path

C:\utils(mkdir C:\utils) as our default path.

Next, we need to set the environment variable OpenCV_DIR to point to the OpenCV build

directory that we have just unzipped. For this open command prompt and type set

OpenCV_DIR=C:\utils\opencv\build.

One important point is that if you do not have the Intel MKL (Math Kernel Library) installed

the you can install it.

Another open source package you can use is OpenBLAS. Here for the further instructions

we are assuming that you are using OpenBLAS.

So, Download the OpenBlas package which is available at

https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-

int32.zip/download and unzip the file, rename it to OpenBLAS and put it under C:\utils.

Next, we need to set the environment variable OpenBLAS_HOME to point to the

OpenBLAS directory that contains the include and lib directories. For this open command

prompt and type set OpenBLAS_HOME=C:\utils\OpenBLAS.

https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/install/modify-visual-studio?view=vs-2019
https://cmake.org/download
https://cmake.org/download/
https://cmake.org/download/
https://sourceforge.net/projects/opencvlibrary/
https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip/download
https://sourceforge.net/projects/openblas/files/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip/download

Apache MXNet

 15

Now, download and install CUDA available at https://developer.nvidia.com/cuda-

downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=

exelocal. Note that, if you already had CUDA, then installed Microsoft VS2017, you need

to reinstall CUDA now, so that you can get the CUDA toolkit components for Microsoft

VS2017 integration.

Next, you need to download and install cuDNN.

Next, you need to download and install git which is at https://gitforwindows.org/ also.

Once you have installed all the required dependencies, follow the steps given below to

build the MXNet source code:

Step 1: Open command prompt in windows.

Step 2: Now, by using the following command, download the MXNet source code from

GitHub:

cd C:\

git clone https://github.com/apache/incubator-mxnet.git --recursive

Step 3: Next, verify the following:

DCUDNN_INCLUDE and DCUDNN_LIBRARY environment variables are pointing to

the include folder and cudnn.lib file of your CUDA installed location

C:\incubator-mxnet is the location of the source code you just cloned in the previous

step.

Step 4: Next by using the following command, create a build directory and also go to the

directory, for example:

mkdir C:\incubator-mxnet\build

cd C:\incubator-mxnet\build

Step 5: Now, by using cmake, compile the MXNet source code as follows:

cmake -G "Visual Studio 15 2017 Win64" -T cuda=9.2,host=x64 -DUSE_CUDA=1 -

DUSE_CUDNN=1 -DUSE_NVRTC=1 -DUSE_OPENCV=1 -DUSE_OPENMP=1 -DUSE_BLAS=open -

DUSE_LAPACK=1 -DUSE_DIST_KVSTORE=0 -DCUDA_ARCH_LIST=Common -DCUDA_TOOLSET=9.2 -

DCUDNN_INCLUDE=C:\cuda\include -DCUDNN_LIBRARY=C:\cuda\lib\x64\cudnn.lib

"C:\incubator-mxnet"

Step 6: Once the CMake successfully completed, use the following command to compile

the MXNet source code:

msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount

Option 2: Build with Microsoft Visual Studio 2015

In order to build and install MXNet yourself by using Microsoft Visual Studio 2015, you

need the following dependencies.

https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://gitforwindows.org/

Apache MXNet

 16

Install/update Microsoft Visual Studio 2015. The minimum requirement to build MXnet

from source is of Update 3 of Microsoft Visual Studio 2015. You can use Tools ->

Extensions and Updates... | Product Updates menu to upgrade it.

Next, you need to download and install CMake which is available at

https://cmake.org/download/. It is recommended to use CMake v3.12.2 which is at
https://cmake.org/download/, because it is tested with MXNet.

Now, download and run the OpenCV package available at

https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-

3.4.1-vc14_vc15.exe which will unzip several files. It is up to you, if you want to place

them in another directory or not.

Next, we need to set the environment variable OpenCV_DIR to point to the OpenCV

build directory that we have just unzipped. For this, open command prompt and type set

OpenCV_DIR=C:\opencv\build\x64\vc14\bin.

One important point is that if you do not have the Intel MKL (Math Kernel Library) installed

the you can install it.

Another open source package you can use is OpenBLAS. Here for the further instructions

we are assuming that you are using OpenBLAS.

So, Download the OpenBLAS package available at

https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-

Win64-int32.zip and unzip the file, rename it to OpenBLAS and put it under C:\utils.

Next, we need to set the environment variable OpenBLAS_HOME to point to the OpenBLAS

directory that contains the include and lib directories. You can find the directory

in C:\Program files (x86)\OpenBLAS\

Now, download and install CUDA, which is available at https://developer.nvidia.com/cuda-

downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=

exelocal.

Note that, if you already had CUDA, then installed Microsoft VS2015, you need to reinstall

CUDA now so that, you can get the CUDA toolkit components for Microsoft VS2017

integration.

Next, you need to download and install cuDNN.

Now, we need to Set the environment variable CUDACXX to point to the CUDA

Compiler(C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v9.1\bin\nvcc.exe for example).

Similarly, we also need to set the environment variable CUDNN_ROOT to point to

the cuDNN directory that contains the include, lib and bin directories

(C:\Downloads\cudnn-9.1-windows7-x64-v7\cuda for example).

Once you have installed all the required dependencies, follow the steps given below to

build the MXNet source code:

Step 1: First, download the MXNet source code from GitHub:

https://cmake.org/download/
https://cmake.org/download/
https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe
https://excellmedia.dl.sourceforge.net/project/opencvlibrary/opencv-win/3.4.1/opencv-3.4.1-vc14_vc15.exe
https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip
https://excellmedia.dl.sourceforge.net/project/openblas/v0.2.19/OpenBLAS-v0.2.19-Win64-int32.zip
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64&target_version=10&target_type=exelocal

Apache MXNet

 17

cd C:\

git clone https://github.com/apache/incubator-mxnet.git --recursive

Step 2: Next, use CMake to create a Visual Studio in ./build.

Step 3: Now, in Visual Studio, we need to open the solution file,.sln, and compile it.

These commands will produce a library called mxnet.dll in

the ./build/Release/ or ./build/Debug folder

Step 4: Once the CMake successfully completed, use the following command to compile

the MXNet source code

msbuild mxnet.sln /p:Configuration=Release;Platform=x64 /maxcpucount

Central Processing Unit (CPU)

Here, we will use various methods namely Pip, Docker, and Source to install MXNet when

we are using CPU for processing:

By using Pip method

If you plan to build MXNet on Windows with CPUs, there are two options for installing

MXNet using a Python package:

Install with CPUs

Use the following command to install MXNet with CPU with Python:

pip install mxnet

Install with Intel CPUs

As discussed above, MXNet has experimental support for Intel MKL as well as MKL-DNN.

Use the following command to install MXNet with Intel CPU with Python:

pip install mxnet-mkl

By using Docker

You can find the docker images with MXNet at DockerHub, available at

https://hub.docker.com/u/mxnet Let us check out the steps below, to install MXNet by

using Docker with CPU:

Step 1: First, by following the docker installation instructions which can be read at
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac. We

need to install Docker on our machine.

Step 2: By using the following command, you can pull the MXNet docker image:

 $ docker pull mxnet/python

https://hub.docker.com/u/mxnet
https://docs.docker.com/docker-for-mac/install/#install-and-run-docker-for-mac

Apache MXNet

 18

Now in order to see if mxnet/python docker image pull was successful, we can list docker

images as follows:

 $ docker images

For the fastest inference speeds with MXNet, it is recommended to use the latest MXNet

with Intel MKL-DNN.

Check the commands below:

$ docker pull mxnet/python:1.3.0_cpu_mkl

$ docker images

Installing MXNet On Cloud and Devices

This section highlights how to install Apache MXNet on Cloud and on devices. Let us begin

by learning about installing MXNet on cloud.

Installing MXNet On Cloud

You can also get Apache MXNet on several cloud providers with Graphical Processing

Unit (GPU) support. Two other kind of support you can find are as follows:

 GPU/CPU-hybrid support for use cases like scalable inference.

 Factorial GPU support with AWS Elastic Inference.

Following are cloud providers providing GPU support with different virtual machine for

Apache MXNet:

The Alibaba Console

You can create the NVIDIA GPU Cloud Virtual Machine (VM) available at
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-

console.html#launching-nv-cloud-vm-console with the Alibaba Console and use Apache

MXNet.

Amazon Web Services

It also provides GPU support and gives the following services for Apache MXNet:

Amazon SageMaker

It manages training and deployment of Apache MXNet models.

AWS Deep Learning AMI

It provides preinstalled Conda environment for both Python 2 and Python 3 with Apache

MXNet, CUDA, cuDNN, MKL-DNN, and AWS Elastic Inference.

Dynamic Training on AWS

https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console
https://docs.nvidia.com/ngc/ngc-alibaba-setup-guide/launching-nv-cloud-vm-console.html#launching-nv-cloud-vm-console

Apache MXNet

 19

It provides the training for experimental manual EC2 setup as well as for semi-automated

CloudFormation setup.

You can use NVIDIA VM available at
https://aws.amazon.com/marketplace/pp/B076K31M1S with Amazon web services.

Google Cloud Platform

Google is also providing NVIDIA GPU cloud image which is available at

https://console.cloud.google.com/marketplace/details/nvidia-ngc-

public/nvidia_gpu_cloud_image?pli=1 to work with Apache MXNet.

Microsoft Azure

Microsoft Azure Marketplace is also providing NVIDIA GPU cloud image available at

https://azuremarketplace.microsoft.com/en-

us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview to work with Apache

MXNet.

Oracle Cloud

Oracle is also providing NVIDIA GPU cloud image available at

https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/References/ngcimage.htm to

work with Apache MXNet.

Central Processing Unit (CPU)

Apache MXNet works on every cloud provider’s CPU-only instance. There are various

methods to install such as:

 Python pip install instructions.

 Docker instructions.

 Preinstalled option like Amazon Web Services which provides AWS Deep Learning

AMI (having preinstalled Conda environment for both Python 2 and Python 3 with

MXNet and MKL-DNN).

Installing MXNet on Devices

Let us learn how to install MXNet on devices.

Raspberry Pi

You can also run Apache MXNet on Raspberry Pi 3B devices as MXNet also support

Respbian ARM based OS. In order to run MXNet smoothly on the Raspberry Pi3, it is

recommended to have a device that has more than 1 GB of RAM and a SD card with at

least 4GB of free space.

Following are the ways with the help of which you can build MXNet for the Raspberry Pi

and install the Python bindings for the library as well:

https://aws.amazon.com/marketplace/pp/B076K31M1S
https://console.cloud.google.com/marketplace/details/nvidia-ngc-public/nvidia_gpu_cloud_image?pli=1
https://console.cloud.google.com/marketplace/details/nvidia-ngc-public/nvidia_gpu_cloud_image?pli=1
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/nvidia.ngc_azure_17_11?tab=Overview
https://docs.cloud.oracle.com/en-us/iaas/Content/Compute/References/ngcimage.htm

Apache MXNet

 20

Quick installation

The pre-built Python wheel can be used on a Raspberry Pi 3B with Stretch for quick

installation. One of the important issues with this method is that, we need to install several

dependencies to get Apache MXNet to work.

Docker installation

You can follow the docker installation instructions, which is available at

https://docs.docker.com/engine/install/ubuntu/ to install Docker on your machine. For

this purpose, we can install and use Community Edition (CE) also.

Native Build (from source)

In order to install MXNet from source, we need to follow the following two steps:

Step 1

Build the shared library from the Apache MXNet C++ source code

To build the shared library on Raspberry version Wheezy and later, we need the following

dependencies:

 Git: It is required to pull code from GitHub.

 Libblas: It is required for linear algebraic operations.

 Libopencv: It is required for computer vision related operations. However, it is

optional if you would like to save your RAM and Disk Space.

 C++ Compiler: It is required to compiles and builds MXNet source code. Following

are the supported compilers that supports C++ 11:

 G++ (4.8 or later version)

 Clang(3.9-6)

Use the following commands to install the above-mentioned dependencies:

sudo apt-get update

sudo apt-get -y install git cmake ninja-build build-essential g++-4.9 c++-4.9

liblapack*

libblas* libopencv*

libopenblas* python3-dev python-dev virtualenv

Next, we need to clone the MXNet source code repository. For this use the following git

command in your home directory:

git clone https://github.com/apache/incubator-mxnet.git --recursive

cd incubator-mxnet

Now, with the help of following commands, build the shared library:

https://mxnet-public.s3.amazonaws.com/install/raspbian/mxnet-1.5.0-py2.py3-none-any.whl
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Apache MXNet

 21

mkdir -p build && cd build

cmake \

-DUSE_SSE=OFF \

-DUSE_CUDA=OFF \

-DUSE_OPENCV=ON \

-DUSE_OPENMP=ON \

-DUSE_MKL_IF_AVAILABLE=OFF \

-DUSE_SIGNAL_HANDLER=ON \

-DCMAKE_BUILD_TYPE=Release \

-GNinja ..

ninja -j$(nproc)

Once you execute the above commands, it will start the build process which will take

couple of hours to finish. You will get a file named libmxnet.so in the build directory.

Step 2

Install the supported language-specific packages for Apache MXNet

In this step, we will install MXNet Pythin bindings. To do so, we need to run the following

command in the MXNet directory:

cd python

pip install --upgrade pip

pip install -e .

Alternatively, with the following command, you can also create a whl package installable

with pip:

ci/docker/runtime_functions.sh build_wheel python/ $(realpath build)

NVIDIA Jetson Devices

You can also run Apache MXNet on NVIDIA Jetson Devices, such as TX2 or Nano as MXNet

also support the Ubuntu Arch64 based OS. In order to run, MXNet smoothly on the NVIDIA

Jetson Devices, it is necessary to have CUDA installed on your Jetson device.

Following are the ways with the help of which you can build MXNet for NVIDIA Jetson

devices:

 By using a Jetson MXNet pip wheel for Python development

 From source

But, before building MXNet from any of the above-mentioned ways, you need to install

following dependencies on your Jetson devices:

Apache MXNet

 22

Python Dependencies

In order to use the Python API, we need the following dependencies:

sudo apt update

sudo apt -y install \

 build-essential \

 git \

 graphviz \

 libatlas-base-dev \

 libopencv-dev \

 python-pip

sudo pip install --upgrade \

 pip \

 setuptools

sudo pip install \

 graphviz==0.8.4 \

 jupyter \

 numpy==1.15.2

Clone the MXNet source code repository

By using the following git command in your home directory, clone the MXNet source code

repository:

git clone --recursive https://github.com/apache/incubator-mxnet.git mxnet

Setup environment variables

Add the following in your .profile file in your home directory:

export PATH=/usr/local/cuda/bin:$PATH

export MXNET_HOME=$HOME/mxnet/

export PYTHONPATH=$MXNET_HOME/python:$PYTHONPATH

Now, apply the change immediately with the following command:

Apache MXNet

 23

source .profile

Configure CUDA

Before configuring CUDA, with nvcc, you need to check what version of CUDA is running:

nvcc --version

Suppose, if more than one CUDA version is installed on your device or computer and you

want to switch CUDA versions then, use the following and replace the symbolic link to the

version you want:

sudo rm /usr/local/cuda

sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda

The above command will switch to CUDA 10.0, which is preinstalled on NVIDIA Jetson

device Nano.

Once you done with the above-mentioned prerequisites, you can now install MXNet on

NVIDIA Jetson Devices. So, let us understand the ways with the help of which you can

install MXNet:

By using a Jetson MXNet pip wheel for Python development: If you want to use a

prepared Python wheel then download the following to your Jetson and run it:

 MXNet 1.4.0 (for Python 3) available at

https://docs.docker.com/engine/install/ubuntu/

 MXNet 1.4.0 (for Python 2) available at

https://docs.docker.com/engine/install/ubuntu/

Native Build (from source)

In order to install MXNet from source, we need to follow the following two steps:

Step 1

Build the shared library from the Apache MXNet C++ source code

To build the shared library from the Apache MXNet C++ source code, you can either use

Docker method or do it manually:

Docker method

In this method, you first need to install Docker and able to run it without sudo (which is

also explained in previous steps). Once done, run the following to execute cross-

compilation via Docker:

$MXNET_HOME/ci/build.py -p jetson

Manual

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Apache MXNet

 24

In this method, you need to edit the Makefile (with below command) to install the MXNet

with CUDA bindings to leverage the Graphical Processing units (GPU) on NVIDIA Jetson

devices:

cp $MXNET_HOME/make/crosscompile.jetson.mk config.mk

After editing the Makefile, you need to edit config.mk file to make some additional

changes for the NVIDIA Jetson device.

For this, update the following settings:

 Update the CUDA path: USE_CUDA_PATH = /usr/local/cuda

 Add -gencode arch=compute-63, code=sm_62 to the CUDA_ARCH setting.

 Update the NVCC settings: NVCCFLAGS := -m64

 Turn on OpenCV: USE_OPENCV = 1

Now to ensure that the MXNet builds with Pascal’s hardware level low precision

acceleration, we need to edit the Mshadow Makefile as follow:

MSHADOW_CFLAGS += -DMSHADOW_USE_PASCAL=1

Finally, with the help of following command you can build the complete Apache MXNet

library:

cd $MXNET_HOME

make -j $(nproc)

Once you execute the above commands, it will start the build process which will take

couple of hours to finish. You will get a file named libmxnet.so in the mxnet/lib

directory.

Step 2

Install the Apache MXNet Python Bindings

In this step, we will install MXNet Python bindings. To do so we need to run the following

command in the MXNet directory:

cd $MXNET_HOME/python

sudo pip install -e .

Once done with above steps, you are now ready to run MXNet on your NVIDIA Jetson

devices TX2 or Nano. It can be verified with the following command:

import mxnet

mxnet.__version__

It will return the version number if everything is properly working.

Apache MXNet

 25

To support the research and development of Deep Learning applications across many

fields, Apache MXNet provides us a rich ecosystem of toolkits, libraries and many more.

Let us explore them:

ToolKits

Following are some of the most used and important toolkits provided by MXNet:

GluonCV

As name implies GluonCV is a Gluon toolkit for computer vision powered by MXNet. It

provides implementation of state-of-the-art DL (Deep Learning) algorithms in computer

vision (CV). With the help of GluonCV toolkit engineers, researchers, and students can

validate new ideas and learn CV easily.

Given below are some of the features of GluonCV:

 It trains scripts for reproducing state-of-the-art results reported in latest research.

 More than 170+ high quality pretrained models.

 Embrace flexible development pattern.

 GluonCV is easy to optimize. We can deploy it without retaining heavy weight DL

framework.

 It provides carefully designed APIs that greatly lessen the implementation intricacy.

 Community support.

 Easy to understand implementations.

Following are the supported applications by GluonCV toolkit:

 Image Classification

 Object Detection

 Semantic Segmentation

 Instance Segmentation

 Pose Estimation

 Video Action Recognition

We can install GluonCV by using pip as follows:

pip install --upgrade mxnet gluoncv

3. Apache MXNet — Toolkits and Ecosystem

https://pip.pypa.io/en/stable/installing/

Apache MXNet

 26

GluonNLP

As name implies GluonNLP is a Gluon toolkit for Natural Language Processing (NLP)

powered by MXNet. It provides implementation of state-of-the-art DL (Deep Learning)

models in NLP.

With the help of GluonNLP toolkit engineers, researchers, and students can build blocks

for text data pipelines and models. Based on these models, they can quickly prototype the

research ideas and product.

Given below are some of the features of GluonNLP:

 It trains scripts for reproducing state-of-the-art results reported in latest research.

 Set of pretrained models for common NLP tasks.

 It provides carefully designed APIs that greatly lessen the implementation intricacy.

 Community support.

 It also provides tutorials to help you get started on new NLP tasks.

Following are the NLP tasks we can implement with GluonNLP toolkit:

 Word Embedding

 Language Model

 Machine Translation

 Text Classification

 Sentiment Analysis

 Natural Language Inference

 Text Generation

 Dependency Parsing

 Named Entity Recognition

 Intent Classification and Slot Labeling

We can install GluonNLP by using pip as follows:

pip install --upgrade mxnet gluonnlp

GluonTS

As name implies GluonTS is a Gluon toolkit for Probabilistic Time Series Modeling powered

by MXNet.

It provides the following features:

 State-of-the-art (SOTA) deep learning models ready to be trained.

 The utilities for loading as well as iterating over time-series datasets.

 Building blocks to define your own model.

With the help of GluonTS toolkit engineers, researchers, and students can train and

evaluate any of the built-in models on their own data, quickly experiment with different

solutions, and come up with a solution for their time series tasks.

https://pip.pypa.io/en/stable/installing/

Apache MXNet

 27

They can also use the provided abstractions and building blocks to create custom time

series models, and rapidly benchmark them against baseline algorithms.

We can install GluonTS by using pip as follows:

pip install gluonts

GluonFR

As name implies, it is an Apache MXNet Gluon toolkit for FR (Face Recognition). It provides

the following features:

 State-of-the-art (SOTA) deep learning models in face recognition.

 The implementation of SoftmaxCrossEntropyLoss, ArcLoss, TripletLoss, RingLoss,

CosLoss/AMsoftmax, L2-Softmax, A-Softmax, CenterLoss, ContrastiveLoss, and

LGM Loss, etc.

In order to install Gluon Face, we need Python 3.5 or later. We also first need to install

GluonCV and MXNet first as follows:

pip install gluoncv --pre

pip install mxnet-mkl --pre --upgrade

pip install mxnet-cuXXmkl --pre –upgrade # if cuda XX is installed

Once you installed the dependencies, you can use the following command to install

GluonFR:

 From Source

pip install git+https://github.com/THUFutureLab/gluon-face.git@master

 Pip

pip install gluonfr

Ecosystem

Now let us explore MXNet’s rich libraries, packages, and frameworks:

Coach RL

Coach, a Python Reinforcement Learning (RL) framework created by Intel AI lab. It enables

easy experimentation with State-of-the-art RL algorithms. Coach RL supports Apache

MXNet as a back end and allows simple integration of new environment to solve.

In order to extend and reuse existing components easily, Coach RL very well decoupled

the basic reinforcement learning components such as algorithms, environments, NN

architectures, exploration policies.

Following are the agents and supported algorithms for Coach RL framework:

https://pip.pypa.io/en/stable/installing/

Apache MXNet

 28

Value Optimization Agents

 Deep Q Network (DQN)

 Double Deep Q Network (DDQN)

 Dueling Q Network

 Mixed Monte Carlo (MMC)

 Persistent Advantage Learning (PAL)

 Categorical Deep Q Network (C51)

 Quantile Regression Deep Q Network (QR-DQN)

 N-Step Q Learning

 Neural Episodic Control (NEC)

 Normalized Advantage Functions (NAF)

 Rainbow

Policy Optimization Agents

 Policy Gradients (PG)

 Asynchronous Advantage Actor-Critic (A3C)

 Deep Deterministic Policy Gradients (DDPG)

 Proximal Policy Optimization (PPO)

 Clipped Proximal Policy Optimization (CPPO)

 Generalized Advantage Estimation (GAE)

 Sample Efficient Actor-Critic with Experience Replay (ACER)

 Soft Actor-Critic (SAC)

 Twin Delayed Deep Deterministic Policy Gradient (TD3)

General Agents

 Direct Future Prediction (DFP)

Imitation Learning Agents

 Behavioral Cloning (BC)

 Conditional Imitation Learning

Hierarchical Reinforcement Learning Agents

 Hierarchical Actor Critic (HAC)

Deep Graph Library

Deep Graph Library (DGL), developed by NYU and AWS teams, Shanghai, is a Python

package that provides easy implementations of Graph Neural Networks (GNNs) on top of

MXNet. It also provides easy implementation of GNNs on top of other existing major deep

learning libraries like PyTorch, Gluon, etc.

Apache MXNet

 29

Deep Graph Library is a free software. It is available on all Linux distributions later than

Ubuntu 16.04, macOS X, and Windows 7 or later. It also requires the Python 3.5 version

or later.

Following are the features of DGL:

No Migration cost: There is no migration cost for using DGL as it is built on top of popular

exiting DL frameworks.

Message Passing: DGL provides message passing and it has versatile control over it. The

message passing ranges from low-level operations such as sending along selected edges

to high-level control such as graph-wide feature updates.

Smooth Learning Curve: It is quite easy to learn and use DGL as the powerful user-

defined functions are flexible as well as easy to use.

Transparent Speed Optimization: DGL provides transparent speed optimization by

doing automatic batching of computations and sparse matrix multiplication.

High performance: In order to achieve maximum efficiency, DGL automatically batches

DNN (deep neural networks) training on one or many graphs together.

Easy & friendly interface: DGL provides us easy & friendly interfaces for edge feature

access as well as graph structure manipulation.

InsightFace

InsightFace, a Deep Learning Toolkit for Face Analysis that provides implementation of

SOTA (state-of-the-art) face analysis algorithm in computer vision powered by MXNet. It

provides:

 High-quality large set of pre-trained models.

 State-of-the-art (SOTA) training scripts.

 InsightFace is easy to optimize. We can deploy it without retaining heavy weight

DL framework.

 It provides carefully designed APIs that greatly lessen the implementation intricacy.

 Building blocks to define your own model.

We can install InsightFace by using pip as follows:

pip install --upgrade insightface

Please note that before installing InsightFace, please install the correct MXNet package

according to your system configuration.

Keras-MXNet

As we know that Keras is a high-level Neural Network (NN) API written in Python, Keras-

MXNet provides us a backend support for the Keras. It can run on top of high performance

and scalable Apache MXNet DL framework.

The features of Keras-MXNet are mentioned below:

https://pip.pypa.io/en/stable/installing/

Apache MXNet

 30

 Allows users for easy, smooth, and fast prototyping. It all happens through user

friendliness, modularity, and extensibility.

 Supports both CNN (Convolutional Neural Networks) and RNN (Recurrent Neural

Networks) as well as the combination of both also.

 Runs flawlessly on both Central Processing Unit (CPU) and Graphical Processing

Unit (GPU).

 Can run on one or multi GPU.

In order to work with this backend, you first need to install keras-mxnet as follows:

pip install keras-mxnet

Now, if you are using GPUs then install MXNet with CUDA 9 support as follows:

pip install mxnet-cu90

But if you are using CPU-only then install basic MXNet as follows:

pip install mxnet

MXBoard

MXBoard is logging tool, written in Python, that is used to record MXNet data frames and

display in TensorBoard. In other words, the MXBoard is meant to follow the tensorboard-

pytorch API. It supports most of the data types in TensorBoard.

Some of them are mentioned below:

 Graph

 Scalar

 Histogram

 Embedding

 Image

 Text

 Audio

 Precision-Recall Curve

MXFusion

MXFusion is a modular probabilistic programming library with deep learning. MXFusion

allows us to fully exploited modularity, which is a key feature of deep learning libraries,

for probabilistic programming. It is simple to use and provides the users a convenient

interface for designing probabilistic models and applying them to the real-world problems.

MXFusion is verified on Python version 3.4 and more on MacOS and Linux OS. In order to

install MXFusion, we need to first install the following dependencies:

Apache MXNet

 31

 MXNet >= 1.3

 Networkx >= 2.1

With the help of following pip command, you can install MXFusion:

pip install mxfusion

TVM

Apache TVM, an open-source end-to-end deep learning compiler stack for hardware-

backends such as CPUs, GPUs, and specialized accelerators, aims to fill the gap between

the productivity-focused deep-learning frameworks and performance-oriented hardware

backends. With the latest release MXNet 1.6.0, users can leverage Apache(incubating)

TVM to implement high-performance operator kernels in Python programming language.

Apache TVM actually started as a research project at the SAMPL group of Paul G. Allen

School of Computer Science & Engineering, University of Washington and now it is an

effort undergoing incubation at The Apache Software Foundation (ASF) which is driven by

an OSC (open source community) that involves multiple industry as well as academic

institutions under the Apache way.

Following are the main features of Apache(incubating) TVM:

 Simplifies the former C++ based development process.

 Enables sharing the same implementation across multiple hardware backends such

as CPUs, GPUs, etc.

 TVM provides compilation of DL models in various frameworks such as Kears,

MXNet, PyTorch, Tensorflow, CoreML, DarkNet into minimum deployable modules

on diverse hardware backends.

 It also provides us the infrastructure to automatically generate and optimize tensor

operators with better performance.

XFer

Xfer, a transfer learning framework, is written in Python. It basically takes an MXNet model

and train a meta-model or modifies the model for a new target dataset as well.

In simple words, Xfer is a Python library that allows users to quick and easy transfer of

knowledge stored in DNN (deep neural networks).

Xfer can be used:

 For the classification of data of arbitrary numeric format.

 To the common cases of images or text data.

 As a pipeline that spams from extracting features to training a repurposer (an

object that performs classification in the target task).

Following are the features of Xfer:

 Resource efficiency

https://sampl.cs.washington.edu/

Apache MXNet

 32

 Data efficiency

 Easy access to neural networks

 Uncertainty modeling

 Rapid prototyping

 Utilities for feature extraction from NN

Apache MXNet

 33

This chapter will help you in understanding about the MXNet system architecture. Let us

begin by learning about the MXNet Modules.

MXNet Modules

The diagram below is the MXNet system architecture and it shows the major modules and

components of MXNet modules and their interaction.

In the above diagram:

 The modules in blue color boxes are User Facing Modules.

 The modules in green color boxes are System Modules.

 Solid arrow represents high dependency, i.e. heavily rely on the interface.

 Dotted arrow represents light dependency, i.e. Used data structure for convenience

and interface consistency. In fact, it can be replaced by the alternatives.

Let us discuss more about user facing and system modules.

4. Apache MXNet — System Architecture

KVStore

(mxnet:KVStore)

NDArray

(mxnet:NDArray)

Storage Allocator

(mxnet:Storage)

Data Loading (IO)

(mxnet:Iterator)

Symbolic Execution

(mxnet::Executor)

Runtime

Dependency

Engine

(mxnet:Engine)

Symbolic

Construction

(mxnet::Symbol)

Resource Manager

(mxnet::ResourceManage

r)

Operators

(mxnet::Operator)

Apache MXNet

 34

User-facing Modules

The user-facing modules are as follows:

 NDArray: It provides flexible imperative programs for Apache MXNet. They are

dynamic and asynchronous n-dimensional arrays.

 KVStore: It acts as interface for efficient parameter synchronization. In KVStore,

KV stands for Key-Value. So, it a key-value store interface.

 Data Loading (IO): This user facing module is used for efficient distributed data

loading and augmentation.

 Symbol Execution: It is a static symbolic graph executor. It provides efficient

symbolic graph execution and optimization.

 Symbol Construction: This user facing module provides user a way to construct

a computation graph i.e. net configuration.

System Modules

The system modules are as follows:

 Storage Allocator: This system module, as name suggests, allocates and recycle

memory blocks efficiently on host i.e. CPU and different devices i.e. GPUs.

 Runtime Dependency Engine: Runtime dependency engine module schedules as

well as executes the operations as per their read/write dependency.

 Resource Manager: Resource Manager (RM) system module manages global

resources like the random number generator and temporal space.

 Operator: Operator system module consists of all the operators that define static

forward and gradient calculation i.e. backpropagation.

Apache MXNet

 35

Here, the system components in Apache MXNet are explained in detail. First, we will study

about the execution engine in MXNet.

Execution Engine

Apache MXNet’s execution engine is very versatile. We can use it for deep learning as well

as any domain-specific problem: execute a bunch of functions following their

dependencies. It is designed in such a way that the functions with dependencies are

serialized whereas, the functions with no dependencies can be executed in parallel.

Core Interface

The API given below is the core interface for Apache MXNet’s execution engine:

virtual void PushSync(Fn exec_fun, Context exec_ctx,

 std::vector<VarHandle> const& const_vars,

 std::vector<VarHandle> const& mutate_vars) = 0;

The above API has the following:

 exec_fun: The core interface API of MXNet allows us to push the function named

exec_fun, along with its context information and dependencies, to the execution

engine.

 exec_ctx: The context information in which the above-mentioned function

exec_fun should be executed.

 const_vars: These are the variables that the function reads from.

 mutate_vars: These are the variables that are to be modified.

The execution engine provides its user the guarantee that the execution of any two

functions that modify a common variable is serialized in their push order.

Function

Following is the function type of the execution engine of Apache MXNet:

using Fn = std::function<void(RunContext)>;

5. Apache MXNet — System Components

Apache MXNet

 36

In the above function, RunContext contains the runtime information. The runtime

information should be determined by the execution engine. The syntax of RunContext is

as follows:

 struct RunContext {

 // stream pointer which could be safely cast to

 // cudaStream_t* type

 void *stream;

 };

Below are given some important points about execution engine’s functions:

 All the functions are executed by MXNet’s execution engine’s internal threads.

 It is not good to push blocking the function to the execution engine because with

that the function will occupy the execution thread and will also reduce the total

throughput.

 For this MXNet provides another asynchronous function as follows:

using Callback = std::function<void()>;

 using AsyncFn = std::function<void(RunContext, Callback)>;

 In this AsyncFn function we can pass the heavy part of our threads, but the

execution engine does not consider the function finished until we call the callback

function.

Context

In Context, we can specify the context of the function to be executed within. This usually

includes the following:

 Whether the function should be run on a CPU or a GPU.

 If we specify GPU in the Context, then which GPU to use.

 There is a huge difference between Context and RunContext. Context have the

device type and device id, whereas RunContext have the information that can be

decided only during runtime.

VarHandle

VarHandle, used to specify the dependencies of functions, is like a token (especially

provided by execution engine) we can use to represents the external resources the

function can modify or use.

But the question arises, why we need to use VarHandle? It is because, the Apache MXNet

engine is designed to decoupled from other MXNet modules.

Following are some important points about VarHandle:

Apache MXNet

 37

 It is lightweight so to create, delete, or copying a variable incurs little operating

cost.

 We need to specify the immutable variables i.e. the variables that will be used in

the const_vars.

 We need to specify the mutable variables i.e. the variables that will be modified in

the mutate_vars.

 The rule used by the execution engine to resolve the dependencies among functions

is that the execution of any two functions when one of them modifies at least one

common variable is serialized in their push order.

 For creating a new variable, we can use the NewVar() API.

 For deleting a variable, we can use the PushDelete API.

Let us understand its working with a simple example:

Suppose if we have two functions namely F1 and F2 and they both mutate the variable

namely V2. In that case, F2 is guaranteed to be executed after F1 if F2 is pushed after F1.

On the other side, if F1 and F2 both use V2 then their actual execution order could be

random.

Push and Wait

Push and wait are two more useful API of execution engine.

Following are two important features of Push API:

 All the Push APIs are asynchronous which means that the API call immediately

returns regardless of whether the pushed function is finished or not.

 Push API is not thread safe which means that only one thread should make engine

API calls at a time.

Now if we talk about Wait API, following points represent it:

 If a user wants to wait for a specific function to be finished, he/she should include

a callback function in the closure. Once included, call the function at the end of the

function.

 On the other hand, if a user wants to wait for all functions that involves a certain

variable to finish, he/she should use WaitForVar(var) API.

 If someone wants to wait for all the pushed functions to finish, then use the

WaitForAll () API.

 Used to specify the dependencies of functions, is like a token.

Operators

Operator in Apache MXNet is a class that contains actual computation logic as well as

auxiliary information and aid the system in performing optimisation.

Apache MXNet

 38

Operator Interface

Forward is the core operator interface whose syntax is as follows:

virtual void Forward(const OpContext &ctx,

 const std::vector<TBlob> &in_data,

 const std::vector<OpReqType> &req,

 const std::vector<TBlob> &out_data,

 const std::vector<TBlob> &aux_states) = 0;

The structure of OpContext, defined in Forward() is as follows:

 struct OpContext {

 int is_train;

 RunContext run_ctx;

 std::vector<Resource> requested;

 }

The OpContext describes the state of operator (whether in the train or test phase), which

device the operator should be run on and also the requested resources. two more useful

API of execution engine.

From the above Forward core interface, we can understand the requested resources as

follows:

 in_data and out_data represent the input and output tensors.

 req denotes how the result of computation are written into the out_data.

The OpReqType can be defined as:

enum OpReqType {

 kNullOp,

 kWriteTo,

 kWriteInplace,

 kAddTo

 };

As like Forward operator, we can optionally implement the Backward interface as

follows:

virtual void Backward(const OpContext &ctx,

 const std::vector<TBlob> &out_grad,

 const std::vector<TBlob> &in_data,

 const std::vector<TBlob> &out_data,

Apache MXNet

 39

 const std::vector<OpReqType> &req,

 const std::vector<TBlob> &in_grad,

 const std::vector<TBlob> &aux_states);

Various tasks

Operator interface allows the users to do the following tasks:

 User can specify in-place updates and can reduce memory allocation cost

 In order to make it cleaner, the user can hide some internal arguments from

Python.

 User can define the relationship among the tensors and output tensors.

 To perform computation, the user can acquire additional temporary space from the

system.

Operator Property

As we are aware that in Convolutional neural network (CNN), one convolution has several

implementations. To achieve the best performance from them, we might want to switch

among those several convolutions.

That is the reason, Apache MXNet separate the operator semantic interface from the

implementation interface. This separation is done in the form of OperatorProperty class

which consists of the following:

InferShape: The InferShape interface has two purposes as given below:

 First purpose is to tell the system the size of each input and output tensor so that

the space can be allocated before Forward and Backward call.

 Second purpose is to perform a size check to make sure that there is no error

before running.

 The syntax is given below:

virtual bool InferShape(mxnet::ShapeVector *in_shape,

 mxnet::ShapeVector *out_shape,

 mxnet::ShapeVector *aux_shape) const = 0;

Apache MXNet

 40

Request Resource: What if your system can manage the computation workspace for

operations like cudnnConvolutionForward? Your system can perform optimizations

such as reuse the space and many more. Here, MXNet easily achieve this with the help of

following two interfaces:

virtual std::vector<ResourceRequest> ForwardResource(

 const mxnet::ShapeVector &in_shape) const;

 virtual std::vector<ResourceRequest> BackwardResource(

 const mxnet::ShapeVector &in_shape) const;

But, what if the ForwardResource and BackwardResource return non-empty arrays?

In that case, the system offers corresponding resources through ctx parameter in the

Forward and Backward interface of Operator.

Backward dependency: Apache MXNet has following two different operator signatures

to deal with backward dependency:

void FullyConnectedForward(TBlob weight, TBlob in_data, TBlob out_data);

 void FullyConnectedBackward(TBlob weight, TBlob in_data, TBlob

out_grad, TBlob in_grad);

 void PoolingForward(TBlob in_data, TBlob out_data);

 void PoolingBackward(TBlob in_data, TBlob out_data, TBlob out_grad,

TBlob in_grad);

Here, the two important points to note:

 The out_data in FullyConnectedForward is not used by FullyConnectedBackward,

and

 PoolingBackward requires all the arguments of PoolingForward.

That is why for FullyConnectedForward, the out_data tensor once consumed could be

safely freed because the backward function will not need it. With the help of this system

got a to collect some tensors as garbage as early as possible.

In place Option: Apache MXNet provides another interface to the users to save the cost

of memory allocation. The interface is appropriate for element-wise operations in which

both input and output tensors have the same shape.

Following is the syntax for specifying the in-place update:

Example for Creating an Operator

With the help of OperatorProperty we can create an operator. To do so, follow the steps
given below:

 virtual std::vector<std::pair<int, void*>>

ElewiseOpProperty::ForwardInplaceOption(

Apache MXNet

 41

 const std::vector<int> &in_data,

 const std::vector<void*> &out_data) const {

 return { {in_data[0], out_data[0]} };

 }

 virtual std::vector<std::pair<int, void*>>

ElewiseOpProperty::BackwardInplaceOption(

 const std::vector<int> &out_grad,

 const std::vector<int> &in_data,

 const std::vector<int> &out_data,

 const std::vector<void*> &in_grad) const {

 return { {out_grad[0], in_grad[0]} }

 }

Step 1

Create Operator

First implement the following interface in OperatorProperty:

 virtual Operator* CreateOperator(Context ctx) const = 0;

The example is given below:

 class ConvolutionOp {

 public:

 void Forward(...) { ... }

 void Backward(...) { ... }

 };

 class ConvolutionOpProperty : public OperatorProperty {

 public:

 Operator* CreateOperator(Context ctx) const {

 return new ConvolutionOp;

 }

 };

Step 2

Parameterize Operator

If you are going to implement a convolution operator, it is mandatory to know the kernel

size, the stride size, padding size, and so on. Why, because these parameters should be

passed to the operator before calling any Forward or backward interface.

For this, we need to define a ConvolutionParam structure as below:

Apache MXNet

 42

#include <dmlc/parameter.h>

 struct ConvolutionParam : public dmlc::Parameter<ConvolutionParam> {

 mxnet::TShape kernel, stride, pad;

 uint32_t num_filter, num_group, workspace;

 bool no_bias;

 };

Now, we need to put this in ConvolutionOpProperty and pass it to the operator as

follows:

class ConvolutionOp {

 public:

 ConvolutionOp(ConvolutionParam p): param_(p) {}

 void Forward(...) { ... }

 void Backward(...) { ... }

 private:

 ConvolutionParam param_;

 };

 class ConvolutionOpProperty : public OperatorProperty {

 public:

 void Init(const vector<pair<string, string>& kwargs) {

 // initialize param_ using kwargs

 }

 Operator* CreateOperator(Context ctx) const {

 return new ConvolutionOp(param_);

 }

 private:

 ConvolutionParam param_;

 };

Step 3

Register the Operator Property Class and the Parameter Class to Apache MXNet

At last, we need to register the Operator Property Class and the Parameter Class to MXNet.

It can be done with the help of following macros:

DMLC_REGISTER_PARAMETER(ConvolutionParam);

 MXNET_REGISTER_OP_PROPERTY(Convolution, ConvolutionOpProperty);

In the above macro, the first argument is the name string and the second is the property

class name.

Apache MXNet

 43

This chapter provides information about the unified operator application programming

interface (API) in Apache MXNet.

SimpleOp

SimpleOp is a new unified operator API which unifies different invoking processes. Once

invoked, it returns to the fundamental elements of operators. The unified operator is

specially designed for unary as well as binary operations. It is because most of the

mathematical operators attend to one or two operands and more operands make the

optimization, related to dependency, useful.

We will be understanding its SimpleOp unified operator working with the help of an

example. In this example, we will be creating an operator functioning as a smooth l1

loss, which is a mixture of l1 and l2 loss. We can define and write the loss as given below:

 loss = outside_weight .* f(inside_weight .* (data - label))

 grad = outside_weight .* inside_weight .* f'(inside_weight .* (data -

label))

Here, in above example,

 .* stands for element-wise multiplication

 f, f’ is the smooth l1 loss function which we are assuming is in mshadow.

It looks impossible to implement this particular loss as a unary or binary operator but

MXNet provides its users automatic differentiation in symbolic execution which simplifies

the loss to f and f’ directly. That’s why we can certainly implement this particular loss as

a unary operator.

Defining Shapes

As we know MXNet’s mshadow library requires explicit memory allocation hence we need

to provide all data shapes before any calculation occurs. Before defining functions and

gradient, we need to provide input shape consistency and output shape as follows:

typedef mxnet::TShape (*UnaryShapeFunction)(const mxnet::TShape& src,

 const EnvArguments& env);

 typedef mxnet::TShape (*BinaryShapeFunction)(const mxnet::TShape& lhs,

 const mxnet::TShape& rhs,

 const EnvArguments& env);

The function mxnet::Tshape is used to check input data shape and designated output data

shape. In case, if you do not define this function then the default output shape would be

6. Apache MXNet — Unified Operator API

Apache MXNet

 44

same as input shape. For example, in case of binary operator the shape of lhs and rhs is

by default checked as the same.

Now let’s move on to our smooth l1 loss example. For this, we need to define an XPU

to cpu or gpu in the header implementation smooth_l1_unary-inl.h. The reason is to

reuse the same code in smooth_l1_unary.cc and smooth_l1_unary.cu.

#include <mxnet/operator_util.h>

 #if defined(__CUDACC__)

 #define XPU gpu

 #else

 #define XPU cpu

 #endif

As in our smooth l1 loss example, the output has the same shape as the source, we can

use the default behavior. It can be written as follows:

inline mxnet::TShape SmoothL1Shape_(const mxnet::TShape& src,

 const EnvArguments& env) {

 return mxnet::TShape(src);

 }

Defining Functions

We can create a unary or binary function with one input as follows:

typedef void (*UnaryFunction)(const TBlob& src,

 const EnvArguments& env,

 TBlob* ret,

 OpReqType req,

 RunContext ctx);

 typedef void (*BinaryFunction)(const TBlob& lhs,

 const TBlob& rhs,

 const EnvArguments& env,

 TBlob* ret,

 OpReqType req,

 RunContext ctx);

Following is the RunContext ctx struct which contains the information needed during

runtime for execution:

struct RunContext {

Apache MXNet

 45

 void *stream; // the stream of the device, can be NULL or

Stream<gpu>* in GPU mode

 template<typename xpu> inline mshadow::Stream<xpu>* get_stream() //

get mshadow stream from Context

 } // namespace mxnet

Now, let’s see how we can write the computation results in ret.

 enum OpReqType {

 kNullOp, // no operation, do not write anything

 kWriteTo, // write gradient to provided space

 kWriteInplace, // perform an in-place write

 kAddTo // add to the provided space

 };

Now, let’s move on to our smooth l1 loss example. For this, we will use UnaryFunction

to define the function of this operator as follows:

 template<typename xpu>

 void SmoothL1Forward_(const TBlob& src,

 const EnvArguments& env,

 TBlob *ret,

 OpReqType req,

 RunContext ctx) {

 using namespace mshadow;

 using namespace mshadow::expr;

 mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();

 real_t sigma2 = env.scalar * env.scalar;

 MSHADOW_TYPE_SWITCH(ret->type_flag_, DType, {

 mshadow::Tensor<xpu, 2, DType> out = ret->get<xpu, 2, DType>(s);

 mshadow::Tensor<xpu, 2, DType> in = src.get<xpu, 2, DType>(s);

 ASSIGN_DISPATCH(out, req,

 F<mshadow_op::smooth_l1_loss>(in,

ScalarExp<DType>(sigma2)));

 });

 }

Apache MXNet

 46

Defining Gradients

Except Input, TBlob, and OpReqType are doubled, Gradients functions of binary

operators have similar structure. Let’s check out below, where we created a gradient

function with various types of input:

 // depending only on out_grad

 typedef void (*UnaryGradFunctionT0)(const OutputGrad& out_grad,

 const EnvArguments& env,

 TBlob* in_grad,

 OpReqType req,

 RunContext ctx);

 // depending only on out_value

 typedef void (*UnaryGradFunctionT1)(const OutputGrad& out_grad,

 const OutputValue& out_value,

 const EnvArguments& env,

 TBlob* in_grad,

 OpReqType req,

 RunContext ctx);

 // depending only on in_data

 typedef void (*UnaryGradFunctionT2)(const OutputGrad& out_grad,

 const Input0& in_data0,

 const EnvArguments& env,

 TBlob* in_grad,

 OpReqType req,

 RunContext ctx);

As defined above Input0, Input, OutputValue, and OutputGrad all share the structure

of GradientFunctionArgument. It is defined as follows:

struct GradFunctionArgument {

 TBlob data;

 }

Now let’s move on to our smooth l1 loss example. For this to enable the chain rule of

gradient we need to multiply out_grad from the top to the result of in_grad.

template<typename xpu>

 void SmoothL1BackwardUseIn_(const OutputGrad& out_grad,

 const Input0& in_data0,

 const EnvArguments& env,

Apache MXNet

 47

 TBlob *in_grad,

 OpReqType req,

 RunContext ctx) {

 using namespace mshadow;

 using namespace mshadow::expr;

 mshadow::Stream<xpu> *s = ctx.get_stream<xpu>();

 real_t sigma2 = env.scalar * env.scalar;

 MSHADOW_TYPE_SWITCH(in_grad->type_flag_, DType, {

 mshadow::Tensor<xpu, 2, DType> src = in_data0.data.get<xpu, 2,

DType>(s);

 mshadow::Tensor<xpu, 2, DType> ograd = out_grad.data.get<xpu, 2,

DType>(s);

 mshadow::Tensor<xpu, 2, DType> igrad = in_grad->get<xpu, 2, DType>(s);

 ASSIGN_DISPATCH(igrad, req,

 ograd * F<mshadow_op::smooth_l1_gradient>(src,

ScalarExp<DType>(sigma2)));

 });

 }

Register SimpleOp to MXNet

Once we created the shape, function, and gradient, we need to restore them into both an

NDArray operator as well as into a symbolic operator. For this, we can use the registration

macro as follows:

MXNET_REGISTER_SIMPLE_OP(Name, DEV)

 .set_shape_function(Shape)

 .set_function(DEV::kDevMask, Function<XPU>, SimpleOpInplaceOption)

 .set_gradient(DEV::kDevMask, Gradient<XPU>, SimpleOpInplaceOption)

 .describe("description");

The SimpleOpInplaceOption can be defined as follows:

 enum SimpleOpInplaceOption {

 kNoInplace, // do not allow inplace in arguments

 kInplaceInOut, // allow inplace in with out (unary)

 kInplaceOutIn, // allow inplace out_grad with in_grad (unary)

 kInplaceLhsOut, // allow inplace left operand with out (binary)

 kInplaceOutLhs // allow inplace out_grad with lhs_grad (binary)

Apache MXNet

 48

 };

Now let’s move on to our smooth l1 loss example. For this, we have a gradient function

that relies on input data so that the function cannot be written in place.

 MXNET_REGISTER_SIMPLE_OP(smooth_l1, XPU)

 .set_function(XPU::kDevMask, SmoothL1Forward_<XPU>, kNoInplace)

 .set_gradient(XPU::kDevMask, SmoothL1BackwardUseIn_<XPU>, kInplaceOutIn)

 .set_enable_scalar(true)

 .describe("Calculate Smooth L1 Loss(lhs, scalar)");

SimpleOp on EnvArguments

As we know some operations might need the following:

 A scalar as input such as a gradient scale

 A set of keyword arguments controlling behavior

 A temporary space to speed up calculations.

The benefit of using EnvArguments is that it provides additional arguments and resources

to make calculations more scalable and efficient.

Example

First let’s define the struct as below:

struct EnvArguments {

 real_t scalar; // scalar argument, if enabled

 std::vector<std::pair<std::string, std::string> > kwargs; // keyword

arguments

 std::vector<Resource> resource; // pointer to the resources requested

 };

Next, we need to request additional resources like mshadow::Random<xpu> and

temporary memory space from EnvArguments.resource. It can be done as follows:

struct ResourceRequest {

 enum Type { // Resource type, indicating what the pointer type is

 kRandom, // mshadow::Random<xpu> object

 kTempSpace // A dynamic temp space that can be arbitrary size

 };

 Type type; // type of resources

 };

Apache MXNet

 49

Now, the registration will request the declared resource request from

mxnet::ResourceManager. After that, it will place the resources in

std::vector<Resource> resource in EnvAgruments.

We can access the resources with the help of following code:

 auto tmp_space_res = env.resources[0].get_space(some_shape, some_stream);

 auto rand_res = env.resources[0].get_random(some_stream);

If you see in our smooth l1 loss example, a scalar input is needed to mark the turning

point of a loss function. That’s why in the registration process, we use

set_enable_scalar(true), and env.scalar in function and gradient declarations.

Building Tensor Operation

Here the question arises that why we need to craft tensor operations? The reasons are as

follows:

 Computation utilizes the mshadow library and we sometimes do not have functions

readily available.

 If an operation is not done in an element-wise way such as softmax loss and

gradient.

Example

Here, we are using the above smooth l1 loss example. We will be creating two mappers

namely the scalar cases of smooth l1 loss and gradient:

namespace mshadow_op {

 struct smooth_l1_loss {

 // a is x, b is sigma2

 MSHADOW_XINLINE static real_t Map(real_t a, real_t b) {

 if (a > 1.0f / b) {

 return a - 0.5f / b;

 } else if (a < -1.0f / b) {

 return -a - 0.5f / b;

 } else {

 return 0.5f * a * a * b;

 }

 }

 };

 }

Apache MXNet

 50

This chapter is about the distributed training in Apache MXNet. Let us start by

understanding what are the modes of computation in MXNet.

Modes of Computation

MXNet, a multi-language ML library, offers its users the following two modes of

computation:

Imperative mode

This mode of computation exposes an interface like NumPy API. For example, in MXNet,

use the following imperative code to construct a tensor of zeros on both CPU as well as

GPU:

import mxnet as mx

tensor_cpu = mx.nd.zeros((100,), ctx=mx.cpu())

tensor_gpu= mx.nd.zeros((100,), ctx=mx.gpu(0))

As we see in the above code, MXNets specifies the location where to hold the tensor, either

in CPU or GPU device. In above example, it is at location 0. MXNet achieve incredible

utilisation of the device, because all the computations happen lazily instead of

instantaneously.

Symbolic mode

Although the imperative mode is quite useful, but one of the drawbacks of this mode is its

rigidity, i.e. all the computations need to be known beforehand along with pre-defined

data structures.

On the other hand, Symbolic mode exposes a computation graph like TensorFlow. It

removes the drawback of imperative API by allowing MXNet to work with symbols or

variables instead of fixed/pre-defined data structures. Afterwards, the symbols can be

interpreted as a set of operations as follows:

import mxnet as mx

x = mx.sym.Variable(“X”)

y = mx.sym.Variable(“Y”)

z = (x+y)

m = z/100

Kinds of Parallelism

Apache MXNet supports distributed training. It enables us to leverage multiple machines

for faster as well as effective training.

7. Apache MXNet — Distributed Training

Apache MXNet

 51

Following are the two ways in which, we can distribute the workload of training a NN across

multiple devices, CPU or GPU device:

Data Parallelism

In this kind of parallelism, each device stores a complete copy of the model and works

with a different part of the dataset. Devices also update a shared model collectively. We

can locate all the devices on a single machine or across multiple machines.

Model Parallelism

It is another kind of parallelism, which comes handy when models are so large that they

do not fit into device memory. In model parallelism, different devices are assigned the

task of learning different parts of the model. The important point here to note is that

currently Apache MXNet supports model parallelism in a single machine only.

Working of distributed training

The concepts given below are the key to understand the working of distributed training in

Apache MXNet:

Types of processes

Processes communicates with each other to accomplish the training of a model. Apache

MXNet has the following three processes:

Worker

The job of worker node is to perform training on a batch of training samples. The Worker

nodes will pull weights from the server before processing every batch. The Worker nodes

will send gradients to the server, once the batch is processed.

Server

MXNet can have multiple servers for storing the model’s parameters and to communicate

with the worker nodes.

Scheduler

The role of the scheduler is to set up the cluster, which includes waiting for messages that

each node has come up and which port the node is listening to. After setting up the cluster,

the scheduler lets all the processes know about every other node in the cluster. It is

because the processes can communicate with each other. There is only one scheduler.

KV Store

KV stores stands for Key-Value store. It is critical component used for multi-device

training. It is important because, the communication of parameters across devices on

single as well as across multiple machines is transmitted through one or more servers with

a KVStore for the parameters. Let’s understand the working of KVStore with the help of

following points:

 Each value in KVStore is represented by a key and a value.

Apache MXNet

 52

 Each parameter array in the network is assigned a key and the weights of that

parameter array is referred by value.

 After that, the worker nodes push gradients after processing a batch. They also

pull updated weights before processing a new batch.

The notion of KVStore server exists only during distributed training and the distributed

mode of it is enabled by calling mxnet.kvstore.create function with a string argument

containing the word dist:

kv = mxnet.kvstore.create(‘dist_sync’)

Distribution of Keys

It is not necessary that, all the servers store all the parameters array or keys, but they

are distributed across different servers. Such distribution of keys across different servers

is handled transparently by the KVStore and the decision of which server stores a specific

key is made at random.

KVStore, as discussed above, ensures that whenever the key is pulled, its request is sent

to that server, which has the corresponding value. What if the value of some key is large?

In that case, it may be shared across different servers.

Split training data

As being the users, we want each machine to be working on different parts of the dataset,

especially, when running distributed training in data parallel mode. We know that, to split

a batch of samples provided by the data iterator for data parallel training on a single

worker we can use mxnet.gluon.utils.split_and_load and then, load each part of the

batch on the device which will process it further.

On the other hand, in case of distributed training, at beginning we need to divide the

dataset into n different parts so that every worker gets a different part. Once got, each

worker can then use split_and_load to again divide that part of the dataset across

different devices on a single machine. All this happen through data iterator.

mxnet.io.MNISTIterator and mxnet.io.ImageRecordIter are two such iterators in

MXNet that support this feature.

Weights updating

For updating the weights, KVStore supports following two modes:

 First method aggregates the gradients and updates the weights by using those

gradients.

 In the second method the server only aggregates gradients.

If you are using Gluon, there is an option to choose between above stated methods by

passing update_on_kvstore variable. Let’s understand it by creating the trainer object

as follows:

trainer = gluon.Trainer(net.collect_params(), optimizer='sgd',

 optimizer_params={'learning_rate': opt.lr,

Apache MXNet

 53

 'wd': opt.wd,

 'momentum': opt.momentum,

 'multi_precision': True},

 kvstore=kv,

 update_on_kvstore=True)

Modes of Distributed Training

If the KVStore creation string contains the word dist, it means the distributed training is

enabled. Following are different modes of distributed training that can be enabled by using

different types of KVStore:

dist_sync

As name implies, it denotes synchronous distributed training. In this, all the workers use

the same synchronized set of model parameters at the start of every batch.

The drawback of this mode is that, after each batch the server should have to wait to

receive gradients from each worker before it updates the model parameters. This means

that if a worker crashes, it would halt the progress of all workers.

dist_async

As name implies, it denotes synchronous distributed training. In this, the server receives

gradients from one worker and immediately updates its store. Server uses the updated

store to respond to any further pulls.

The advantage, in comparison of dist_sync mode, is that a worker who finishes

processing a batch can pull the current parameters from server and start the next batch.

The worker can do so, even if the other worker has not yet finished processing the earlier

batch. It is also faster than dist_sync mode because, it can take more epochs to converge

without any cost of synchronization.

dist_sync_device

This mode is same as dist_sync mode. The only difference is that, when there are multiple

GPUs being used on every node dist_sync_device aggregates gradients and updates

weights on GPU whereas, dist_sync aggregates gradients and updates weights on CPU

memory.

It reduces expensive communication between GPU and CPU. That is why, it is faster than

dist_sync. The drawback is that it increases the memory usage on GPU.

dist_async_device

This mode works same as dist_sync_device mode, but in asynchronous mode.

Apache MXNet

 54

In this chapter we will learn about the Python Packages available in Apache MXNet.

Important MXNet Python packages

MXNet has the following important Python packages which we will be discussing one by

one:

 Autograd (Automatic Differentiation)

 NDArray

 KVStore

 Gluon

 Visualization

First let us start with Autograd Python package for Apache MXNet.

Autograd

Autograd stands for automatic differentiation used to backpropagate the gradients

from the loss metric back to each of the parameters. Along with backpropagation it uses

a dynamic programming approach to efficiently calculate the gradients. It is also called

reverse mode automatic differentiation. This technique is very efficient in ‘fan-in’ situations

where, many parameters effect a single loss metric.

What are gradients?

Gradients are the fundamentals to the process of neural network training. They basically

tell us how to change the parameters of the network to improve its performance.

As we know that, neural networks (NN) are composed of operators such as sums, product,

convolutions, etc. These operators, for their computations, use parameters such as the

weights in convolution kernels. We should have to find the optimal values for these

parameters and gradients shows us the way and lead us to the solution as well.

8. Apache MXNet — Python Packages

Apache MXNet

 55

We are interested in the effect of changing a parameter on performance of the network

and gradients tell us, how much a given variable increases or decreases when we change

a variable it depends on. The performance is usually defined by using a loss metric that

we try to minimise. For example, for regression we might try to minimise L2 loss between

our predictions and exact value, whereas for classification we might minimise the cross-

entropy loss.

Once we calculate the gradient of each parameter with reference to the loss, we can then

use an optimiser, such as stochastic gradient descent.

How to calculate gradients?

We have the following options to calculate gradients:

 Symbolic Differentiation: The very first option is Symbolic Differentiation, which

calculates the formulas for each gradient. The drawback of this method is that, it

will quickly lead to incredibly long formulas as the network get deeper and

operators get more complex.

 Finite Differencing: Another option is, to use finite differencing which try slight

differences on each parameter and see how the loss metric responds. The drawback

of this method is that, it would be computationally expensive and may have poor

numerical precision.

g
r
a
d

ie

n
t

loss

param Qt

Apache MXNet

 56

 Automatic differentiation: The solution to the drawbacks of the above methods

is, to use automatic differentiation to backpropagate the gradients from the loss

metric back to each of the parameters. Propagation allows us a dynamic

programming approach to efficiently calculate the gradients. This method is also

called reverse mode automatic differentiation.

Automatic Differentiation (autograd)

Here, we will understand in detail the working of autograd. It basically works in following

two stages:

Stage 1: This stage is called ‘Forward Pass’ of training. As name implies, in this stage

it creates the record of the operator used by the network to make predictions and calculate

the loss metric.

Stage 2: This stage is called ‘Backward Pass’ of training. As name implies, in this stage

it works backwards through this record. Going backwards, it evaluates the partial

derivatives of each operator, all the way back to the network parameter.

Advantages of autograd

Following are the advantages of using Automatic Differentiation (autograd):

X

1

X

2

ŷ

y

L

L
2
 L

o
s
s

Stage1: Forward Pass

Stage2: Backward Pass of gradients

Apache MXNet

 57

 Flexible: Flexibility, that it gives us when defining our network, is one of the huge

benefits of using autograd. We can change the operations on every iteration. These

are called the dynamic graphs, which are much more complex to implement in

frameworks requiring static graph. Autograd, even in such cases, will still be able

to backpropagate the gradients correctly.

 Automatic: Autograd is automatic, i.e. the complexities of the backpropagation

procedure are taken care of by it for you. We just need to specify what gradients

we are interested in calculating.

 Efficient: Autogard calculates the gradients very efficiently.

 Can use native Python control flow operators: We can use the native Python

control flow operators such as if condition and while loop. The autograd will still

be able to backpropagate the gradients efficiently and correctly.

Using autograd in MXNet Gluon

Here, with the help of an example, we will see how we can use autograd in MXNet Gluon.

Implementation Example

In the following example, we will implement the regression model having two layers. After

implementing, we will use autograd to automatically calculate the gradient of the loss with

reference to each of the weight parameters:

First import the autogrard and other required packages as follows:

from mxnet import autograd

import mxnet as mx

from mxnet.gluon.nn import HybridSequential, Dense

from mxnet.gluon.loss import L2Loss

Now, we need to define the network as follows:

N_net = HybridSequential()

N_net.add(Dense(units=3))

N_net.add(Dense(units=1))

N_net.initialize()

Now we need to define the loss as follows:

loss_function = L2Loss()

Next, we need to create the dummy data as follows:

x = mx.nd.array([[0.5, 0.9]])

Apache MXNet

 58

y = mx.nd.array([[1.5]])

Now, we are ready for our first forward pass through the network. We want autograd to

record the computational graph so that we can calculate the gradients. For this, we need

to run the network code in the scope of autograd.record context as follows:

with autograd.record():

 y_hat = N_net(x)

 loss = loss_function(y_hat, y)

Now, we are ready for the backward pass, which we start by calling the backward method

on the quantity of interest. The quatity of interest in our example is loss because we are

trying to calculate the gradient of loss with reference to the parameters:

loss.backward()

Now, we have gradients for each parameter of the network, which will be used by the

optimiser to update the parameter value for improved performance. Let’s check out the

gradients of the 1st layer as follows:

N_net[0].weight.grad()

Output

The output is as follows:

[[-0.00470527 -0.00846948]

 [-0.03640365 -0.06552657]

 [0.00800354 0.01440637]]

<NDArray 3x2 @cpu(0)>

Complete implementation example

Given below is the complete implementation example.

from mxnet import autograd

import mxnet as mx

from mxnet.gluon.nn import HybridSequential, Dense

from mxnet.gluon.loss import L2Loss

N_net = HybridSequential()

N_net.add(Dense(units=3))

N_net.add(Dense(units=1))

N_net.initialize()

loss_function = L2Loss()

x = mx.nd.array([[0.5, 0.9]])

y = mx.nd.array([[1.5]])

Apache MXNet

 59

with autograd.record():

 y_hat = N_net(x)

 loss = loss_function(y_hat, y)

loss.backward()

N_net[0].weight.grad()

Apache MXNet

 60

In this chapter, we will be discussing about MXNet’s multi-dimensional array format called

ndarray.

Handling data with NDArray

First, we are going see how we can handle data with NDArray. Following are the

prerequisites for the same:

Prerequisites

To understand how we can handle data with this multi-dimensional array format, we need

to fulfil the following prerequisites:

 MXNet installed in a Python environment

 Python 2.7.x or Python 3.x

Implementation Example

Let us understand the basic functionality with the help of an example given below:

First, we need to import MXNet and ndarray from MXNet as follows:

import mxnet as mx

from mxnet import nd

Once we import the necessary libraries, we will go with the following basic functionalities:

A simple 1-D array with a python list

x = nd.array([1,2,3,4,5,6,7,8,9,10])

print(x)

Output

The output is as mentioned below:

[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

<NDArray 10 @cpu(0)>

A 2-D array with a python list

y = nd.array([[1,2,3,4,5,6,7,8,9,10], [1,2,3,4,5,6,7,8,9,10],

[1,2,3,4,5,6,7,8,9,10]])

9. Apache MXNet — NDArray

Apache MXNet

 61

print(y)

Output

The output is as stated below:

[[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

 [1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

 [1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]]

<NDArray 3x10 @cpu(0)>

Creating an NDArray without any initialisation

Here, we will create a matrix with 3 rows and 4 columns by using .empty function. We

will also use .full function, which will take an additional operator for what value you want

to fill in the array.

x = nd.empty((3, 4))

print(x)

x = nd.full((3,4), 8)

print(x)

Output

The output is given below:

[[0.000e+00 0.000e+00 0.000e+00 0.000e+00]

 [0.000e+00 0.000e+00 2.887e-42 0.000e+00]

 [0.000e+00 0.000e+00 0.000e+00 0.000e+00]]

<NDArray 3x4 @cpu(0)>

[[8. 8. 8. 8.]

 [8. 8. 8. 8.]

 [8. 8. 8. 8.]]

<NDArray 3x4 @cpu(0)>

Matrix of all zeros with the .zeros function

x = nd.zeros((3, 8))

print(x)

Output

The output is as follows:

[[0. 0. 0. 0. 0. 0. 0. 0.]

Apache MXNet

 62

 [0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0.]]

<NDArray 3x8 @cpu(0)>

Matrix of all ones with the .ones function

x = nd.ones((3, 8))

print(x)

Output

The output is mentioned below:

[[1. 1. 1. 1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1. 1. 1. 1.]]

<NDArray 3x8 @cpu(0)>

Creating array whose values are sampled randomly

y = nd.random_normal(0, 1, shape=(3, 4))

print(y)

Output

The output is given below:

[[1.2673576 -2.0345826 -0.32537818 -1.4583491]

 [-0.11176403 1.3606371 -0.7889914 -0.17639421]

 [-0.2532185 -0.42614475 -0.12548696 1.4022992]]

<NDArray 3x4 @cpu(0)>

Finding dimension of each NDArray

y.shape

Output

The output is as follows:

(3, 4)

Finding the size of each NDArray

y.size

Apache MXNet

 63

Output

12

Finding the datatype of each NDArray

y.dtype

Output

numpy.float32

NDArray Operations

In this section, we will introduce you to MXNet’s array operations. NDArray support large

number of standard mathematical as well as In-place operations.

Standard Mathematical Operations

Following are standard mathematical operations supported by NDArray:

Element-wise addition

First, we need to import MXNet and ndarray from MXNet as follows:

import mxnet as mx

from mxnet import nd

x = nd.ones((3, 5))

y = nd.random_normal(0, 1, shape=(3, 5))

print('x=', x)

print('y=', y)

x = x + y

print('x = x + y, x=', x)

Output

The output is given herewith:

x=

[[1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1.]

 [1. 1. 1. 1. 1.]]

<NDArray 3x5 @cpu(0)>

y=

[[-1.0554522 -1.3118273 -0.14674698 0.641493 -0.73820823]

Apache MXNet

 64

 [2.031364 0.5932667 0.10228804 1.179526 -0.5444829]

 [-0.34249446 1.1086396 1.2756858 -1.8332436 -0.5289873]]

<NDArray 3x5 @cpu(0)>

x = x + y, x=

[[-0.05545223 -0.3118273 0.853253 1.6414931 0.26179177]

 [3.031364 1.5932667 1.102288 2.1795259 0.4555171]

 [0.6575055 2.1086397 2.2756858 -0.8332436 0.4710127]]

<NDArray 3x5 @cpu(0)>

Element-wise multiplication

x = nd.array([1, 2, 3, 4])

y = nd.array([2, 2, 2, 1])

x * y

Output

You will see the following output:

[2. 4. 6. 4.]

<NDArray 4 @cpu(0)>

Exponentiation

nd.exp(x)

Output

When you run the code, you will see the following output:

[2.7182817 7.389056 20.085537 54.59815]

<NDArray 4 @cpu(0)>

Matrix transpose to compute matrix-matrix product

nd.dot(x, y.T)

Output

Given below is the output of the code:

[16.]

<NDArray 1 @cpu(0)>

Apache MXNet

 65

In-place Operations

Every time, in the above example, we ran an operation, we allocated a new memory to

host its result.

For example, if we write A = A+B, we will dereference the matrix that A used to point to

and instead point it at the newly allocated memory. Let us understand it with the example

given below, using Python’s id() function:

print('y=', y)

print('id(y):', id(y))

y = y + x

print('after y=y+x, y=', y)

print('id(y):', id(y))

Output

Upon execution, you will receive the following output:

y=

[2. 2. 2. 1.]

<NDArray 4 @cpu(0)>

id(y): 2438905634376

after y=y+x, y=

[3. 4. 5. 5.]

<NDArray 4 @cpu(0)>

id(y): 2438905685664

In fact, we can also assign the result to a previously allocated array as follows:

print('x=', x)

z = nd.zeros_like(x)

print('z is zeros_like x, z=', z)

print('id(z):', id(z))

print('y=', y)

z[:] = x + y

print('z[:] = x + y, z=', z)

print('id(z) is the same as before:', id(z))

Output

The output is shown below:

x=

[1. 2. 3. 4.]

Apache MXNet

 66

<NDArray 4 @cpu(0)>

z is zeros_like x, z=

[0. 0. 0. 0.]

<NDArray 4 @cpu(0)>

id(z): 2438905790760

y=

[3. 4. 5. 5.]

<NDArray 4 @cpu(0)>

z[:] = x + y, z=

[4. 6. 8. 9.]

<NDArray 4 @cpu(0)>

id(z) is the same as before: 2438905790760

From the above output, we can see that x+y will still allocate a temporary buffer to store

the result before copying it to z. So now, we can perform operations in-place to make

better use of memory and to avoid temporary buffer. To do this, we will specify the out

keyword argument every operator support as follows:

print('x=', x, 'is in id(x):', id(x))

print('y=', y, 'is in id(y):', id(y))

print('z=', z, 'is in id(z):', id(z))

nd.elemwise_add(x, y, out=z)

print('after nd.elemwise_add(x, y, out=z), x=', x, 'is in id(x):', id(x))

print('after nd.elemwise_add(x, y, out=z), y=', y, 'is in id(y):', id(y))

print('after nd.elemwise_add(x, y, out=z), z=', z, 'is in id(z):', id(z))

Output

On executing the above program, you will get the following result:

x=

[1. 2. 3. 4.]

<NDArray 4 @cpu(0)> is in id(x): 2438905791152

y=

[3. 4. 5. 5.]

<NDArray 4 @cpu(0)> is in id(y): 2438905685664

z=

[4. 6. 8. 9.]

<NDArray 4 @cpu(0)> is in id(z): 2438905790760

Apache MXNet

 67

after nd.elemwise_add(x, y, out=z), x=

[1. 2. 3. 4.]

<NDArray 4 @cpu(0)> is in id(x): 2438905791152

after nd.elemwise_add(x, y, out=z), y=

[3. 4. 5. 5.]

<NDArray 4 @cpu(0)> is in id(y): 2438905685664

after nd.elemwise_add(x, y, out=z), z=

[4. 6. 8. 9.]

<NDArray 4 @cpu(0)> is in id(z): 2438905790760

NDArray Contexts

In Apache MXNet, each array has a context and one context could be the CPU, whereas

other contexts might be several GPUs. The things can get even worst, when we deploy the

work across multiple servers. That’s why, we need to assign arrays to contexts

intelligently. It will minimise the time spent transferring data between devices.

For example, try initialising an array as follows:

from mxnet import nd

z = nd.ones(shape=(3,3), ctx=mx.cpu(0))

print(z)

Output

When you execute the above code, you should see the following output:

[[1. 1. 1.]

 [1. 1. 1.]

 [1. 1. 1.]]

<NDArray 3x3 @cpu(0)>

We can copy the given NDArray from one context to another context by using the

copyto() method as follows:

x_gpu = x.copyto(gpu(0))

print(x_gpu)

NumPy array vs. NDArray

We all the familiar with NumPy arrays but Apache MXNet offers its own array

implementation named NDArray. Actually, it was initially designed to be similar to NumPy

but there is a key difference:

Apache MXNet

 68

The key difference is in the way calculations are executed in NumPy and NDArray. Every

NDArray manipulation in MXNet is done in asynchronous and non-blocking way, which

means that, when we write code like c = a * b, the function is pushed to the Execution

Engine, which will start the calculation.

Here, a and b both are NDArrays. The benefit of using it is that, the function immediately

returns back, and the user thread can continue execution despite the fact that the previous

calculation may not have been completed yet.

Working of Execution Engine

If we talk about the working of execution engine, it builds the computation graph. The

computation graph may reorder or combine some calculations, but it always honors

dependency order.

For example, if there are other manipulation with ‘X’ done later in the programming code,

the Execution Engine will start doing them once the result of ‘X’ is available. Execution

engine will handle some important works for the users, such as writing of callbacks to start

execution of subsequent code.

In Apache MXNet, with the help of NDArray, to get the result of computation we only need

to access the resulting variable. The flow of the code will be blocked until the computation

results are assigned to the resulting variable. In this way, it increases code performance

while still supporting imperative programming mode.

Converting NDArray to NumPy Array

Let us learn how can we convert NDArray to NumPy Array in MXNet.

Combining higher-level operator with the help of few lower-level operators

Sometimes, we can assemble a higher-level operator by using the existing operators. One

of the best examples of this is, the np.full_like() operator, which is not there in NDArray

API. It can easily be replaced with a combination of existing operators as follows:

from mxnet import nd

import numpy as np

np_x = np.full_like(a=np.arange(7, dtype=int), fill_value=15)

nd_x = nd.ones(shape=(7,)) * 15

np.array_equal(np_x, nd_x.asnumpy())

Output

We will get the output similar as follows:

True

Finding similar operator with different name and/or signature

Among all the operators, some of them have slightly different name, but they are similar

in the terms of functionality. An example of this is nd.ravel_index() with np.ravel()

functions. In the same way, some operators may have similar names, but they have

different signatures. An example of this is np.split() and nd.split() are similar.

Apache MXNet

 69

Let’s understand it with the following programming example:

def pad_array123(data, max_length):

 data_expanded = data.reshape(1, 1, 1, data.shape[0])

 data_padded = nd.pad(data_expanded,

 mode='constant',

 pad_width=[0, 0, 0, 0, 0, 0, 0, max_length -

data.shape[0]],

 constant_value=0)

 data_reshaped_back = data_padded.reshape(max_length)

 return data_reshaped_back

pad_array123(nd.array([1, 2, 3]), max_length=10)

Output

The output is stated below:

[1. 2. 3. 0. 0. 0. 0. 0. 0. 0.]

<NDArray 10 @cpu(0)>

Minimising impact of blocking calls

In some of the cases, we have to use either .asnumpy() or .asscalar() methods, but

this will force MXNet to block the execution, until the result can be retrieved. We can

minimise the impact of a blocking call by calling .asnumpy() or. asscalar() methods in

the moment, when we think the calculation of this value is already done.

Implementation Example

 from __future__ import print_function

import mxnet as mx

from mxnet import gluon, nd, autograd

from mxnet.ndarray import NDArray

from mxnet.gluon import HybridBlock

import numpy as np

class LossBuffer(object):

 """

Apache MXNet

 70

 Simple buffer for storing loss value

 """

 def __init__(self):

 self._loss = None

 def new_loss(self, loss):

 ret = self._loss

 self._loss = loss

 return ret

 @property

 def loss(self):

 return self._loss

net = gluon.nn.Dense(10)

ce = gluon.loss.SoftmaxCELoss()

net.initialize()

data = nd.random.uniform(shape=(1024, 100))

label = nd.array(np.random.randint(0, 10, (1024,)), dtype='int32')

train_dataset = gluon.data.ArrayDataset(data, label)

train_data = gluon.data.DataLoader(train_dataset, batch_size=128, shuffle=True,

num_workers=2)

trainer = gluon.Trainer(net.collect_params(), optimizer='sgd')

loss_buffer = LossBuffer()

for data, label in train_data:

 with autograd.record():

 out = net(data)

 # This call saves new loss and returns previous loss

 prev_loss = loss_buffer.new_loss(ce(out, label))

 loss_buffer.loss.backward()

 trainer.step(data.shape[0])

 if prev_loss is not None:

 print("Loss: {}".format(np.mean(prev_loss.asnumpy())))

Output

The output is cited below:

Loss: 2.3373236656188965

Apache MXNet

 71

Loss: 2.3656985759735107

Loss: 2.3613128662109375

Loss: 2.3197104930877686

Loss: 2.3054862022399902

Loss: 2.329197406768799

Loss: 2.318927526473999

Apache MXNet

 72

Another most important MXNet Python package is Gluon. In this chapter, we will be

discussing this package. Gluon provides a clear, concise, and simple API for DL projects.

It enables Apache MXNet to prototype, build, and train DL models without forfeiting the

training speed.

Blocks

Blocks form the basis of more complex network designs. In a neural network, as the

complexity of neural network increases, we need to move from designing single to entire

layers of neurons. For example, NN design like ResNet-152 have a very fair degree of

regularity by consisting of blocks of repeated layers.

Example

In the example given below, we will write code a simple block, namely block for a

multilayer perceptron.

from mxnet import nd

from mxnet.gluon import nn

x = nd.random.uniform(shape=(2, 20))

N_net = nn.Sequential()

N_net.add(nn.Dense(256, activation='relu'))

N_net.add(nn.Dense(10))

N_net.initialize()

N_net(x)

Output

This produces the following output:

[[0.09543004 0.04614332 -0.00286655 -0.07790346 -0.05130241 0.02942038

 0.08696645 -0.0190793 -0.04122177 0.05088576]

 [0.0769287 0.03099706 0.00856576 -0.044672 -0.06926838 0.09132431

 0.06786592 -0.06187843 -0.03436674 0.04234696]]

<NDArray 2x10 @cpu(0)>

Steps needed to go from defining layers to defining blocks of one or more layers:

Step 1: Block take the data as input.

Step 2: Now, blocks will store the state in the form of parameters. For example, in the

above coding example the block contains two hidden layers and we need a place to store

parameters for it.

10. Apache MXNet — Gluon

Apache MXNet

 73

Step 3: Next block will invoke the forward function to perform forward propagation. It is

also called forward computation. As a part of first forward call, blocks initialize the

parameters in a lazy fashion.

Step 4: At last the blocks will invoke backward function and calculate the gradient with

reference to their input. Typically, this step is performed automatically.

Sequential Block

A sequential block is a special kind of block in which the data flows through a sequence of

blocks. In this, each block applied to the output of one before with the first block being

applied on the input data itself.

Let us see how sequential class works:

from mxnet import nd

from mxnet.gluon import nn

class MySequential(nn.Block):

 def __init__(self, **kwargs):

 super(MySequential, self).__init__(**kwargs)

 def add(self, block):

 self._children[block.name] = block

 def forward(self, x):

 for block in self._children.values():

 x = block(x)

 return x

x = nd.random.uniform(shape=(2, 20))

N_net = MySequential()

N_net.add(nn.Dense(256, activation

='relu'))

N_net.add(nn.Dense(10))

N_net.initialize()

N_net(x)

Output

The output is given herewith:

[[0.09543004 0.04614332 -0.00286655 -0.07790346 -0.05130241 0.02942038

 0.08696645 -0.0190793 -0.04122177 0.05088576]

 [0.0769287 0.03099706 0.00856576 -0.044672 -0.06926838 0.09132431

 0.06786592 -0.06187843 -0.03436674 0.04234696]]

<NDArray 2x10 @cpu(0)>

Apache MXNet

 74

Custom Block

We can easily go beyond concatenation with sequential block as defined above. But, if we

would like to make customisations then the Block class also provides us the required

functionality. Block class has a model constructor provided in nn module. We can inherit

that model constructor to define the model we want.

In the following example, the MLP class overrides the __init__ and forward functions of

the Block class.

Let us see how it works.

class MLP(nn.Block):

 def __init__(self, **kwargs):

 super(MLP, self).__init__(**kwargs)

 self.hidden = nn.Dense(256, activation='relu') # Hidden layer

 self.output = nn.Dense(10) # Output layer

 def forward(self, x):

 hidden_out = self.hidden(x)

 return self.output(hidden_out)

x = nd.random.uniform(shape=(2, 20))

N_net = MLP()

N_net.initialize()

N_net(x)

Output

When you run the code, you will see the following output:

[[0.07787763 0.00216403 0.01682201 0.03059879 -0.00702019 0.01668715

 0.04822846 0.0039432 -0.09300035 -0.04494302]

 [0.08891078 -0.00625484 -0.01619131 0.0380718 -0.01451489 0.02006172

 0.0303478 0.02463485 -0.07605448 -0.04389168]]

<NDArray 2x10 @cpu(0)>

Custom Layers

Apache MXNet’s Gluon API comes with a modest number of pre-defined layers. But still at

some point, we may find that a new layer is needed. We can easily add a new layer in

Gluon API. In this section, we will see how we can create a new layer from scratch.

The Simplest Custom Layer

Apache MXNet

 75

To create a new layer in Gluon API, we must have to create a class inherits from the Block

class which provides the most basic functionality. We can inherit all the pre-defined layers

from it directly or via other subclasses.

For creating the new layer, the only instance method needed to be implemented is

forward (self, x). This method defines, what exactly our layer is going to do during

forward propagation. As discussed earlier also, the back-propagation pass for blocks will

be done by Apache MXNet itself automatically.

Example

In the example below, we will be defining a new layer. We will also implement forward()

method to normalise the input data by fitting it into a range of [0, 1].

from __future__ import print_function

import mxnet as mx

from mxnet import nd, gluon, autograd

from mxnet.gluon.nn import Dense

mx.random.seed(1)

class NormalizationLayer(gluon.Block):

 def __init__(self):

 super(NormalizationLayer, self).__init__()

 def forward(self, x):

 return (x - nd.min(x)) / (nd.max(x) - nd.min(x))

x = nd.random.uniform(shape=(2, 20))

N_net = NormalizationLayer()

N_net.initialize()

N_net(x)

Output

On executing the above program, you will get the following result:

[[0.5216355 0.03835821 0.02284337 0.5945146 0.17334817 0.69329053

 0.7782702 1. 0.5508242 0. 0.07058554 0.3677264

 0.4366546 0.44362497 0.7192635 0.37616986 0.6728799 0.7032008

 0.46907538 0.63514024]

 [0.9157533 0.7667402 0.08980197 0.03593295 0.16176797 0.27679572

 0.07331014 0.3905285 0.6513384 0.02713427 0.05523694 0.12147208

 0.45582628 0.8139887 0.91629887 0.36665893 0.07873632 0.78268915

 0.63404864 0.46638715]]

Apache MXNet

 76

<NDArray 2x20 @cpu(0)>

Hybridisation

It may be defined as a process used by Apache MXNet’s to create a symbolic graph of a

forward computation. Hybridisation allows MXNet to upsurge the computation performance

by optimising the computational symbolic graph. Rather than directly inheriting from

Block, in fact, we may find that while implementing existing layers a block inherits from

a HybridBlock.

Following are the reasons for this:

 Allows us to write custom layers: HybridBlock allows us to write custom layers

that can further be used in imperative and symbolic programming both.

 Increase computation performance: HybridBlock optimise the computational

symbolic graph which allows MXNet to increase computation performance.

Example

In this example, we will be rewriting our example layer, created above, by using

HybridBlock:

class NormalizationHybridLayer(gluon.HybridBlock):

 def __init__(self):

 super(NormalizationHybridLayer, self).__init__()

 def hybrid_forward(self, F, x):

 return F.broadcast_div(F.broadcast_sub(x, F.min(x)),

(F.broadcast_sub(F.max(x), F.min(x))))

layer_hybd = NormalizationHybridLayer()

layer_hybd(nd.array([1, 2, 3, 4, 5, 6], ctx=mx.cpu()))

Output

The output is stated below:

[0. 0.2 0.4 0.6 0.8 1.]

<NDArray 6 @cpu(0)>

Hybridisation has nothing to do with computation on GPU and one can train hybridised as

well as non-hybridised networks on both CPU and GPU.

Apache MXNet

 77

Difference between Block and HybridBlock

If we will compare the Block Class and HybridBlock, we will see that HybridBlock

already has its forward() method implemented. HybridBlock defines a

hybrid_forward() method that needs to be implemented while creating the layers. F

argument creates the main difference between forward() and hybrid_forward(). In

MXNet community, F argument is referred to as a backend. F can either refer to

mxnet.ndarray API (used for imperative programming) or mxnet.symbol API (used

for Symbolic programming).

How to add custom layer to a network?

Instead of using custom layers separately, these layers are used with predefined layers.

We can use either Sequential or HybridSequential containers to from a sequential

neural network. As discussed earlier also, Sequential container inherit from Block and

HybridSequential inherit from HybridBlock respectively.

Example

In the example below, we will be creating a simple neural network with a custom layer.

The output from Dense (5) layer will be the input of NormalizationHybridLayer. The

output of NormalizationHybridLayer will become the input of Dense (1) layer.

net = gluon.nn.HybridSequential()

with net.name_scope():

 net.add(Dense(5))

 net.add(NormalizationHybridLayer())

 net.add(Dense(1))

net.initialize(mx.init.Xavier(magnitude=2.24))

net.hybridize()

input = nd.random_uniform(low=-10, high=10, shape=(10, 2))

net(input)

Output

You will see the following output:

[[-1.1272651]

 [-1.2299833]

 [-1.0662932]

 [-1.1805027]

 [-1.3382034]

 [-1.2081106]

 [-1.1263978]

Apache MXNet

 78

 [-1.2524893]

 [-1.1044774]

 [-1.316593]]

<NDArray 10x1 @cpu(0)>

Custom layer parameters

In a neural network, a layer has a set of parameters associated with it. We sometimes

refer them as weights, which is internal state of a layer. These parameters play different

roles:

 Sometimes these are the ones that we want to learn during backpropagation step.

 Sometimes these are just constants we want to use during forward pass.

If we talk about the programming concept, these parameters (weights) of a block are

stored and accessed via ParameterDict class which helps in initialisation, updation,

saving, and loading of them.

Example

In the example below, we will be defining two following sets of parameters:

 Parameter weights: This is trainable, and its shape is unknown during

construction phase. It will be inferred on the first run of forward propagation.

 Parameter scale: This is a constant whose value doesn’t change. As opposite to

parameter weights, its shape is defined during construction.

class NormalizationHybridLayer(gluon.HybridBlock):

 def __init__(self, hidden_units, scales):

 super(NormalizationHybridLayer, self).__init__()

 with self.name_scope():

 self.weights = self.params.get('weights',

 shape=(hidden_units, 0),

 allow_deferred_init=True)

 self.scales = self.params.get('scales',

 shape=scales.shape,

 init=mx.init.Constant(scales.asnumpy()),

 differentiable=False)

Apache MXNet

 79

 def hybrid_forward(self, F, x, weights, scales):

 normalized_data = F.broadcast_div(F.broadcast_sub(x, F.min(x)),

(F.broadcast_sub(F.max(x), F.min(x))))

 weighted_data = F.FullyConnected(normalized_data, weights,

num_hidden=self.weights.shape[0], no_bias=True)

 scaled_data = F.broadcast_mul(scales, weighted_data)

 return scaled_data

Apache MXNet

 80

This chapter deals with the python packages KVStore and visualization.

KVStore package

KV stores stands for Key-Value store. It is critical component used for multi-device

training. It is important because, the communication of parameters across devices on

single as well as across multiple machines is transmitted through one or more servers with

a KVStore for the parameters.

Let us understand the working of KVStore with the help of following points:

 Each value in KVStore is represented by a key and a value.

 Each parameter array in the network is assigned a key and the weights of that

parameter array is referred by value.

 After that, the worker nodes push gradients after processing a batch. They also

pull updated weights before processing a new batch.

In simple words, we can say that KVStore is a place for data sharing where, each device

can push data in and pull data out.

Data Push-In and Pull-Out

KVStore can be thought of as single object shared across different devices such as GPUs

& computers, where each device is able to push data in and pull data out.

Following are the implementation steps that needs to be followed by devices to push data

in and pull data out:

Implementation steps

Initialisation: First step is to initialise the values. Here for our example, we will be

initialising a pair (int, NDArray) pair into KVStrore and after that pulling the values out:

import mxnet as mx

kv = mx.kv.create('local') # create a local KVStore.

shape = (3,3)

kv.init(3, mx.nd.ones(shape)*2)

a = mx.nd.zeros(shape)

kv.pull(3, out = a)

print(a.asnumpy())

Output

This produces the following output:

11. Apache MXNet — KVStore and Visualization

Apache MXNet

 81

[[2. 2. 2.]

 [2. 2. 2.]

 [2. 2. 2.]]

Push, Aggregate, and Update: Once initialised, we can push a new value into KVStore

with the same shape to the key:

kv.push(3, mx.nd.ones(shape)*8)

kv.pull(3, out = a)

print(a.asnumpy())

Output

The output is given below:

[[8. 8. 8.]

 [8. 8. 8.]

 [8. 8. 8.]]

The data used for pushing can be stored on any device such as GPUs or computers. We

can also push multiple values into the same key. In this case, the KVStore will first sum

all of these values and then push the aggregated value as follows:

contexts = [mx.cpu(i) for i in range(4)]

b = [mx.nd.ones(shape, ctx) for ctx in contexts]

kv.push(3, b)

kv.pull(3, out = a)

print(a.asnumpy())

Output

You will see the following output:

[[4. 4. 4.]

 [4. 4. 4.]

 [4. 4. 4.]]

For each push you applied, KVStore will combine the pushed value with the value already

stored. It will be done with the help of an updater. Here, the default updater is ASSIGN.

def update(key, input, stored):

 print("update on key: %d" % key)

 stored += input * 2

kv.set_updater(update)

Apache MXNet

 82

kv.pull(3, out=a)

print(a.asnumpy())

Output

When you execute the above code, you should see the following output:

[[4. 4. 4.]

 [4. 4. 4.]

 [4. 4. 4.]]

kv.push(3, mx.nd.ones(shape))

kv.pull(3, out=a)

print(a.asnumpy())

Output

Given below is the output of the code:

update on key: 3

[[6. 6. 6.]

 [6. 6. 6.]

 [6. 6. 6.]]

Pull: As like Push, we can also pull the value onto several devices with a single call as

follows:

b = [mx.nd.ones(shape, ctx) for ctx in contexts]

kv.pull(3, out = b)

print(b[1].asnumpy())

Output

The output is stated below:

[[6. 6. 6.]

 [6. 6. 6.]

 [6. 6. 6.]]

Complete Implementation Example

Given below is the complete implementation example:

import mxnet as mx

Apache MXNet

 83

kv = mx.kv.create('local')

shape = (3,3)

kv.init(3, mx.nd.ones(shape)*2)

a = mx.nd.zeros(shape)

kv.pull(3, out = a)

print(a.asnumpy())

kv.push(3, mx.nd.ones(shape)*8)

kv.pull(3, out = a) # pull out the value

print(a.asnumpy())

contexts = [mx.cpu(i) for i in range(4)]

b = [mx.nd.ones(shape, ctx) for ctx in contexts]

kv.push(3, b)

kv.pull(3, out = a)

print(a.asnumpy())

def update(key, input, stored):

 print("update on key: %d" % key)

 stored += input * 2

kv._set_updater(update)

kv.pull(3, out=a)

print(a.asnumpy())

kv.push(3, mx.nd.ones(shape))

kv.pull(3, out=a)

print(a.asnumpy())

b = [mx.nd.ones(shape, ctx) for ctx in contexts]

kv.pull(3, out = b)

print(b[1].asnumpy())

Handling Key-Value Pairs

All the operations we have implemented above involves a single key, but KVStore also

provides an interface for a list of key-value pairs:

For a single device

Following is an example to show an KVStore interface for a list of key-value pairs for a

single device:

keys = [5, 7, 9]

kv.init(keys, [mx.nd.ones(shape)]*len(keys))

kv.push(keys, [mx.nd.ones(shape)]*len(keys))

Apache MXNet

 84

b = [mx.nd.zeros(shape)]*len(keys)

kv.pull(keys, out = b)

print(b[1].asnumpy())

Output

You will receive the following output:

update on key: 5

update on key: 7

update on key: 9

[[3. 3. 3.]

 [3. 3. 3.]

 [3. 3. 3.]]

For multiple device

Following is an example to show an KVStore interface for a list of key-value pairs for

multiple device:

b = [[mx.nd.ones(shape, ctx) for ctx in contexts]] * len(keys)

kv.push(keys, b)

kv.pull(keys, out = b)

print(b[1][1].asnumpy())

Output

You will see the following output:

update on key: 5

update on key: 7

update on key: 9

[[11. 11. 11.]

 [11. 11. 11.]

 [11. 11. 11.]]

Visualization package

Visualization package is Apache MXNet package used to represents the neural network

(NN) as a computation graph that consists of nodes and edges.

Visualize neural network

In the example below we will use mx.viz.plot_network to visualize neural network.

Followings are the prerequisites for this:

Apache MXNet

 85

Prerequisites

 Jupyter notebook

 Graphviz library

Implementation Example

In the example below we will visualize a sample NN for linear matrix factorisation:

import mxnet as mx

user = mx.symbol.Variable('user')

item = mx.symbol.Variable('item')

score = mx.symbol.Variable('score')

Set the dummy dimensions

k = 64

max_user = 100

max_item = 50

The user feature lookup

user = mx.symbol.Embedding(data = user, input_dim = max_user, output_dim = k)

The item feature lookup

item = mx.symbol.Embedding(data = item, input_dim = max_item, output_dim = k)

predict by the inner product and then do sum

N_net = user * item

N_net = mx.symbol.sum_axis(data = N_net, axis = 1)

N_net = mx.symbol.Flatten(data = N_net)

Defining the loss layer

N_net = mx.symbol.LinearRegressionOutput(data = N_net, label = score)

Visualize the network

mx.viz.plot_network(N_net)

Apache MXNet

 86

This chapter explains the ndarray library which is available in Apache MXNet.

Mxnet.ndarray

Apache MXNet’s NDArray library defines the core DS (data structures) for all the

mathematical computations. Two fundamental jobs of NDArray are as follows:

 It supports fast execution on a wide range of hardware configurations.

 It automatically parallelises multiple operations across available hardware.

The example given below shows how one can create an NDArray by using 1-D and 2-D

‘array’ from a regular Python list:

import mxnet as mx

from mxnet import nd

x = nd.array([1,2,3,4,5,6,7,8,9,10])

print(x)

Output

The output is given below:

[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

<NDArray 10 @cpu(0)>

y = nd.array([[1,2,3,4,5,6,7,8,9,10], [1,2,3,4,5,6,7,8,9,10],

[1,2,3,4,5,6,7,8,9,10]])

print(y)

Output

This produces the following output:

[[1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

 [1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]

 [1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]]

<NDArray 3x10 @cpu(0)>

12. Apache MXNet — Python API ndarray

Apache MXNet

 87

Now let us discuss in detail about the classes, functions, and parameters of ndarray API

of MXNet.

 Classes

Following table consists of the classes of ndarray API of MXNet:

Class Definition

CachedOp(sym[,

flags])

It is used for Cached operator handle.

NDArray(handle[,

writable])

It is used as an array object that represents a multi-

dimensional, homogeneous array of fixed-size items.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.ndarray API:

Function & its Parameters Definition

Activation([data, act_type, out, name])

It applies an activation function

element-wise to the input. It

supports relu, sigmoid, tanh,

softrelu, softsign activation

functions.

BatchNorm([data, gamma, beta, moving_mean, …])

It is used for batch

normalisation. This function

normalises a data batch by

mean and variance. It applies a

scale gamma and offset beta.

BilinearSampler([data, grid, cudnn_off, …])

This function applies bilinear

sampling to input feature map.

Actually it is the key of “Spatial

Transformer Networks”.

If you are familiar with remap

function in OpenCV, the usage

of this function is quite similar

to that. The only difference is

that it has the backward pass.

BlockGrad([data, out, name])

As name specifies, this function

stops gradient computation. It

basically stops the accumulated

gradient of the inputs from

flowing through this operator in

backward direction.

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Activation
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BatchNorm
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BilinearSampler
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BlockGrad

Apache MXNet

 88

cast([data, dtype, out, name])

This function will cast all

elements of the input to a new

type.

Implementation Examples

In the example below, we will be using the function BilinierSampler() for zooming out the

data two times and shifting the data horizontally by -1 pixel:

import mxnet as mx

from mxnet import nd

data = nd.array([[[[2, 5, 3, 6],

 [1, 8, 7, 9],

 [0, 4, 1, 8],

 [2, 0, 3, 4]]]])

affine_matrix = nd.array([[2, 0, 0],

 [0, 2, 0]])

affine_matrix = nd.reshape(affine_matrix, shape=(1, 6))

grid = nd.GridGenerator(data=affine_matrix, transform_type='affine',

target_shape=(4, 4))

output = nd.BilinearSampler(data, grid)

output

Output

When you execute the above code, you should see the following output:

[[[[0. 0. 0. 0.]

 [0. 4.0000005 6.25 0.]

 [0. 1.5 4. 0.]

 [0. 0. 0. 0.]]]]

<NDArray 1x1x4x4 @cpu(0)>

The above output shows the zooming out of data two times.

Example of shifting the data by -1 pixel is as follows:

import mxnet as mx

from mxnet import nd

data = nd.array([[[[2, 5, 3, 6],

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Cast

Apache MXNet

 89

 [1, 8, 7, 9],

 [0, 4, 1, 8],

 [2, 0, 3, 4]]]])

warp_matrix = nd.array([[[[1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1],

 [1, 1, 1, 1]],

 [[0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0],

 [0, 0, 0, 0]]]])

grid = nd.GridGenerator(data=warp_matrix, transform_type='warp')

output = nd.BilinearSampler(data, grid)

output

Output

The output is stated below:

[[[[5. 3. 6. 0.]

 [8. 7. 9. 0.]

 [4. 1. 8. 0.]

 [0. 3. 4. 0.]]]]

<NDArray 1x1x4x4 @cpu(0)>

Similarly, following example shows the use of cast() function:

nd.cast(nd.array([300, 10.1, 15.4, -1, -2]), dtype='uint8')

Output

Upon execution, you will receive the following output:

[44 10 15 255 254]

<NDArray 5 @cpu(0)>

ndarray.contrib

The Contrib NDArray API is defined in the ndarray.contrib package. It typically provides

many useful experimental APIs for new features. This API works as a place for the

community where they can try out the new features. The feature contributor will get the

feedback as well.

Apache MXNet

 90

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.ndarray.contrib API:

Function & its Parameters Definition

rand_zipfian(true_classes, num_sampled, …)

This function draws random samples

from an approximately Zipfian

distribution. The base distribution of

this function is Zipfian distribution.

This function randomly samples

num_sampled candidates and the

elements of sampled_candidates are

drawn from the base distribution

given above.

foreach(body, data, init_states)

As name implies, this function runs a

for loop with user-defined

computation over NDArrays on

dimension 0. This function simulates

a for loop and body has the

computation for an iteration of the for

loop.

while_loop(cond, func, loop_vars[, …])

As name implies, this function runs a

while loop with user-defined

computation and loop condition. This

function simulates a while loop that

literately does customized

computation if the condition is

satisfied.

cond(pred, then_func, else_func)

As name implies, this function run an

if-then-else using user-defined

condition and computation. This

function simulates an if-like branch

which chooses to do one of the two

customised computations according

to the specified condition.

isinf(data)

This function performs an element-

wise check to determine if the

NDArray contains an infinite element

or not.

getnnz([data, axis, out, name])

This function gives us the number of

stored values for a sparse tensor. It

also includes explicit zeros. It only

supports CSR matrix on CPU.

requantize([data, min_range, max_range, …])

This function requantise the given

data that is quantised in int32 and the

corresponding thresholds, into int8

using min and max thresholds either

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.rand_zipfian
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.foreach
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.while_loop
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.cond
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.isinf
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.getnnz
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.requantize

Apache MXNet

 91

calculated at runtime or from

calibration.

Implementation Examples

In the example below, we will be using the function rand_zipfian for drawing random

samples from an approximately Zipfian distribution:

import mxnet as mx

from mxnet import nd

trueclass = mx.nd.array([2])

samples, exp_count_true, exp_count_sample =

mx.nd.contrib.rand_zipfian(trueclass, 3, 4)

samples

Output

You will see the following output:

[0 0 1]

<NDArray 3 @cpu(0)>

exp_count_true

Output

The output is given below:

[0.53624076]

<NDArray 1 @cpu(0)>

exp_count_sample

Output

This produces the following output:

[1.29202967 1.29202967 0.75578891]

<NDArray 3 @cpu(0)>

In the example below, we will be using the function while_loop for running a while loop

for user-defined computation and loop condition:

cond = lambda i, s: i <= 7

Apache MXNet

 92

func = lambda i, s: ([i + s], [i + 1, s + i])

loop_var = (mx.nd.array([0], dtype="int64"), mx.nd.array([1], dtype="int64"))

outputs, states = mx.nd.contrib.while_loop(cond, func, loop_vars,

max_iterations=10)

outputs

Output

The output is shown below:

[

 [[1]

 [2]

 [4]

 [7]

 [11]

 [16]

 [22]

 [29]

 [3152434450384]

 [257]]

 <NDArray 10x1 @cpu(0)>]

States

Output

This produces the following output:

[

 [8]

 <NDArray 1 @cpu(0)>,

 [29]

 <NDArray 1 @cpu(0)>]

ndarray.image

The Image NDArray API is defined in the ndarray.image package. As name implies, it

typically used for images and their features.

Functions and their parameters

Apache MXNet

 93

Following are some of the important functions & their parameters covered by

mxnet.ndarray.image API:

Function & its Parameters Definition

adjust_lighting([data, alpha, out, name])

As name implies, this function

adjusts the lighting level of the

input. It follows the AlexNet

style.

crop([data, x, y, width, height, out, name])

With the help of this function, we

can crop an image NDArray of

shape (H x W x C) or (N x H x W

x C) to the size given by user.

normalize([data, mean, std, out, name])

It will normalise a tensor of shape

(C x H x W) or (N x C x H x W)

with mean and standard

deviation(SD).

random_crop([data, xrange, yrange, width, …])

Similar to crop(), it randomly

crop an image NDArray of shape

(H x W x C) or (N x H x W x C) to

the size given by the user. It will

upsample the result if src is

smaller than the size.

random_lighting([data, alpha_std, out, name])

As name implies, this function

adds the PCA noise randomly. It

also follows the AlexNet style.

random_resized_crop([data, xrange, yrange, …])

It also crops an image randomly

NDArray of shape (H x W x C) or

(N x H x W x C) to the given size.

It will upsample the result, if src

is smaller than the size. It will

randomise the area and aspect

ration as well.

resize([data, size, keep_ratio, interp, …])

As name implies, this function

will resize an image NDArray of

shape (H x W x C) or (N x H x W

x C) to the size given by user.

to_tensor([data, out, name])

It converts an image NDArray of

shape (H x W x C) or (N x H x W

x C) with the values in the range

[0, 255] to a tensor NDArray of

shape (C x H x W) or (N x C x H

x W) with the values in the range

[0, 1].

Implementation Examples

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.adjust_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.normalize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_resized_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.resize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.to_tensor

Apache MXNet

 94

In the example below, we will be using the function to_tensor to convert image NDArray

of shape (H x W x C) or (N x H x W x C) with the values in the range [0, 255] to a tensor

NDArray of shape (C x H x W) or (N x C x H x W) with the values in the range [0, 1].

import numpy as np

img = mx.nd.random.uniform(0, 255, (4, 2, 3)).astype(dtype=np.uint8)

mx.nd.image.to_tensor(img)

Output

You will see the following output:

[[[0.972549 0.5058824]

 [0.6039216 0.01960784]

 [0.28235295 0.35686275]

 [0.11764706 0.8784314]]

 [[0.8745098 0.9764706]

 [0.4509804 0.03529412]

 [0.9764706 0.29411766]

 [0.6862745 0.4117647]]

 [[0.46666667 0.05490196]

 [0.7372549 0.4392157]

 [0.11764706 0.47843137]

 [0.31764707 0.91764706]]]

<NDArray 3x4x2 @cpu(0)>

img = mx.nd.random.uniform(0, 255, (2, 4, 2, 3)).astype(dtype=np.uint8)

mx.nd.image.to_tensor(img)

Output

When you run the code, you will see the following output:

[[[[0.0627451 0.5647059]

 [0.2627451 0.9137255]

 [0.57254905 0.27450982]

Apache MXNet

 95

 [0.6666667 0.64705884]]

 [[0.21568628 0.5647059]

 [0.5058824 0.09019608]

 [0.08235294 0.31764707]

 [0.8392157 0.7137255]]

 [[0.6901961 0.8627451]

 [0.52156866 0.91764706]

 [0.9254902 0.00784314]

 [0.12941177 0.8392157]]]

 [[[0.28627452 0.39607844]

 [0.01960784 0.36862746]

 [0.6745098 0.7019608]

 [0.9607843 0.7529412]]

 [[0.2627451 0.58431375]

 [0.16470589 0.00392157]

 [0.5686275 0.73333335]

 [0.43137255 0.57254905]]

 [[0.18039216 0.54901963]

 [0.827451 0.14509805]

 [0.26666668 0.28627452]

 [0.24705882 0.39607844]]]]

<NDArray 2x3x4x2 @cpu(0)>

In the example below, we will be using the function normalize to normalise a tensor of

shape (C x H x W) or (N x C x H x W) with mean and standard deviation(SD).

img = mx.nd.random.uniform(0, 1, (3, 4, 2))

mx.nd.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1))

Output

Apache MXNet

 96

This produces the following output:

[[[0.29391178 0.3218054]

 [0.23084386 0.19615503]

 [0.24175143 0.21988946]

 [0.16710812 0.1777354]]

 [[-0.02195817 -0.3847335]

 [-0.17800489 -0.30256534]

 [-0.28807247 -0.19059572]

 [-0.19680339 -0.26256624]]

 [[-1.9808068 -1.5298678]

 [-1.6984252 -1.2839255]

 [-1.3398265 -1.712009]

 [-1.7099224 -1.6165378]]]

<NDArray 3x4x2 @cpu(0)>

img = mx.nd.random.uniform(0, 1, (2, 3, 4, 2))

mx.nd.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1))

Output

When you execute the above code, you should see the following output:

[[[[2.0600514e-01 2.4972327e-01]

 [1.4292289e-01 2.9281738e-01]

 [4.5158025e-02 3.4287784e-02]

 [9.9427439e-02 3.0791296e-02]]

 [[-2.1501756e-01 -3.2297665e-01]

 [-2.0456362e-01 -2.2409186e-01]

 [-2.1283737e-01 -4.8318747e-01]

 [-1.7339960e-01 -1.5519112e-02]]

 [[-1.3478968e+00 -1.6790028e+00]

 [-1.5685816e+00 -1.7787373e+00]

Apache MXNet

 97

 [-1.1034534e+00 -1.8587360e+00]

 [-1.6324382e+00 -1.9027401e+00]]]

 [[[1.4528830e-01 3.2801408e-01]

 [2.9730779e-01 8.6780310e-02]

 [2.6873133e-01 1.7900752e-01]

 [2.3462953e-01 1.4930873e-01]]

 [[-4.4988656e-01 -4.5021546e-01]

 [-4.0258706e-02 -3.2384416e-01]

 [-1.4287934e-01 -2.6537544e-01]

 [-5.7649612e-04 -7.9429924e-02]]

 [[-1.8505517e+00 -1.0953522e+00]

 [-1.1318740e+00 -1.9624406e+00]

 [-1.8375070e+00 -1.4916846e+00]

 [-1.3844404e+00 -1.8331525e+00]]]]

<NDArray 2x3x4x2 @cpu(0)>

ndarray.random

The Random NDArray API is defined in the ndarray.random package. As name implies, it

is random distribution generator NDArray API of MXNet.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.ndarray.random API:

Function and its Parameters Definition

uniform([low, high, shape, dtype, ctx, out])

It generates random samples

from a uniform distribution.

normal([loc, scale, shape, dtype, ctx, out])

It generates random samples

from a normal (Gaussian)

distribution.

randn(*shape, **kwargs)

It generates random samples

from a normal (Gaussian)

distribution.

poisson([lam, shape, dtype, ctx, out])

It generates random samples

from a Poisson distribution.

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randn
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson

Apache MXNet

 98

exponential([scale, shape, dtype, ctx, out])

It generates samples from an

exponential distribution.

gamma([alpha, beta, shape, dtype, ctx, out])

It generates random samples

from a gamma distribution.

multinomial(data[, shape, get_prob, out, dtype])

It generates concurrent sampling

from multiple multinomial

distributions.

negative_binomial([k, p, shape, dtype, ctx, out])

It generates random samples

from a negative binomial

distribution.

generalized_negative_binomial([mu, alpha, …])

It generates random samples

from a generalised negative

binomial distribution.

shuffle(data, **kwargs)

It shuffles the elements

randomly.

randint(low, high[, shape, dtype, ctx, out])

It generates random samples

from a discrete uniform

distribution.

exponential_like([data, lam, out, name])

It generates random samples

from an exponential distribution

according to the input array

shape.

gamma_like([data, alpha, beta, out, name])

It generates random samples

from a gamma distribution

according to the input array

shape.

generalized_negative_binomial_like([data, …])

It generates random samples

from a generalised negative

binomial distribution, according

to the input array shape.

negative_binomial_like([data, k, p, out, name])

It generates random samples

from a negative binomial

distribution, according to the

input array shape.

normal_like([data, loc, scale, out, name])

It generates random samples

from a normal (Gaussian)

distribution, according to the

input array shape.

poisson_like([data, lam, out, name])

It generates random samples

from a Poisson distribution,

according to the input array

shape.

uniform_like([data, low, high, out, name])
It generates random samples

from a uniform distribution,

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.multinomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.shuffle
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randint
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform_like

Apache MXNet

 99

according to the input array

shape.

Implementation Examples

In the example below, we are going to draw random samples from a uniform distribution.

For this will be using the function uniform().

mx.nd.random.uniform(0, 1)

Output

The output is mentioned below:

[0.12381998]

<NDArray 1 @cpu(0)>

mx.nd.random.uniform(-1, 1, shape=(2,))

Output

The output is given below:

[0.558102 0.69601643]

<NDArray 2 @cpu(0)>

low = mx.nd.array([1,2,3])

high = mx.nd.array([2,3,4])

mx.nd.random.uniform(low, high, shape=2)

Output

You will see the following output:

[[1.8649333 1.8073189]

 [2.4113967 2.5691009]

 [3.1399727 3.4071832]]

<NDArray 3x2 @cpu(0)>

In the example below, we are going to draw random samples from a generalized negative

binomial distribution. For this, we will be using the function

generalized_negative_binomial().

Apache MXNet

 100

mx.nd.random.generalized_negative_binomial(10, 0.5)

Output

When you execute the above code, you should see the following output:

[1.]

<NDArray 1 @cpu(0)>

mx.nd.random.generalized_negative_binomial(10, 0.5, shape=(2,))

Output

The output is given herewith:

[16. 23.]

<NDArray 2 @cpu(0)>

mu = mx.nd.array([1,2,3])

alpha = mx.nd.array([0.2,0.4,0.6])

mx.nd.random.generalized_negative_binomial(mu, alpha, shape=2)

Output

Given below is the output of the code:

[[0. 0.]

 [4. 1.]

 [9. 3.]]

<NDArray 3x2 @cpu(0)>

ndarray.utils

The utility NDArray API is defined in the ndarray.utils package. As name implies, it provides

the utility functions for NDArray and BaseSparseNDArray.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.ndarray.utils API:

Function and its Parameters Definition

zeros(shape[, ctx, dtype, stype])
This function will return a new array of given shape

and type, filled with zeros.

https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.zeros

Apache MXNet

 101

empty(shape[, ctx, dtype, stype])
It will returns a new array of given shape and type,

without initialising entries.

array(source_array[, ctx, dtype])
As name implies, this function will create an array

from any object exposing the array interface.

load(fname) It will load an array from file.

load_frombuffer(buf)
As name implies, this function will load an array

dictionary or list from a buffer

save(fname, data)
This function will save a list of arrays or a dict of

str->array to file.

Implementation Examples

In the example below, we are going to return a new array of given shape and type, filled

with zeros. For this, we will be using the function zeros().

mx.nd.zeros((1,2), mx.cpu(), stype='csr')

Output

This produces the following output:

<CSRNDArray 1x2 @cpu(0)>

mx.nd.zeros((1,2), mx.cpu(), 'float16', stype='row_sparse').asnumpy()

Output

You will receive the following output:

array([[0., 0.]], dtype=float16)

In the example below, we are going to save a list of arrays and a dictionary of strings. For

this, we will be using the function save().

x = mx.nd.zeros((2,3))

y = mx.nd.ones((1,4))

mx.nd.save('list', [x,y])

mx.nd.save('dict', {'x':x, 'y':y})

mx.nd.load('list')

Output

Upon execution, you will receive the following output:

https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.empty
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.array
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.load
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.load_frombuffer
https://mxnet.apache.org/api/python/docs/api/ndarray/utils/index.html#mxnet.ndarray.utils.save

Apache MXNet

 102

[

 [[0. 0. 0.]

 [0. 0. 0.]]

 <NDArray 2x3 @cpu(0)>,

 [[1. 1. 1. 1.]]

 <NDArray 1x4 @cpu(0)>]

mx.nd.load('my_dict')

Output

The output is shown below:

{'x':

 [[0. 0. 0.]

 [0. 0. 0.]]

 <NDArray 2x3 @cpu(0)>, 'y':

 [[1. 1. 1. 1.]]

 <NDArray 1x4 @cpu(0)>}

Apache MXNet

 103

As we have already discussed in previous chapters that, MXNet Gluon provides a clear,

concise, and simple API for DL projects. It enables Apache MXNet to prototype, build, and

train DL models without forfeiting the training speed.

Core Modules

Let us learn the core modules of Apache MXNet Python application programming interface

(API) gluon.

gluon.nn

Gluon provides a large number of build-in NN layers in gluon.nn module. That is the

reason it is called the core module.

Methods and their parameters

Following are some of the important methods and their parameters covered by

mxnet.gluon.nn core module:

Methods and its Parameters Definition

Activation(activation, **kwargs)

As name implies, this method

applies an activation function to

input.

AvgPool1D([pool_size, strides, padding, …])

This is average pooling operation

for temporal data.

AvgPool2D([pool_size, strides, padding, …])

This is average pooling operation

for spatial data.

AvgPool3D([pool_size, strides, padding, …])

This is Average pooling operation

for 3D data. The data can be

spatial or spatio-temporal.

BatchNorm([axis, momentum, epsilon, center, …])

It represents batch normalisation

layer.

BatchNormReLU([axis, momentum, epsilon, …])

It also represents batch

normalisation layer but with Relu

activation function.

Block([prefix, params])

It gives the base class for all

neural network layers and

models.

Conv1D(channels, kernel_size[, strides, …])

This method is used for 1-D

convolution layer. For example,

temporal convolution.

13. Apache MXNet — Python API gluon

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Activation
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.AvgPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.BatchNorm
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.BatchNormReLU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Block
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv1D

Apache MXNet

 104

Conv1DTranspose(channels, kernel_size[, …])

This method is used for

Transposed 1D convolution layer.

Conv2D(channels, kernel_size[, strides, …])

This method is used for 2D

convolution layer. For example,

spatial convolution over images).

Conv2DTranspose(channels, kernel_size[, …])

This method is used for

Transposed 2D convolution layer.

Conv3D(channels, kernel_size[, strides, …])

This method is used for 3D

convolution layer. For example,

spatial convolution over volumes.

Conv3DTranspose(channels, kernel_size[, …])

This method is used for

Transposed 3D convolution layer.

Dense(units[, activation, use_bias, …])

This method represents for your

regular densely-connected NN

layer.

Dropout(rate[, axes])

As name implies, the method

applies Dropout to the input.

ELU([alpha])

This method is used for

Exponential Linear Unit (ELU).

Embedding(input_dim, output_dim[, dtype, …])

It turns non-negative integers

into dense vectors of fixed size.

Flatten(**kwargs)

This method flattens the input to

2-D.

GELU(**kwargs)

This method is used for Gaussian

Exponential Linear Unit (GELU).

GlobalAvgPool1D([layout])

With the help of this method, we

can do global average pooling

operation for temporal data.

GlobalAvgPool2D([layout])

With the help of this method, we

can do global average pooling

operation for spatial data.

GlobalAvgPool3D([layout])

With the help of this method, we

can do global average pooling

operation for 3-D data.

GlobalMaxPool1D([layout])

With the help of this method, we

can do global max pooling

operation for 1-D data.

GlobalMaxPool2D([layout])

With the help of this method, we

can do global max pooling

operation for 2-D data.

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv1DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv2DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Conv3DTranspose
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Dense
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Dropout
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.ELU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Embedding
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.Flatten
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GELU
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool2D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalAvgPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool1D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool2D

Apache MXNet

 105

GlobalMaxPool3D([layout])

With the help of this method, we

can do global max pooling

operation for 3-D data.

GroupNorm([num_groups, epsilon, center, …])

This method applies group

normalization to the n-D input

array.

HybridBlock([prefix, params])

This method supports forwarding

with both Symbol and NDArray.

HybridLambda(function[, prefix])

With the help of this method we

can wrap an operator or an

expression as a HybridBlock

object.

HybridSequential([prefix, params])

It stacks HybridBlocks

sequentially.

InstanceNorm([axis, epsilon, center, scale, …])

This method applies instance

normalisation to the n-D input

array.

Implementation Examples

In the example below, we are going to use Block() which gives the base class for all neural

network layers and models.

from mxnet.gluon import Block, nn

class Model(Block):

 def __init__(self, **kwargs):

 super(Model, self).__init__(**kwargs)

 # use name_scope to give child Blocks appropriate names.

 with self.name_scope():

 self.dense0 = nn.Dense(20)

 self.dense1 = nn.Dense(20)

 def forward(self, x):

 x = mx.nd.relu(self.dense0(x))

 return mx.nd.relu(self.dense1(x))

model = Model()

model.initialize(ctx=mx.cpu(0))

model(mx.nd.zeros((5, 5), ctx=mx.cpu(0)))

Output

You will see the following output:

https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GlobalMaxPool3D
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.GroupNorm
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridBlock
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridLambda
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.HybridSequential
https://mxnet.apache.org/api/python/docs/api/gluon/nn/index.html#mxnet.gluon.nn.InstanceNorm

Apache MXNet

 106

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

<NDArray 5x20 @cpu(0)>

In the example below, we are going to use HybridBlock() that supports forwarding with

both Symbol and NDArray.

import mxnet as mx

from mxnet.gluon import HybridBlock, nn

class Model(HybridBlock):

 def __init__(self, **kwargs):

 super(Model, self).__init__(**kwargs)

 # use name_scope to give child Blocks appropriate names.

 with self.name_scope():

 self.dense0 = nn.Dense(20)

 self.dense1 = nn.Dense(20)

 def forward(self, x):

 x = nd.relu(self.dense0(x))

 return nd.relu(self.dense1(x))

model = Model()

model.initialize(ctx=mx.cpu(0))

model.hybridize()

model(mx.nd.zeros((5, 5), ctx=mx.cpu(0)))

Output

The output is mentioned below:

[[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

<NDArray 5x20 @cpu(0)>

Apache MXNet

 107

gluon.rnn

Gluon provides a large number of build-in recurrent neural network (RNN) layers in

gluon.rnn module. That is the reason, it is called the core module.

Methods and their parameters

Following are some of the important methods and their parameters covered by

mxnet.gluon.nn core module:

Methods and its Parameters Definition

BidirectionalCell(l_cell, r_cell[, …])

It is used for Bidirectional Recurrent

Neural Network (RNN) cell.

DropoutCell(rate[, axes, prefix, params])

This method will apply dropout on the

given input.

GRU(hidden_size[, num_layers, layout, …])

It applies a multi-layer gated

recurrent unit (GRU) RNN to a given

input sequence.

GRUCell(hidden_size[, …])

It is used for Gated Rectified Unit

(GRU) network cell.

HybridRecurrentCell([prefix, params])
This method supports hybridize.

HybridSequentialRNNCell([prefix, params])

With the help of this method we can

sequentially stack multiple HybridRNN

cells.

LSTM(hidden_size[, num_layers, layout, …])

It applies a multi-layer long short-

term memory (LSTM) RNN to a given

input sequence.

LSTMCell(hidden_size[, …])

It is used for Long-Short Term

Memory (LSTM) network cell.

ModifierCell(base_cell)
It is the Base class for modifier cells.

RNN(hidden_size[, num_layers, activation, …])

It applies a multi-layer Elman RNN

with tanh or ReLU non-linearity to a

given input sequence.

RNNCell(hidden_size[, activation, …])

It is used for Elman RNN recurrent

neural network cell.

RecurrentCell([prefix, params])

It represents the abstract base class

for RNN cells.

SequentialRNNCell([prefix, params])

With the help of this method we can

sequentially stack multiple RNN cells.

ZoneoutCell(base_cell[, zoneout_outputs, …])

This method applies Zoneout on the

base cell.

Implementation Examples

https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.BidirectionalCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.DropoutCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.GRU
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.GRUCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.HybridRecurrentCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.HybridSequentialRNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.LSTM
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.LSTMCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.ModifierCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RNN
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.RecurrentCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.SequentialRNNCell
https://mxnet.apache.org/api/python/docs/api/gluon/rnn/index.html#mxnet.gluon.rnn.ZoneoutCell

Apache MXNet

 108

In the example below, we are going to use GRU() which applies a multi-layer gated

recurrent unit (GRU) RNN to a given input sequence.

layer = mx.gluon.rnn.GRU(100, 3)

layer.initialize()

input_seq = mx.nd.random.uniform(shape=(5, 3, 10))

out_seq = layer(input_seq)

h0 = mx.nd.random.uniform(shape=(3, 3, 100))

out_seq, hn = layer(input_seq, h0)

out_seq

Output

This produces the following output:

[[[1.50152072e-01 5.19012511e-01 1.02390535e-01 ... 4.35803324e-01

 1.30406499e-01 3.30152437e-02]

 [2.91542172e-01 1.02243155e-01 1.73325196e-01 ... 5.65296151e-02

 1.76546033e-02 1.66693389e-01]

 [2.22257316e-01 3.76294643e-01 2.11277917e-01 ... 2.28903517e-01

 3.43954474e-01 1.52770668e-01]]

 [[1.40634328e-01 2.93247789e-01 5.50393537e-02 ... 2.30207980e-01

 6.61415309e-02 2.70989928e-02]

 [1.11081995e-01 7.20834285e-02 1.08342394e-01 ... 2.28330195e-02

 6.79589901e-03 1.25501186e-01]

 [1.15944080e-01 2.41565228e-01 1.18612610e-01 ... 1.14908054e-01

 1.61080107e-01 1.15969211e-01]]

………………………….

hn

Output

This produces the following output:

[[[-6.08105101e-02 3.86217088e-02 6.64453954e-03 8.18805695e-02

 3.85607071e-02 -1.36945639e-02 7.45836645e-03 -5.46515081e-03

 9.49622393e-02 6.39371723e-02 -6.37890724e-03 3.82240303e-02

 9.11015049e-02 -2.01375950e-02 -7.29381144e-02 6.93765879e-02

Apache MXNet

 109

 2.71829776e-02 -6.64435029e-02 -8.45306814e-02 -1.03075653e-01

 6.72040805e-02 -7.06537142e-02 -3.93818803e-02 5.16211614e-03

 -4.79770005e-02 1.10734522e-01 1.56721435e-02 -6.93409378e-03

 1.16915874e-01 -7.95962065e-02 -3.06530762e-02 8.42394680e-02

 7.60370195e-02 2.17055440e-01 9.85361822e-03 1.16660878e-01

 4.08297703e-02 1.24978097e-02 8.25245082e-02 2.28673983e-02

 -7.88266212e-02 -8.04114193e-02 9.28791538e-02 -5.70827350e-03

 -4.46166918e-02 -6.41122833e-02 1.80885363e-02 -2.37745279e-03

 4.37298454e-02 1.28888980e-01 -3.07202265e-02 2.50503756e-02

 4.00907174e-02 3.37077095e-03 -1.78839862e-02 8.90695080e-02

 6.30150884e-02 1.11416787e-01 2.12221760e-02 -1.13236710e-01

 5.39616570e-02 7.80710578e-02 -2.28817668e-02 1.92073174e-02

………………………….

In the example below we are going to use LSTM() which applies a long-short term memory

(LSTM) RNN to a given input sequence.

layer = mx.gluon.rnn.LSTM(100, 3)

layer.initialize()

input_seq = mx.nd.random.uniform(shape=(5, 3, 10))

out_seq = layer(input_seq)

h0 = mx.nd.random.uniform(shape=(3, 3, 100))

c0 = mx.nd.random.uniform(shape=(3, 3, 100))

out_seq, hn = layer(input_seq,[h0,c0])

out_seq

Output

The output is mentioned below:

[[[9.00025964e-02 3.96071747e-02 1.83841765e-01 ... 3.95872220e-02

 1.25569820e-01 2.15555862e-01]

 [1.55962542e-01 -3.10300849e-02 1.76772922e-01 ... 1.92474753e-01

 2.30574399e-01 2.81707942e-02]

 [7.83204585e-02 6.53361529e-03 1.27262697e-01 ... 9.97719541e-02

 1.28254429e-01 7.55299702e-02]]

 [[4.41036932e-02 1.35250352e-02 9.87644792e-02 ... 5.89378644e-03

 5.23949116e-02 1.00922674e-01]

Apache MXNet

 110

 [8.59075040e-02 -1.67027581e-02 9.69351009e-02 ... 1.17763653e-01

 9.71239135e-02 2.25218050e-02]

 [4.34580036e-02 7.62207608e-04 6.37005866e-02 ... 6.14888743e-02

 5.96345589e-02 4.72368896e-02]]

……………

hn

Output

When you run the code, you will see the following output:

[

 [[[2.21408084e-02 1.42750628e-02 9.53067932e-03 -1.22849066e-02

 1.78788435e-02 5.99269159e-02 5.65306023e-02 6.42553642e-02

 6.56616641e-03 9.80876666e-03 -1.15729487e-02 5.98640442e-02

 -7.21173314e-03 -2.78371759e-02 -1.90690923e-02 2.21447181e-02

 8.38765781e-03 -1.38521893e-02 -9.06938594e-03 1.21346042e-02

 6.06449470e-02 -3.77471633e-02 5.65885007e-02 6.63008019e-02

 -7.34188128e-03 6.46054149e-02 3.19911093e-02 4.11194898e-02

 4.43960279e-02 4.92892228e-02 1.74766723e-02 3.40303481e-02

 -5.23341820e-03 2.68163737e-02 -9.43402853e-03 -4.11836170e-02

 1.55221792e-02 -5.05655073e-02 4.24557598e-03 -3.40388380e-02

……………………

Training Modules

The training modules in Gluon are as follows:

gluon.loss

In mxnet.gluon.loss module, Gluon provides pre-defined loss function. Basically, it has

the losses for training neural network. That is the reason it is called the training module.

Methods and their parameters

Following are some of the important methods and their parameters covered by

mxnet.gluon.loss training module:

Methods and its Parameters Definition

Loss(weight, batch_axis, **kwargs)
This acts as the base class for loss.

https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.Loss

Apache MXNet

 111

L2Loss([weight, batch_axis])

It calculates the mean squared

error (MSE)

between label and prediction(pr

ed).

L1Loss([weight, batch_axis])

It calculates the mean absolute

error (MAE)

between label and pred.

SigmoidBinaryCrossEntropyLoss([…])

This method is used for the cross-

entropy loss for binary

classification.

SigmoidBCELoss

This method is used for the cross-

entropy loss for binary

classification.

SoftmaxCrossEntropyLoss([axis, …])

It computes the softmax cross-

entropy loss (CEL).

SoftmaxCELoss

It also computes the softmax cross

entropy loss.

KLDivLoss([from_logits, axis, weight, …])

It is used for the Kullback-Leibler

divergence loss.

CTCLoss([layout, label_layout, weight])

It is used for connectionist

Temporal Classification Loss (TCL).

HuberLoss([rho, weight, batch_axis])

It calculates smoothed L1 loss. The

smoothed L1 loss will be equal to

L1 loss if absolute error exceeds

rho but is equal to L2 loss

otherwise.

HingeLoss([margin, weight, batch_axis])

This method calculates the hinge

loss function often used in SVMs:

SquaredHingeLoss([margin, weight, batch_axis

])

This method calculates the soft-

margin loss function used in SVMs:

LogisticLoss([weight, batch_axis, label_format])

This method calculates the logistic

loss.

TripletLoss([margin, weight, batch_axis])

This method calculates triplet loss

given three input tensors and a

positive margin.

PoissonNLLLoss([weight, from_logits, …])

The function calculates the

Negative Log likelihood loss.

CosineEmbeddingLoss([weight, batch_axis, ma

rgin])

The function computes the cosine

distance between the vectors.

SDMLLoss([smoothing_parameter, weight, …])

This method calculates Batchwise

Smoothed Deep Metric Learning

(SDML) Loss given two input

https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.L2Loss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.L1Loss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SigmoidBinaryCrossEntropyLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SigmoidBCELoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SoftmaxCrossEntropyLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SoftmaxCELoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.KLDivLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.CTCLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.HuberLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.HingeLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SquaredHingeLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.LogisticLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.TripletLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.PoissonNLLLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.CosineEmbeddingLoss
https://mxnet.apache.org/api/python/docs/api/gluon/loss/index.html#mxnet.gluon.loss.SDMLLoss

Apache MXNet

 112

tensors and a smoothing weight

SDM Loss. It learns similarity

between paired samples by using

unpaired samples in the minibatch

as potential negative examples.

Example

As we know that mxnet.gluon.loss.loss will calculate the MSE(Mean Squared Error)

between label and prediction (pred). It is done with the help of following formula:

𝐿 =
1

2
∑ |𝑙𝑎𝑏𝑒𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖|

2
𝑖

gluon.parameter

mxnet.gluon.parameter is a container that holds the parameters i.e. weights of the

Blocks.

Methods and their parameters

Following are some of the important methods and their parameters covered by

mxnet.gluon.parameter training module:

Methods and its Parameters Definition

cast(dtype)

This method will cast data and gradient of this

Parameter to a new data type.

data([ctx])

This method will return a copy of this parameter

on one context.

grad([ctx])

This method will return a gradient buffer for this

parameter on one context.

initialize([init, ctx, default_init, …])

This method will initialize parameter and gradient

arrays.

list_ctx()

This method will return a list of contexts this

parameter is initialized on.

list_data()

This method will return copies of this parameter

on all contexts. It will be done in the same order

as creation.

list_grad()

This method will return gradient buffers on all

contexts. This will be done in the same order

as values().

list_row_sparse_data(row_id)

This method will return copies of the ‘row_sparse’

parameter on all contexts. This will be done in

the same order as creation.

reset_ctx(ctx)

This method will re-assign Parameter to other

contexts.

https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.cast
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.grad
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.initialize
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_ctx
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_grad
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.list_row_sparse_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.reset_ctx

Apache MXNet

 113

row_sparse_data(row_id)

This method will return a copy of the ‘row_sparse’

parameter on the same context as row_id’s.

set_data(data)

This method will set this parameter’s value on all

contexts.

var()

This method will return a symbol representing

this parameter.

zero_grad()

This method will set the gradient buffer on all

contexts to 0.

Implementation Example

In the example below, we will initialize parameters and the gradients arrays by using

initialize() method as follows:

weight = mx.gluon.Parameter('weight', shape=(2, 2))

weight.initialize(ctx=mx.cpu(0))

weight.data()

Output:

The output is mentioned below:

[[-0.0256899 0.06511251]

 [-0.00243821 -0.00123186]]

<NDArray 2x2 @cpu(0)>

weight.grad()

Output

The output is given below:

[[0. 0.]

 [0. 0.]]

<NDArray 2x2 @cpu(0)>

weight.initialize(ctx=[mx.gpu(0), mx.gpu(1)])

weight.data(mx.gpu(0))

Output

You will see the following output:

https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.row_sparse_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.set_data
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.var
https://mxnet.apache.org/api/python/docs/api/gluon/parameter.html#mxnet.gluon.Parameter.zero_grad

Apache MXNet

 114

[[-0.00873779 -0.02834515]

 [0.05484822 -0.06206018]]

<NDArray 2x2 @gpu(0)>

weight.data(mx.gpu(1))

Output

When you execute the above code, you should see the following output:

[[-0.00873779 -0.02834515]

 [0.05484822 -0.06206018]]

<NDArray 2x2 @gpu(1)>

gluon.trainer

mxnet.gluon.trainer applies an Optimizer on a set of parameters. It should be used

together with autograd.

Methods and their parameters

Following are some of the important methods and their parameters covered by

mxnet.gluon.trainer training module:

Methods and its Parameters Definition

allreduce_grads()

This method will reduce the gradients from

different contexts for each parameter

(weight).

load_states(fname)

As name implies, this method will load

trainer states.

save_states(fname)

As name implies, this method will save

trainer states.

set_learning_rate(lr)

This method will set a new learning rate of

the optimizer.

step(batch_size[, ignore_stale_grad])

This method will make one step of

parameter update. It should be called after

autograd.backward() and outside of

record() scope.

update(batch_size[, ignore_stale_grad])

This method will also make one step of

parameter update. It should be called after

autograd.backward() and outside of

record() scope and after trainer.update().

https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.allreduce_grads
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.load_states
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.save_states
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.set_learning_rate
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.step
https://mxnet.apache.org/api/python/docs/api/gluon/trainer.html#mxnet.gluon.Trainer.update

Apache MXNet

 115

Data Modules

The data modules of Gluon are explained below:

gluon.data

Gluon provides a large number of build-in dataset utilities in gluon.data module. That is

the reason it is called the data module.

Classes and their parameters

Following are some of the important methods and their parameters covered by

mxnet.gluon.data core module. These methods are typically related to Datasets,

Sampling, and DataLoader.

Methods and its Parameters Definition

ArrayDataset(*args)

This method represents a dataset

which combines two or more than

two dataset-like objects. For

example, Datasets, lists, arrays,

etc.

BatchSampler(sampler, batch_size[, last_batch])

This method wraps over

another Sampler. Once wrapped

it returns the mini batches of

samples.

DataLoader(dataset[, batch_size, shuffle, …])

Similar to BatchSampler but this

method loads data from a dataset.

Once loaded it returns the mini

batches of data.

Dataset

This represents the abstract

dataset class.

FilterSampler(fn, dataset)

This method represents the

samples elements from a Dataset

for which fn (function) returns

True.

RandomSampler(length)

This method represents samples

elements from [0, length)

randomly without replacement.

RecordFileDataset(filename)

It represents a dataset wrapping

over a RecordIO file. The

extension of the file is .rec.

Sampler
This is the base class for samplers.

SequentialSampler(length[, start])

It represents the sample elements

from the set [start, start+length)

sequentially.

https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.ArrayDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.BatchSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.DataLoader
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.Dataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.FilterSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.RandomSampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.RecordFileDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.Sampler
https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.SequentialSampler

Apache MXNet

 116

SimpleDataset(data)

This represents the simple Dataset

wrapper especially for lists and

arrays.

Implementation Examples

In the example below, we are going to use gluon.data.BatchSampler() API, which

wraps over another sampler. It returns the mini batches of samples.

import mxnet as mx

from mxnet.gluon import data

sampler = mx.gluon.data.SequentialSampler(15)

batch_sampler = mx.gluon.data.BatchSampler(sampler, 4, 'keep')

list(batch_sampler)

Output

The output is mentioned below:

[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14]]

gluon.data.vision.datasets

Gluon provides a large number of pre-defined vision dataset functions in

gluon.data.vision.datasets module.

Classes and their parameters

MXNet provides us useful and important datasets, whose classes and parameters are given

below:

Classes and its Parameters Definition

MNIST([root, train, transform])

This is a useful dataset providing us the

handwritten digits. The url for MNIST

dataset is

http://yann.lecun.com/exdb/mnist

FashionMNIST([root, train, transform])

This dataset consists of Zalando’s article

images consisting of fashion products. It is a

drop-in replacement of original MNIST

dataset. You can get this dataset from

https://github.com/zalandoresearch/fashio

n-mnist

CIFAR10([root, train, transform])

This is an image classification dataset

from https://www.cs.toronto.edu/~kriz/cifa

r.html. In this dataset each sample is an

image with shape (32, 32, 3).

https://mxnet.apache.org/api/python/docs/api/gluon/data/index.html#mxnet.gluon.data.SimpleDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.MNIST
http://yann.lecun.com/exdb/mnist
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.FashionMNIST
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.CIFAR10
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Apache MXNet

 117

CIFAR100([root, fine_label, train, trans

form])

This is CIFAR100 image classification

dataset

from https://www.cs.toronto.edu/~kriz/cifa

r.html. It also has each sample is an image

with shape (32, 32, 3).

ImageRecordDataset

(filename[, flag, transform])

This dataset is wrapping over a RecordIO file

that contains images. In this each sample is

an image with its corresponding label.

ImageFolderDataset

(root[, flag, transform])

This is a dataset for loading image files that

are stored in a folder structure.

ImageListDataset

([root, imglist, flag])

This is a dataset for loading image files that

are specified by a list of entries.

Example

In the example below, we are going to show the use of ImageListDataset(), which is used

for loading image files that are specified by a list of entries:

written to text file *.lst

0 0 root/cat/0001.jpg

1 0 root/cat/xxxa.jpg

2 0 root/cat/yyyb.jpg

3 1 root/dog/123.jpg

4 1 root/dog/023.jpg

5 1 root/dog/wwww.jpg

A pure list, each item is a list [imagelabel: float or list of float,

imgpath]

[[0, root/cat/0001.jpg]

 [0, root/cat/xxxa.jpg]

 [0, root/cat/yyyb.jpg]

 [1, root/dog/123.jpg]

 [1, root/dog/023.jpg]

 [1, root/dog/wwww.jpg]]

Utility Modules

The utility modules in Gluon are as follows:

https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.CIFAR100
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageRecordDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageFolderDataset
https://mxnet.apache.org/api/python/docs/api/gluon/data/vision/datasets/index.html#mxnet.gluon.data.vision.datasets.ImageListDataset

Apache MXNet

 118

gluon.utils

Gluon provides a large number of build-in parallelisation utility optimiser in gluon.utils

module. It provides variety of utilities for training. That is the reason it is called the utility

module.

Functions and their parameters

Following are the functions and their parameters consisting in this utility module named

gluon.utils:

Functions and its Parameters Definition

split_data(data, num_slice[, batch_axis, …])

This function is usually use for data

parallelism and each slice is sent to

one device i.e. GPU. It splits an

NDArray into num_slice slices

along batch_axis.

split_and_load(data, ctx_list[, batch_axis, …])

This function splits an NDArray

into len(ctx_list) slices

along batch_axis. The only

difference from above split_data ()

function is that, it also loads each

slice to one context in ctx_list.

clip_global_norm(arrays, max_norm[, …])

The job of this function is to rescale

NDArrays in such a way that the sum

of their 2-norm is smaller

than max_norm.

check_sha1(filename, sha1_hash)

This function will check whether the

sha1 hash of the file content

matches the expected hash or not.

download(url[, path, overwrite, sha1_hash, …])

As name specifies, this function will

download a given URL.

replace_file(src, dst)

This function will implement atomic

os.replace. it will be done with

Linux and OSX.

https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.split_data
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.split_and_load
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.clip_global_norm
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.check_sha1
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.download
https://mxnet.apache.org/api/python/docs/api/gluon/utils/index.html#mxnet.gluon.utils.replace_file

Apache MXNet

 119

This chapter deals with the autograd and initializer API in MXNet.

mxnet.autograd

This is MXNet’ autograd API for NDArray. It has the following class:

Class: Function()

It is used for customised differentiation in autograd. It can be written as

mxnet.autograd.Function. If, for any reason, the user do not want to use the gradients

that are computed by the default chain-rule, then he/she can use Function class of

mxnet.autograd to customize differentiation for computation. It has two methods namely

Forward() and Backward().

Let us understand the working of this class with the help of following points:

 First, we need to define our computation in the forward method.

 Then, we need to provide the customized differentiation in the backward method.

 Now during gradient computation, instead of user-defined backward function,

mxnet.autograd will use the backward function defined by the user. We can also

cast to numpy array and back for some operations in forward as well as backward.

Example

Before using the mxnet.autograd.function class, let’s define a stable sigmoid function with

backward as well as forward methods as follows:

class sigmoid(mx.autograd.Function):

 def forward(self, x):

 y = 1 / (1 + mx.nd.exp(-x))

 self.save_for_backward(y)

 return y

 def backward(self, dy):

 y, = self.saved_tensors

 return dy * y * (1-y)

Now, the function class can be used as follows:

func = sigmoid()

x = mx.nd.random.uniform(shape=(10,))

14. Apache MXNet — Python API autograd and
initializer

Apache MXNet

 120

x.attach_grad()

with mx.autograd.record():

 m = func(x)

 m.backward()

dx_grad = x.grad.asnumpy()

dx_grad

Output

When you run the code, you will see the following output:

array([0.21458015, 0.21291625, 0.23330082, 0.2361367 , 0.23086983,

 0.24060014, 0.20326573, 0.21093895, 0.24968489, 0.24301809],

 dtype=float32)

Methods and their parameters

Following are the methods and their parameters of mxnet.autogard.function class:

Methods and its Parameters Definition

forward (heads[, head_grads, retain_graph, …]) This method is used for forward

computation.

backward(heads[, head_grads, retain_graph, …])

This method is used for backward

computation. It computes the

gradients of heads with respect

to previously marked variables.

This method takes as many

inputs as forward’s output. It also

returns as many NDArray’s as

forward’s inputs.

get_symbol(x)

This method is used to retrieve

recorded computation history

as Symbol.

grad(heads, variables[, head_grads, …])

This method computes the

gradients of heads with respect

to variables. Once computed,

instead of storing into

variable.grad, gradients will be

returned as new NDArrays.

https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.backward
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.get_symbol
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.grad

Apache MXNet

 121

is_recording()

With the help of this method we

can get status on recording and

not recording.

is_training()

With the help of this method we

can get status on training and

predicting.

mark_variables(variables, gradients[, grad_reqs])

This method will mark NDArrays

as variables to compute gradient

for autograd. This method is

same as function .attach_grad()

in a variable but the only

difference is that with this call we

can set the gradient to any value.

pause([train_mode])

This method returns a scope

context to be used in ‘with’

statement for codes which do not

need gradients to be calculated.

predict_mode()

This method returns a scope

context to be used in ‘with’

statement in which forward pass

behavior is set to inference mode

and that is without changing the

recording states.

record([train_mode])

It will return an autograd

recording scope context to be

used in ‘with’ statement and

captures code which needs

gradients to be calculated.

set_recording(is_recording)

Similar to is_recoring(), with the

help of this method we can get

status on recording and not

recording.

set_training(is_training)

Similar to is_traininig(), with the

help of this method we can set

status to training or predicting.

train_mode()

This method will return a scope

context to be used in ‘with’

statement in which forward pass

behavior is set to training mode

and that is without changing the

recording states.

Implementation Example

In the below example, we will be using mxnet.autograd.grad() method to compute the

gradient of head with respect to variables:

https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.is_recording
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.is_training
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.mark_variables
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.pause
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.predict_mode
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.record
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.set_recording
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.set_training
https://mxnet.apache.org/api/python/docs/api/autograd/index.html#mxnet.autograd.train_mode

Apache MXNet

 122

x = mx.nd.ones((2,))

x.attach_grad()

with mx.autograd.record():

 z = mx.nd.elemwise_add(mx.nd.exp(x), x)

dx_grad = mx.autograd.grad(z, [x], create_graph=True)

dx_grad

Output

The output is mentioned below:

[

 [3.7182817 3.7182817]

 <NDArray 2 @cpu(0)>]

We can use mxnet.autograd.predict_mode() method to return a scope to be used in ‘with’

statement:

with mx.autograd.record():

 y = model(x)

 with mx.autograd.predict_mode():

 y = sampling(y)

 backward([y])

mxnet.intializer

This is MXNet’ API for weigh initializer. It has the following classes:

Classes and their parameters

Following are the methods and their parameters of mxnet.autogard.function class:

Classes and its Parameters Definition

Bilinear()

With the help of this class we can

initialize weight for up-sampling

layers.

Constant(value)

This class initializes the weights to

a given value. The value can be a

scalar as well as NDArray that

matches the shape of the

parameter to be set.

FusedRNN(init, num_hidden, num_layers, mode)

As name implies, this class

initialize parameters for the fused

Recurrent Neural Network (RNN)

layers.

https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Bilinear
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Constant
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.FusedRNN

Apache MXNet

 123

InitDesc

It acts as the descriptor for the

initialization pattern.

Initializer(**kwargs)

This is the base class of an

initializer.

LSTMBias([forget_bias])

This class initialize all biases of an

LSTMCell to 0.0 but except for the

forget gate whose bias is set to a

custom value.

Load(param[, default_init, verbose])

This class initialize the variables by

loading data from file or dictionary.

MSRAPrelu([factor_type, slope])

As name implies, this class

Initialize the weight according to a

MSRA paper.

Mixed(patterns, initializers)

It initializes the parameters using

multiple initializers.

Normal([sigma])

Normal() class initializes weights

with random values sampled from

a normal distribution with a mean

of zero and standard deviation

(SD) of sigma.

One()

It initializes the weights of

parameter to one.

Orthogonal([scale, rand_type])

As name implies, this class

initialize weight as orthogonal

matrix.

Uniform([scale])

It initializes weights with random

values which is uniformly sampled

from a given range.

Xavier([rnd_type, factor_type, magnitude])

It actually returns an initializer that

performs “Xavier” initialization for

weights.

Zero()

It initializes the weights of

parameter to zero.

Implementation Example

In the below example, we will be using mxnet.init.Normal() class create an initializer

and retrieve its parameters:

init = mx.init.Normal(0.8)

init.dumps()

Output

The output is given below:

https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.InitDesc
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Initializer
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.LSTMBias
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Load
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.MSRAPrelu
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Mixed
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Normal
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.One
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Orthogonal
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Uniform
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Xavier
https://mxnet.apache.org/api/python/docs/api/initializer/index.html#mxnet.initializer.Zero

Apache MXNet

 124

'["normal", {"sigma": 0.8}]'

init = mx.init.Xavier(factor_type="in", magnitude=2.45)

init.dumps()

Output

The output is shown below:

'["xavier", {"rnd_type": "uniform", "factor_type": "in", "magnitude": 2.45}]'

In the below example, we will be using mxnet.initializer.Mixed() class to initialize

parameters using multiple initializers:

init = mx.initializer.Mixed(['bias', '.*'], [mx.init.Zero(),

mx.init.Uniform(0.1)])

module.init_params(init)

for dictionary in module.get_params():

 for key in dictionary:

 print(key)

 print(dictionary[key].asnumpy())

Output

The output is shown below:

fullyconnected1_weight

[[0.0097627 0.01856892 0.04303787]]

fullyconnected1_bias

[0.]

Apache MXNet

 125

In this chapter, we will learn about an interface in MXNet which is termed as Symbol.

Mxnet.ndarray

Apache MXNet’s Symbol API is an interface for symbolic programming. Symbol API

features the use of the following:

 Computational graphs

 Reduced memory usage

 Pre-use function optimization

The example given below shows how one can create a simple expression by using MXNet’s

Symbol API:

An NDArray by using 1-D and 2-D ‘array’ from a regular Python list:

import mxnet as mx

Two placeholders namely x and y will be created with mx.sym.variable

x = mx.sym.Variable('x')

y = mx.sym.Variable('y')

The symbol here is constructed using the plus ‘+’ operator.

z = x + y

Output

You will see the following output:

<Symbol _plus0>

(x, y, z)

Output

The output is given below:

(<Symbol x>, <Symbol y>, <Symbol _plus0>)

Now let us discuss in detail about the classes, functions, and parameters of ndarray API

of MXNet.

 Classes

15. Apache MXNet — Python API Symbol

Apache MXNet

 126

Following table consists of the classes of Symbol API of MXNet:

Class Definition

Symbol(handle) This class namely symbol is the symbolic graph of the Apache

MXNet.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.Symbol API:

Function and its Parameters Definition

Activation([data, act_type, out, name])

It applies an activation function

element-wise to the input. It

supports relu, sigmoid, tanh,

softrelu, softsign activation

functions.

BatchNorm([data, gamma, beta, moving_mean, …])

It is used for batch

normalization. This function

normalizes a data batch by

mean and variance. It applies a

scale gamma and offset beta.

BilinearSampler([data, grid, cudnn_off, …])

This function applies bilinear

sampling to input feature map.

Actually it is the key of “Spatial

Transformer Networks”. If you

are familiar with remap

function in OpenCV, the usage

of this function is quite similar

to that. The only difference is

that it has the backward pass.

BlockGrad([data, out, name])

As name specifies, this function

stops gradient computation. It

basically stops the accumulated

gradient of the inputs from

flowing through this operator in

backward direction.

cast([data, dtype, out, name])

This function will cast all

elements of the input to a new

type.

zeros(shape[, dtype])

This function, as name

specified, returns a new symbol

of given shape and type, filled

with zeros.

ones(shape[, dtype])
This function, as name

specified return a new symbol

https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Activation
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BatchNorm
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BilinearSampler
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.BlockGrad
https://mxnet.apache.org/api/python/docs/api/ndarray/ndarray.html#mxnet.ndarray.Cast
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.zeros
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.ones

Apache MXNet

 127

of given shape and type, filled

with ones.

full(shape, val[, dtype])

This function, as name

specified returns a new array of

given shape and type, filled

with the given value val.

arange(start[, stop, step, repeat, …])

It will return evenly spaced

values within a given interval.

The values are generated

within half open interval [start,

stop) which means that the

interval includes start but

excludes stop.

linspace(start, stop, num[, endpoint, name, …])

It will return evenly spaced

numbers within a specified

interval. Similar to the function

arrange(), the values are

generated within half open

interval [start, stop) which

means that the interval

includes start but excludes

stop.

histogram(a[, bins, range])

As name implies, this function

will compute the histogram of

the input data.

power(base, exp)

As name implies, this function

will return element-wise result

of base element raised to

powers from exp element. Both

inputs i.e. base and exp, can be

either Symbol or scalar. Here

note that broadcasting is not

allowed. You can use

broadcast_pow if you want to

use the feature of broadcast.

SoftmaxActivation([data, mode, name, attr, out])

This function applies softmax

activation to input. It is

intended for internal layers. It

is actually deprecated, we can

use softmax() instead.

Implementation Examples

In the example below we will be using the function power() which will return element-

wise result of base element raised to the powers from exp element:

import mxnet as mx

https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.full
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.arange
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.linspace
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.histogram
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.power
https://mxnet.apache.org/api/python/docs/api/symbol/symbol.html#mxnet.symbol.SoftmaxActivation

Apache MXNet

 128

mx.sym.power(3, 5)

Output

You will see the following output:

243

x = mx.sym.Variable('x')

y = mx.sym.Variable('y')

z = mx.sym.power(x, 3)

z.eval(x=mx.nd.array([1,2]))[0].asnumpy()

Output

This produces the following output:

array([1., 8.], dtype=float32)

z = mx.sym.power(4, y)

z.eval(y=mx.nd.array([2,3]))[0].asnumpy()

Output

When you execute the above code, you should see the following output:

array([16., 64.], dtype=float32)

z = mx.sym.power(x, y)

z.eval(x=mx.nd.array([4,5]), y=mx.nd.array([2,3]))[0].asnumpy()

Output

The output is mentioned below:

array([16., 125.], dtype=float32)

In the example given below, we will be using the function SoftmaxActivation() (or

softmax()) which will be applied to input and is intended for internal layers.

input_data = mx.nd.array([[2., 0.9, -0.5, 4., 8.], [4., -.7, 9., 2., 0.9]])

soft_max_act = mx.nd.softmax(input_data)

print (soft_max_act.asnumpy())

Apache MXNet

 129

Output

You will see the following output:

[[2.4258138e-03 8.0748333e-04 1.9912292e-04 1.7924475e-02 9.7864312e-01]

 [6.6843745e-03 6.0796250e-05 9.9204916e-01 9.0463174e-04 3.0112563e-04]]

symbol.contrib

The Contrib NDArray API is defined in the symbol.contrib package. It typically provides

many useful experimental APIs for new features. This API works as a place for the

community where they can try out the new features. The feature contributor will get the

feedback as well.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.symbol.contrib API:

Function and its Parameters Definition

rand_zipfian(true_classes, num_sampled, …)

This function draws random

samples from an approximately

Zipfian distribution. The base

distribution of this function is

Zipfian distribution. This function

randomly samples num_sampled

candidates and the elements of

sampled_candidates are drawn

from the base distribution given

above.

foreach(body, data, init_states)

As name implies, this function runs

a loop with user-defined

computation over NDArrays on

dimension 0. This function

simulates a for loop and body has

the computation for an iteration of

the for loop.

while_loop(cond, func, loop_vars[, …])

As name implies, this function runs

a while loop with user-defined

computation and loop condition.

This function simulates a while loop

that literately does customized

computation if the condition is

satisfied.

cond(pred, then_func, else_func)

As name implies, this function run

an if-then-else using user-defined

condition and computation. This

function simulates an if-like branch

which chooses to do one of the two

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.rand_zipfian
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.foreach
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.while_loop
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.cond

Apache MXNet

 130

customized computations according

to the specified condition.

getnnz([data, axis, out, name])

This function gives us the number

of stored values for a sparse tensor.

It also includes explicit zeros. It

only supports CSR matrix on CPU.

requantize([data, min_range, max_range, …])

This function requantize the given

data that is quantized in int32 and

the corresponding thresholds, into

int8 using min and max thresholds

either calculated at runtime or from

calibration.

index_copy([old_tensor, index_vector, …])

This function copies the elements of

a new_tensor into

the old_tensor by selecting the

indices in the order given in

index. The output of this

operator will be a new tensor

that contains the rest elements

of old tensor and the copied

elements of new tensor.

interleaved_matmul_encdec_qk([queries, …])

This operator compute the matrix

multiplication between the

projections of queries and keys in

multi-head attention use as

encoder-decoder. The condition is

that the inputs should be a tensor

of projections of queries that

follows the layout: (seq_length,

batch_size, num_heads*,

head_dim).

Implementation Examples

In the example below we will be using the function rand_zipfian for drawing random

samples from an approximately Zipfian distribution:

import mxnet as mx

true_cls = mx.sym.Variable('true_cls')

samples, exp_count_true, exp_count_sample =

mx.sym.contrib.rand_zipfian(true_cls, 5, 6)

samples.eval(true_cls=mx.nd.array([3]))[0].asnumpy()

Output

You will see the following output:

array([4, 0, 2, 1, 5], dtype=int64)

https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.getnnz
https://mxnet.apache.org/api/python/docs/api/ndarray/contrib/index.html#mxnet.ndarray.contrib.requantize
https://mxnet.apache.org/api/python/docs/api/symbol/contrib/index.html#mxnet.symbol.contrib.index_copy
https://mxnet.apache.org/api/python/docs/api/symbol/contrib/index.html#mxnet.symbol.contrib.interleaved_matmul_encdec_qk

Apache MXNet

 131

exp_count_true.eval(true_cls=mx.nd.array([3]))[0].asnumpy()

Output

The output is mentioned below:

array([0.57336551])

exp_count_sample.eval(true_cls=mx.nd.array([3]))[0].asnumpy()

Output

You will see the following output:

array([1.78103594, 0.46847373, 1.04183923, 0.57336551, 1.04183923])

In the example below we will be using the function while_loop for running a while loop

for user-defined computation and loop condition:

cond = lambda i, s: i <= 7

func = lambda i, s: ([i + s], [i + 1, s + i])

loop_vars = (mx.sym.var('i'), mx.sym.var('s'))

outputs, states = mx.sym.contrib.while_loop(cond, func, loop_vars,

max_iterations=10)

print(outputs)

Output

The output is given below:

[<Symbol _while_loop0>]

Print(States)

Output

This produces the following output:

[<Symbol _while_loop0>, <Symbol _while_loop0>]

In the example below we will be using the function index_copy that copies the elements

of new_tensor into the old_tensor.

Apache MXNet

 132

import mxnet as mx

a = mx.nd.zeros((6,3))

b = mx.nd.array([[1,2,3],[4,5,6],[7,8,9]])

index = mx.nd.array([0,4,2])

mx.nd.contrib.index_copy(a, index, b)

Output

When you execute the above code, you should see the following output:

[[1. 2. 3.]

 [0. 0. 0.]

 [7. 8. 9.]

 [0. 0. 0.]

 [4. 5. 6.]

 [0. 0. 0.]]

<NDArray 6x3 @cpu(0)>

symbol.image

The Image Symbol API is defined in the symbol.image package. As name implies, it

typically used for images and their features.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.symbol.image API:

Function and its Parameters Definition

adjust_lighting([data, alpha, out, name])

As name implies, this function

adjusts the lighting level of the

input. It follows the AlexNet

style.

crop([data, x, y, width, height, out, name])

With the help of this function we

can crop an image NDArray of

shape (H x W x C) or (N x H x W

x C) to the size given by user.

normalize([data, mean, std, out, name])

It will normalize an tensor of

shape (C x H x W) or (N x C x H

x W) with mean and standard

deviation(SD).

random_crop([data, xrange, yrange, width, …])

Similar to crop(), it randomly

crop an image NDArray of shape

(H x W x C) or (N x H x W x C) to

the size given by the user. It will

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.adjust_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.normalize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_crop

Apache MXNet

 133

upsample the result if src is

smaller than the size.

random_lighting([data, alpha_std, out, name])

As name implies, this function

adds the PCA noise randomly. It

also follows the AlexNet style.

random_resized_crop([data, xrange, yrange, …])

It also crops an image randomly

NDArray of shape (H x W x C) or

(N x H x W x C) to the given size.

It will upsample the result if src

is smaller than the size. It will

randomize the area and aspect

ration as well.

resize([data, size, keep_ratio, interp, …])

As name implies, this function

will resize an image NDArray of

shape (H x W x C) or (N x H x W

x C) to the size given by user.

to_tensor([data, out, name])

It converts an image NDArray of

shape (H x W x C) or (N x H x W

x C) with the values in the range

[0, 255] to a tensor NDArray of

shape (C x H x W) or (N x C x H

x W) with the values in the range

[0, 1].

Implementation Examples

In the example below, we will be using the function to_tensor to convert image NDArray

of shape (H x W x C) or (N x H x W x C) with the values in the range [0, 255] to a tensor

NDArray of shape (C x H x W) or (N x C x H x W) with the values in the range [0, 1].

import numpy as np

img = mx.sym.random.uniform(0, 255, (4, 2, 3)).astype(dtype=np.uint8)

mx.sym.image.to_tensor(img)

Output

The output is stated below:

<Symbol to_tensor4>

img = mx.sym.random.uniform(0, 255, (2, 4, 2, 3)).astype(dtype=np.uint8)

https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_lighting
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.random_resized_crop
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.resize
https://mxnet.apache.org/api/python/docs/api/ndarray/image/index.html#mxnet.ndarray.image.to_tensor

Apache MXNet

 134

mx.sym.image.to_tensor(img)

Output

The output is mentioned below:

<Symbol to_tensor5>

In the example below, we will be using the function normalize() to normalize an tensor

of shape (C x H x W) or (N x C x H x W) with mean and standard deviation(SD).

img = mx.sym.random.uniform(0, 1, (3, 4, 2))

mx.sym.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1))

Output

Given below is the output of the code:

<Symbol normalize0>

img = mx.sym.random.uniform(0, 1, (2, 3, 4, 2))

mx.sym.image.normalize(img, mean=(0, 1, 2), std=(3, 2, 1))

Output

The output is shown below:

<Symbol normalize1>

symbol.random

The Random Symbol API is defined in the symbol.random package. As name implies, it is

random distribution generator Symbol API of MXNet.

Functions and their parameters

Following are some of the important functions and their parameters covered by

mxnet.symbol.random API:

Function and its Parameters Definition

uniform([low, high, shape, dtype, ctx, out])

It generates random samples

from a uniform distribution.

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform

Apache MXNet

 135

normal([loc, scale, shape, dtype, ctx, out])

It generates random samples

from a normal (Gaussian)

distribution.

randn(*shape, **kwargs)

It generates random samples

from a normal (Gaussian)

distribution.

poisson([lam, shape, dtype, ctx, out])

It generates random samples

from a Poisson distribution.

exponential([scale, shape, dtype, ctx, out])

It generates samples from an

exponential distribution.

gamma([alpha, beta, shape, dtype, ctx, out])

It generates random samples

from a gamma distribution.

multinomial(data[, shape, get_prob, out, dtype])

It generates concurrent sampling

from multiple multinomial

distributions.

negative_binomial([k, p, shape, dtype, ctx, out])

It generates random samples

from a negative binomial

distribution.

generalized_negative_binomial([mu, alpha, …])

It generates random samples

from a generalized negative

binomial distribution.

shuffle(data, **kwargs)

It shuffles the elements

randomly.

randint(low, high[, shape, dtype, ctx, out])

It generates random samples

from a discrete uniform

distribution.

exponential_like([data, lam, out, name])

It generates random samples

from an exponential distribution

according to the input array

shape.

gamma_like([data, alpha, beta, out, name])

It generates random samples

from a gamma distribution

according to the input array

shape.

generalized_negative_binomial_like([data, …])

It generates random samples

from a generalized negative

binomial distribution according to

the input array shape.

negative_binomial_like([data, k, p, out, name])

It generates random samples

from a negative binomial

distribution according to the input

array shape.

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randn
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.multinomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.shuffle
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.randint
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.exponential_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.gamma_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.generalized_negative_binomial_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.negative_binomial_like

Apache MXNet

 136

normal_like([data, loc, scale, out, name])

It generates random samples

from a normal (Gaussian)

distribution according to the input

array shape.

poisson_like([data, lam, out, name])

It generates random samples

from a Poisson distribution

according to the input array

shape.

uniform_like([data, low, high, out, name])

It generates random samples

from a uniform distribution

according to the input array

shape.

Implementation Examples

In the example below, we are going to shuffle the elements randomly using shuffle()

function. It will shuffle the array along the first axis.

data = mx.nd.array([[0, 1, 2], [3, 4, 5], [6, 7, 8],[9,10,11]])

x = mx.sym.Variable('x')

y = mx.sym.random.shuffle(x)

y.eval(x=data)

Output

You will see the following output:

[

 [[9. 10. 11.]

 [0. 1. 2.]

 [6. 7. 8.]

 [3. 4. 5.]]

 <NDArray 4x3 @cpu(0)>]

y.eval(x=data)

Output

When you execute the above code, you should see the following output:

[

 [[6. 7. 8.]

 [0. 1. 2.]

https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.normal_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.poisson_like
https://mxnet.apache.org/api/python/docs/api/ndarray/random/index.html#mxnet.ndarray.random.uniform_like

Apache MXNet

 137

 [3. 4. 5.]

 [9. 10. 11.]]

 <NDArray 4x3 @cpu(0)>]

In the example below, we are going to draw random samples from a generalized negative

binomial distribution. For this will be using the function

generalized_negative_binomial().

mx.sym.random.generalized_negative_binomial(10, 0.1)

Output

The output is given below:

<Symbol _random_generalized_negative_binomial0>

symbol.sparse

The Sparse Symbol API is defined in the mxnet.symbol.sparse package. As name implies,

it provides sparse neural network graphs and auto-differentiation on CPU.

Functions and their parameters

Following are some of the important functions (includes Symbol creation routines, Symbol

Manipulation routines, Mathematical functions, Trigonometric function, Hyberbolic

functions, Reduce functions, Rounding, Powers, Neural Network) and their parameters

covered by mxnet.symbol.sparse API:

Function and its Parameters Definition

ElementWiseSum(*args, **kwargs)

This function will add all input

arguments element wise. For

example, 𝑎𝑑𝑑_𝑛(𝑎1, 𝑎2, … 𝑎𝑛 = 𝑎1 +

𝑎2 + ⋯ + 𝑎𝑛). Here, we can see that

add_n is potentially more efficient

than calling add by n times.

Embedding([data, weight, input_dim, …])

It will map the integer indices to

vector representations i.e.

embeddings. It actually maps words

to real-valued vectors in high-

dimensional space which is called

word embeddings.

LinearRegressionOutput([data, label, …])

It computes and optimizes for

squared loss during backward

propagation giving just output data

during forward propagation.

LogisticRegressionOutput([data, label, …])
Applies a logistic function which is

also called the sigmoid function to

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.ElementWiseSum
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.Embedding
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.LinearRegressionOutput
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.LogisticRegressionOutput

Apache MXNet

 138

the input. The function is computed

as
1

1+exp (−𝑥)
.

MAERegressionOutput([data, label, …])

This operator computes mean

absolute error of the input. MAE is

actually a risk metric corresponding

to the expected value of absolute

error.

abs([data, name, attr, out])

As name implies, this function will

return element-wise absolute value

of the input.

adagrad_update([weight, grad, history, lr, …])

It is an update function for AdaGrad

optimizer.

adam_update([weight, grad, mean, var, lr, …])

It is an update function for Adam

optimizer.

add_n(*args, **kwargs)

As name implies it will adds all input

arguments element-wise.

arccos([data, name, attr, out])

This function will returns element-

wise inverse cosine of the input

array.

dot([lhs, rhs, transpose_a, transpose_b, …])

As name implies, it will give the dot

product of two arrays. It will depend

upon the input array dimension:

1-D: inner product of vectors

2-D: matrix multiplication

N-D: A sum product over the last

axis of the first input and the first

axis of the second input.

elemwise_add([lhs, rhs, name, attr, out])

As name implies it will add

arguments element wise.

elemwise_div([lhs, rhs, name, attr, out])

As name implies it will divide

arguments element wise.

elemwise_mul([lhs, rhs, name, attr, out])

As name implies it will Multiply

arguments element wise.

elemwise_sub([lhs, rhs, name, attr, out])

As name implies it will Subtract

arguments element wise.

exp([data, name, attr, out])

This function will return element

wise exponential value of the given

input.

sgd_update([weight, grad, lr, wd, …])

It acts as an update function for

Stochastic Gradient Descent

optimizer.

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.MAERegressionOutput
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.abs
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.adagrad_update
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.adam_update
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.add_n
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.arccos
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.dot
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_add
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_div
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_mul
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.elemwise_sub
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.exp
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sgd_update

Apache MXNet

 139

sigmoid([data, name, attr, out])

As name implies it will compute

sigmoid of x element wise.

sign([data, name, attr, out])

It will return the element wise sign

of the given input.

sin([data, name, attr, out])

As name implies, this function will

computes the element wise sine of

the given input array.

Implementation Example

In the example below, we are going to shuffle the elements randomly using

ElementWiseSum() function. It will map integer indices to vector representations i.e.

word embeddings.

input_dim = 4

output_dim = 5

/* Here every row in weight matrix y represents a word. So, y = (w0,w1,w2,w3)

y = [[0., 1., 2., 3., 4.],

 [5., 6., 7., 8., 9.],

 [10., 11., 12., 13., 14.],

 [15., 16., 17., 18., 19.]]

/* Here input array x represents n-grams(2-gram). So, x = [(w1,w3), (w0,w2)]

x = [[1., 3.],

 [0., 2.]]

/* Now, Mapped input x to its vector representation y.

Embedding(x, y, 4, 5) = [[[5., 6., 7., 8., 9.],

 [15., 16., 17., 18., 19.]],

 [[0., 1., 2., 3., 4.],

 [10., 11., 12., 13., 14.]]]

https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sigmoid
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sign
https://mxnet.apache.org/api/python/docs/api/symbol/sparse/index.html#mxnet.symbol.sparse.sin

Apache MXNet

 140

Apache MXNet’s module API is like a FeedForward model and it is easier to compose similar

to Torch module. It consists of following classes:

BaseModule([logger])

It represents the base class of a module. A module can be thought of as computation

component or computation machine. The job of a module is to execute forward and

backward passes. It also updates parameters in a model.

Methods

Following table shows the methods consisted in BaseModule class:

Methods Definition

backward([out_grads])

As name implies this method

implements the backward

computation.

bind(data_shapes[, label_shapes, …])

It binds the symbols to construct

executors and it is necessary

before one can perform

computation with the module.

fit(train_data[, eval_data, eval_metric, …])

This method trains the module

parameters.

forward(data_batch[, is_train])

As name implies this method

implements the Forward

computation. This method

supports data batches with various

shapes like different batch sizes or

different image sizes.

forward_backward(data_batch)

It is a convenient function, as

name implies, that calls

both forward and backward.

get_input_grads([merge_multi_context])

This method will gets the gradients

to the inputs which is computed in

the previous backward

computation.

get_outputs([merge_multi_context])

As name implies, this method will

gets outputs of the previous

forward computation.

get_params()
It gets the parameters especially

those which are potentially copies

16. Apache MXNet — Python API Module

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.fit
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params

Apache MXNet

 141

of the actual parameters used to do

computation on the device.

get_states([merge_multi_context])

This method will get states from all

devices

init_optimizer([kvstore, optimizer, …])

This method installs and initialize

the optimizers. It also initializes

kvstore for distribute training.

init_params([initializer, arg_params, …])

As name implies, this method will

initialize the parameters and

auxiliary states.

install_monitor(mon)

This method will install monitor on

all executors.

iter_predict(eval_data[, num_batch, reset, …])

This method will iterate over

predictions.

load_params(fname)

It will, as name specifies, load

model parameters from file.

predict(eval_data[, num_batch, …])

It will run the prediction and

collects the outputs as well.

prepare(data_batch[, sparse_row_id_fn])

The operator prepares the module

for processing a given data batch.

save_params(fname)

As name specifies, this function will

save the model parameters to file.

score(eval_data, eval_metric[, num_batch, …])

It runs the prediction

on eval_data and also evaluates

the performance according to the

given eval_metric.

set_params(arg_params, aux_params[, …])

This method will assign the

parameter and aux state values.

set_states([states, value])

This method, as name implies, sets

value for states.

update()

This method updates the given

parameters according to the

installed optimizer. It also updates

the gradients computed in the

previous forward-backward batch.

update_metric(eval_metric, labels[, pre_sliced])

This method, as name implies,

evaluates and accumulates the

evaluation metric on outputs of the

last forward computation.

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.iter_predict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.load_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.predict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.score
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Apache MXNet

 142

Methods Definition

backward([out_grads])

As name implies this method

implements

the backward computation.

bind(data_shapes[, label_shapes, …])

It set up the buckets and binds the

executor for the default bucket

key. This method represents

the binding for a

BucketingModule.

forward(data_batch[, is_train])

As name implies this method

implements

the Forward computation. This

method

supports data

batches with various shapes like

different

batch sizes or

different image sizes.

get_input_grads([merge_multi_context])

This method will get the gradients

to the

inputs which is computed in the

previous

backward computation.

get_outputs([merge_multi_context])

As name implies, this method will

get

outputs from the previous forward

computation.

get_params()

It gets the current parameters

especially

those which are potentially copies

of the

actual parameters used to do

computation

on the device.

get_states([merge_multi_context])

This method will get states from all

devices.

init_optimizer([kvstore, optimizer, …])

This method installs and initialize

the

optimizers. It also initializes

kvstore for

distribute training.

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer

Apache MXNet

 143

init_params([initializer, arg_params, …])

As name implies, this method will

initialize

the parameters and auxiliary

states.

install_monitor(mon)

This method will install monitor on

all

executors.

load(prefix, epoch[, sym_gen, …])

This method will create a model

from the

previously saved checkpoint.

load_dict([sym_dict, sym_gen, …])

This method will create a model

from a

dictionary (dict) mapping

bucket_key to

symbols. It also shares

arg_params and aux_params.

prepare(data_batch[, sparse_row_id_fn])

The operator prepares the module

for

processing a given data batch.

save_checkpoint(prefix, epoch[, remove_amp_

cast])

This method, as name implies,

saves the

current progress to the checkpoint

for all

buckets in BucketingModule. It is

recommended to

use mx.callback.module_checkpoin

t as

epoch_end_callback to save during

training.

set_params(arg_params, aux_params[,…])

As name specifies, this function will

assign parameters and aux state

values.

set_states([states, value])

This method, as name implies, sets

value for states.

switch_bucket(bucket_key, data_shapes[, …])
It will switche to a different bucket.

update()

This method updates the given

parameters according to the

installed optimizer. It also updates

the gradients computed in the

previous forward-backward batch.

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load_dict
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.save_checkpoint
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.switch_bucket
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update

Apache MXNet

 144

Attributes

Following table shows the attributes consisted in the methods of BaseModule class:

Attributes Definition

data_names It consists of the list of names for data required by this module.

data_shapes
It consists of the list of (name, shape) pairs specifying the data inputs

to this module.

label_shapes
It shows the list of (name, shape) pairs specifying the label inputs to

this module.

output_names It consists of the list of names for the outputs of this module.

output_shapes
It consists of the list of (name, shape) pairs specifying the outputs of

this module.

symbol
As name specified, this attribute gets the symbol associated with this

module.

data_shapes: You can refer the link available at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for details.

output_shapes: More information is available at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward.

BucketingModule(sym_gen[…])

It represents the Bucketingmodule class of a Module which helps to deal efficiently with

varying length inputs.

Methods

Following table shows the methods consisted in BucketingModule class:

Attributes

Following table shows the attributes consisted in the methods of BaseModule class:

Attributes Definition

data_names It consists of the list of names for data required by this module.

update_metric(eval_metric, labels[, pre_sliced]

)

This method, as name implies,

evaluates

and accumulates the evaluation

metric on outputs of the last

forward computation.

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Apache MXNet

 145

data_shapes
It consists of the list of (name, shape) pairs specifying the data inputs

to this module.

label_shapes
It shows the list of (name, shape) pairs specifying the label inputs to

this module.

output_names It consists of the list of names for the outputs of this module.

output_shapes
It consists of the list of (name, shape) pairs specifying the outputs of

this module.

Symbol
As name specified, this attribute gets the symbol associated with this

module.

data_shapes: You can refer the link at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for more information.

output_shapes: You can refer the link at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward for more information.

Module(symbol[,data_names, label_names,…])

It represents a basic module that wrap a symbol.

Methods

Following table shows the methods consisted in Module class:

Methods Definition

backward([out_grads])

As name implies this method

implements the backward

computation.

bind(data_shapes[, label_shapes, …])

It binds the symbols to construct

executors and it is necessary before

one can perform computation with

the module.

borrow_optimizer(shared_module)

As name implies, this method will

borrow the optimizer from a shared

module.

forward(data_batch[, is_train])

As name implies this method

implements the Forward

computation. This method supports

data batches with various shapes like

different batch sizes or different

image sizes.

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.borrow_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward

Apache MXNet

 146

get_input_grads([merge_multi_context])

This method will gets the gradients

to the inputs which is computed in

the previous backward computation.

get_outputs([merge_multi_context])

As name implies, this method will

gets outputs of the previous forward

computation.

get_params()

It gets the parameters especially

those which are potentially copies of

the actual parameters used to do

computation on the device.

get_states([merge_multi_context])

This method will get states from all

devices

init_optimizer([kvstore, optimizer, …])

This method installs and initialize the

optimizers. It also initializes kvstore

for distribute training.

init_params([initializer, arg_params, …])

As name implies, this method will

initialize the parameters and

auxiliary states.

install_monitor(mon)

This method will install monitor on all

executors.

load(prefix, epoch[, sym_gen, …])

This method will create a model from

the previously saved checkpoint.

load_optimizer_states(fname)

This method will load an optimizer

i.e. the updater state from a file.

prepare(data_batch[, sparse_row_id_fn])

The operator prepares the module

for processing a given data batch.

reshape(data_shapes[, label_shapes])

This method, as name implies,

reshape the module for new input

shapes.

save_checkpoint(prefix, epoch[, …])

It saves the current progress to

checkpoint.

save_optimizer_states(fname)

This method saves the optimizer or

the updater state to a file.

set_params(arg_params, aux_params[,…])

As name specifies, this function will

assign parameters and aux state

values.

set_states([states, value])

This method, as name implies, sets

value for states.

update()

This method updates the given

parameters according to the installed

optimizer. It also updates the

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BucketingModule.load
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.load_optimizer_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.prepare
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.reshape
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.save_checkpoint
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Module.save_optimizer_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.save_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.set_states
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update

Apache MXNet

 147

gradients computed in the previous

forward-backward batch.

update_metric(eval_metric, labels[, pre_sliced])

This method, as name implies,

evaluates and accumulates the

evaluation metric on outputs of the

last forward computation.

Attributes

Following table shows the attributes consisted in the methods of Module class:

Attributes Definition

data_names It consists of the list of names for data required by this module.

data_shapes
It consists of the list of (name, shape) pairs specifying the data inputs

to this module.

label_shapes
It shows the list of (name, shape) pairs specifying the label inputs to

this module.

output_names It consists of the list of names for the outputs of this module.

output_shapes
It consists of the list of (name, shape) pairs specifying the outputs of

this module.

label_names It consists of the list of names for labels required by this module.

data_shapes: Visit the link

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for further details.

output_shapes: The link given herewith

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward will offer other important information.

PythonLossModule([name,data_names,…])

The base of this class is mxnet.module.python_module.PythonModule.

PythonLossModule class is a convenient module class which implements all or many of the

module APIs as empty functions.

Methods

Following table shows the methods consisted in PythonLossModule class:

Methods Definition

backward([out_grads])

As name implies this method implements

the backward computation.

forward(data_batch[, is_train])

As name implies this method implements

the Forward computation. This method

supports data batches with various

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward

Apache MXNet

 148

shapes like different batch sizes or

different image sizes.

get_input_grads([merge_multi_context])

This method will gets the gradients to the

inputs which is computed in the previous

backward computation.

get_outputs([merge_multi_context])

As name implies, this method will gets

outputs of the previous forward

computation.

install_monitor(mon)

This method will install monitor on all

executors.

PythonModule([data_names,label_names…])

The base of this class is mxnet.module.base_module.BaseModule. PythonModule

class also is a convenient module class which implements all or many of the module APIs

as empty functions.

Methods

Following table shows the methods consisted in PythonModule class:

Methods Definition

bind(data_shapes[, label_shapes, …])

It binds the symbols to construct

executors and it is necessary

before one can perform

computation with the module.

get_params()

It gets the parameters especially

those which are potentially copies

of the actual parameters used to do

computation on the device.

init_optimizer([kvstore, optimizer, …])

This method installs and initialize

the optimizers. It also initializes

kvstore for distribute training.

init_params([initializer, arg_params, …])

As name implies, this method will

initialize the parameters and

auxiliary states.

update()

This method updates the given

parameters according to the

installed optimizer. It also updates

the gradients computed in the

previous forward-backward batch.

update_metric(eval_metric, labels[, pre_sliced])

This method, as name implies,

evaluates and accumulates the

evaluation metric on outputs of the

last forward computation.

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Apache MXNet

 149

Attributes

Following table shows the attributes consisted in the methods of PythonModule class:

Attributes Definition

data_names It consists of the list of names for data required by this module.

data_shapes
It consists of the list of (name, shape) pairs specifying the data inputs

to this module.

label_shapes
It shows the list of (name, shape) pairs specifying the label inputs to

this module.

output_names It consists of the list of names for the outputs of this module.

output_shapes
It consists of the list of (name, shape) pairs specifying the outputs of

this module.

data_shapes: Follow the link

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind for details.

output_shapes: For more details, visit the link available at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward.

SequentialModule([logger])

The base of this class is mxnet.module.base_module.BaseModule.

SequentialModule class also is a container module that can chain more than two

(multiple) modules together.

Methods

Following table shows the methods consisted in SequentialModule class:

Methods Definition

add(module, **kwargs)

This is most important function of

this class. It adds a module to the

chain.

backward([out_grads])

As name implies this method

implements the backward

computation.

bind(data_shapes[, label_shapes, …])

It binds the symbols to construct

executors and it is necessary

before one can perform

computation with the module.

forward(data_batch[, is_train])

As name implies this method

implements the Forward

computation. This method

supports data batches with various

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.SequentialModule.add
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward

Apache MXNet

 150

shapes like different batch sizes or

different image sizes.

get_input_grads([merge_multi_context])

This method will gets the gradients

to the inputs which is computed in

the previous backward

computation.

get_outputs([merge_multi_context])

As name implies, this method will

gets outputs of the previous

forward computation.

get_params()

It gets the parameters especially

those which are potentially copies

of the actual parameters used to do

computation on the device.

init_optimizer([kvstore, optimizer, …])

This method installs and initialize

the optimizers. It also initializes

kvstore for distribute training.

init_params([initializer, arg_params, …])

As name implies, this method will

initialize the parameters and

auxiliary states.

install_monitor(mon)

This method will install monitor on

all executors.

update()

This method updates the given

parameters according to the

installed optimizer. It also updates

the gradients computed in the

previous forward-backward batch.

update_metric(eval_metric, labels[, pre_sliced])

This method, as name implies,

evaluates and accumulates the

evaluation metric on outputs of the

last forward computation.

Attributes

Following table shows the attributes consisted in the methods of BaseModule class:

Attributes Definition

data_names It consists of the list of names for data required by this module.

data_shapes
It consists of the list of (name, shape) pairs specifying the data inputs

to this module.

label_shapes
It shows the list of (name, shape) pairs specifying the label inputs to

this module.

output_names It consists of the list of names for the outputs of this module.

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_input_grads
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_outputs
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.get_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_optimizer
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.init_params
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.install_monitor
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.update_metric

Apache MXNet

 151

output_shapes
It consists of the list of (name, shape) pairs specifying the outputs of

this module.

data_shapes: The link given herewith

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.bind will help you in understanding the attribute in much detail.

output_shapes: Follow the link available at

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.Base

Module.forward_backward for details.

Implementation Examples

In the example below, we are going create a mxnet module.

import mxnet as mx

input_data = mx.symbol.Variable('input_data')

f_connected1 = mx.symbol.FullyConnected(data, name='f_connected1',

num_hidden=128)

activation_1 = mx.symbol.Activation(f_connected1, name='relu1',

act_type="relu")

f_connected2 = mx.symbol.FullyConnected(activation_1, name = 'f_connected2',

num_hidden = 64)

activation_2 = mx.symbol.Activation(f_connected2, name='relu2',

act_type="relu")

f_connected3 = mx.symbol.FullyConnected(activation_2, name='fc3',

num_hidden=10)

out = mx.symbol.SoftmaxOutput(f_connected3, name = 'softmax')

mod = mx.mod.Module(out)

print(out)

Output

The output is mentioned below:

<Symbol softmax>

print(mod)

Output

The output is shown below:

<mxnet.module.module.Module object at 0x00000123A9892F28>

https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.bind
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward
https://mxnet.apache.org/api/python/docs/api/module/index.html#mxnet.module.BaseModule.forward_backward

Apache MXNet

 152

In this example below, we will be implementing forward computation

import mxnet as mx

from collections import namedtuple

Batch = namedtuple('Batch', ['data'])

data = mx.sym.Variable('data')

out = data * 2

mod = mx.mod.Module(symbol=out, label_names=None)

mod.bind(data_shapes=[('data', (1, 10))])

mod.init_params()

data1 = [mx.nd.ones((1, 10))]

mod.forward(Batch(data1))

print (mod.get_outputs()[0].asnumpy())

Output

When you execute the above code, you should see the following output:

[[2. 2. 2. 2. 2. 2. 2. 2. 2. 2.]]

 data2 = [mx.nd.ones((3, 5))]

 mod.forward(Batch(data2))

 print (mod.get_outputs()[0].asnumpy())

Output

Given below is the output of the code:

[[2. 2. 2. 2. 2.]

 [2. 2. 2. 2. 2.]

 [2. 2. 2. 2. 2.]]

