- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Answer the following and justify:
Can $ x^{2}-1 $ be the quotient on division of $ x^{6}+2 x^{3}+x-1 $ by a polynomial in $ x $ of degree 5 ?
To do:
We have to answer the given questions and justify them.
Solution:
(i) Let the divisor, a polynomial in $x$ of degree 5 be $ax^5 + bx^4 + cx^3 + dx^2 + ex + f$
Quotient $= x^2 -1$
By division algorithm for polynomials,
Dividend $=$ Divisor $\times$ Quotient $+$ Remainder
$= (ax^5 + bx^4 + cx^3 + dx^2 + ex + f)\times(x^2 -1) +$ Remainder
$=$ (a polynomial of degree 7) $+$ Remainder
But the given dividend is a polynomial of degree 6.
Here, the division algorithm is not satisfied.
Hence, $x^2 -1$ cannot be the quotient on division of $x^{6}+2 x^{3}+x-1$ by a polynomial in $x$ of degree 5.
(ii) Here,
Divisor $=px3 + qx2 + rx + s, p≠0$
Dividend $= ax^2 + bx + c$
We observe that,
Degree of divisor $>$ Degree of dividend
We know that,
If the degree of dividend is less than the degree of the divisor, then the quotient will be zero and the remainder is same as the dividend.
Therefore, by division algorithm,
Quotient $= 0$ and Remainder $= ax^2 + bx + c$
(iii) If on division of a polynomial p(x) by a polynomial g(x), the quotient is zero, then the relation between the degrees of p(x) and g(x) is the degree of p(x) is less than the degree of g(x).
For example,
$p(x)=10x$ and $g(x)=5x^2$
(iv) If on division of a non-zero polynomial p(x) by a polynomial g(x), the remainder is zero, then g(x) is a factor of p(x) and has a degree less than or equal to the degree of p(x).
For example,
$p(x)=10x^2$ and $g(x)=5x$ then $p(x) \div g(x)=10x^2 \div 5x=2x$
$p(x)=10x^2$ and $g(x)=5x^2$ then $p(x) \div g(x)=10x^2 \div 5x^2=2$(v) Let $p(x) = x^2 + kx + k$
If $p(x)$ has equal zeroes, then its discriminant is zero.
$D = b^2 -4ac = 0$ Here,
$a =1, b = k$ and $c = k$
Therefore,
$(k)^2-4(1)(k) = 0$
$k(k- 4)=0$
$k =0$ or $k=4$
This implies, the quadratic polynomial $p(x)$ has equal zeroes at $k =0, 4$.
Hence, the quadratic polynomial \( x^{2}+k x+k \) cannot have equal zeroes for some odd integer \( k>1 \).
- Related Articles
- Find the degree of the polynomial $( x + 1)( x^2-x-x^4+1)$.
- divide the polynomial $p( x)$ by the polynomial $g( x)$ and find the quotient and remainder in each of the following: $( p(x)=x^{3}-3 x^{2}+5 x-3$, $g(x)=x^{2}-2$.
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- Apply division algorithm to find the quotient $q(x)$ and remainder $r(x)$ on dividing $f(x)$ by $g(x)$ in the following: $f(x)\ =\ x^3\ –\ 6x^2\ +\ 11x\ –\ 6,\ g(x)\ =\ x^2\ +\ x\ +\ 1$
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:$p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$
- Answer the following and justify:What will the quotient and remainder be on division of \( a x^{2}+b x+c \) by \( p x^{3}+q x^{2}+r x+s, p ≠ 0 ? \)
- Check whether the following are quadratic equations:(i) \( (x+1)^{2}=2(x-3) \)(ii) \( x^{2}-2 x=(-2)(3-x) \)(iii) \( (x-2)(x+1)=(x-1)(x+3) \)(iv) \( (x-3)(2 x+1)=x(x+5) \)(v) \( (2 x-1)(x-3)=(x+5)(x-1) \)(vi) \( x^{2}+3 x+1=(x-2)^{2} \)(vii) \( (x+2)^{3}=2 x\left(x^{2}-1\right) \)(viii) \( x^{3}-4 x^{2}-x+1=(x-2)^{3} \)
- What is the degree of the following polynomial?$x^6 - 3 x^2+x^7 - 5x^3 + 6$
- Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm:$g(x)\ =\ x^3\ –\ 3x\ +\ 1;\ f(x)\ =\ x^5\ –\ 4x^3\ +\ x^2\ +\ 3x\ +\ 1$
- Simplify the following :$( 3 x^2 + 5 x - 7 ) (x-1) - ( x^2 - 2 x + 3 ) (x + 4)$
- Solve the following quadratic equation by factorization: $\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
- Choose the correct answer from the given four options in the following questions:Which of the following is a quadratic equation?(A) \( x^{2}+2 x+1=(4-x)^{2}+3 \)(B) \( -2 x^{2}=(5-x)\left(2 x-\frac{2}{5}\right) \)(C) \( (k+1) x^{2}+\frac{3}{2} x=7 \), where \( k=-1 \)(D) \( x^{3}-x^{2}=(x-1)^{3} \)
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- Determine which of the following polynomials has \( (x+1) \) a factor:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:$p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
