ANT - PACKAGING APPLICATIONS

We have learnt the different aspects of Ant using the Hello World Fax web application in bits and
pieces.

Now it is time to put everything together to create a full and complete build.xml file. Consider
build.properties and build.xml files as follows:

build.properties

deploy.path = c:\tomcat6\webapps

build.xml
<?xml version = "1.0"?>
<project name = "fax" basedir = "." default = "usage'">

<property file "build.properties"/>

<property name = "src.dir" value = '"src'"/>
<property name = "web.dir" value = "war"/>
<property name = "javadoc.dir" value = "doc"/>
<property name = "build.dir" value = "${web.dir}/WEB-INF/classes"/>
<property name = "name" value = "fax"/>
<path id = "master-classpath">
<fileset dir = "${web.dir}/WEB-INF/1lib">
<include name = "* . jar'"/>
</fileset>
<pathelement path = "${build.dir}"/>
</path>
<target name = "javadoc'">
<javadoc packagenames = "faxapp.*" sourcepath = "${src.dir}"
destdir = "doc" version = "true" windowtitle = "Fax Application">

<doctitle><![CDATA[<h1> = Fax Application = </hi>]]>
</doctitle>

<bottom><![CDATA[Copyright © 2011. All Rights Reserved.]]>

</bottom>
<group title = "util packages" packages = "faxapp.util.*"/>
<group title = "web packages" packages = "faxapp.web.*"/>
<group title = "data packages" packages = "faxapp.entity.* :faxapp.dao.*"/>
</javadoc>
</target>
<target name = '"usage'>
<echo message />

<echo message

"$ {name} build file"/>

<echo message = "------m oo />
<echo message = "'"/>
<echo message = "Available targets are:"/>
<echo message = "'"/>
<echo message = "deploy --> Deploy application as directory"/>
<echo message = "deploywar --> Deploy application as a WAR file"/>
<echo message = "'"/>
</target>
<target name = "build" description = "Compile main source tree java files">

<mkdir dir = "${build.dir}"/>

<javac destdir = "${build.dir}" source = "1.5" target = "1.5" debug = "true"

http://www.tutorialspoint.com/ant/ant_packaging_applications.htm

deprecation = "false" optimize = "false" failonerror = "true'">

<src path = "${src.dir}"/>

<classpath refid = "master-classpath"/>
</javac>
</target>
<target name = "deploy" depends = "build" description = "Deploy application">
<copy todir = "${deploy.path}/${name}" preservelastmodified = "true">
<fileset dir = "${web.dir}">
<include name = "**/* *!/>
</fileset>
</copy>
</target>
<target name = "deploywar" depends = "build" description = "Deploy application as a
WAR file">
<war destfile = "${name}.war" webxml = "${web.dir}/WEB-INF/web.xml">
<fileset dir = "${web.dir}">
<include name = "**/* *!/>
</fileset>
</war>

<copy todir = "${deploy.path}" preservelastmodified = "true'">
<fileset dir = ".">
<include name = "* .war"/>
</fileset>
</copy>

</target>
<target name = '"clean" description = "Clean output directories">
<delete>
<fileset dir = "${build.dir}">
<include name = "**/* . class"/>
</fileset>
</delete>
</target>

</project>

In this example:

e We first declare the path to the webapps folder in Tomcat in the build properties file as the
deploy.path variable.

¢ We also declare the source folder for the java files in the src.dir variable.

e Then we declare the source folder for the web files in the web.dir variable. javadoc.dir is
the folder for storing the java documentation, and build.dir is the path for storing the build
output files.

e Then we declare the name of the web application, which is fax in our case.

¢ We also define the master class path which contains the JAR files presentin the WEB-INF/lib
folder of the project.

¢ We also include the class files present in the build.dir in the master class path.

e The Javadoc target produces the javadoc required for the project and the usage targetis
used to print the common targets that are present in the build file.

The above example shows two deployment targets : deploy and deploywar.

The deploy target copies the files from the web directory to the deploy directory preserving the
last modified date time stamp. This is useful when deploying to a server that supports hot
deployment.

The clean target clears all the previously built files.

The deploywar target builds the war file and then copies the war file to the deploy directory of the
application server.

