

simply easylearning

www.tutorialspoint.com

https://www.facebook.com/tutorialspointindia

https://twitter.com/tutorialspoint

About the Tutorial

The communication based on analog signals and analog values is known as Analog Communication.

This tutorial provides knowledge on the various modulation techniques that are useful in Analog Communication systems. By the completion of this tutorial, the reader will be able to understand the conceptual details involved in analog communication.

Audience

This tutorial is prepared for beginners who are interested in the basics of analog communication and who aspire to acquire knowledge regarding analog communication systems.

Prerequisites

A basic idea regarding the initial concepts of communication is enough to go through this tutorial. It will definitely help if you use our tutorial Signals and Systems as a reference. A basic knowledge of the terms involved in Electronics and Communications would be an added advantage.

Copyright & Disclaimer

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at <u>contact@tutorialspoint.com</u>

Table of Contents

	About the Tutorial
	Audience
	Prerequisites
	Copyright & Disclaimer
	Table of Contentsii
1.	ANALOG COMMUNICATION – INTRODUCTION1
	Parts of a Communication System1
	Types of Signals1
	Analog Signal2
	Digital Signal3
	Periodic Signal3
	Aperiodic Signal4
2.	ANALOG COMMUNICATION – MODULATION
	What is Modulation?6
	Advantages of Modulation6
	Signals in the Modulation Process7
	Types of Modulation7
3.	ANALOG COMMUNICATION – AMPLITUDE MODULATION9
	Mathematical Expressions10
	Modulation Index11
	Bandwidth of AM Wave13
	Power Calculations of AM Wave13
4.	ANALOG COMMUNICATION – NUMERICAL PROBLEMS

5.	ANALOG COMMUNICATION – AM MODULATORS	18
	Square Law Modulator	18
	Switching Modulator	19
6.	ANALOG COMMUNICATION – AM DEMODULATORS	21
	Square Law Demodulator	21
	Envelope Detector	22
7.	ANALOG COMMUNICATION – DSBSC MODULATION	23
	Mathematical Expressions	24
	Bandwidth of DSBSC Wave	24
	Power Calculations of DSBSC Wave	24
8.	ANALOG COMMUNICATION – DSBSC MODULATORS	26
	Balanced Modulator	26
	Ring Modulator	27
9.	ANALOG COMMUNICATION – DSBSC DEMODULATORS	29
	Coherent Detector	29
	Costas Loop	30
10.	ANALOG COMMUNICATION – SSBSC MODULATION	33
	Mathematical Expressions	33
	Bandwidth of SSBSC Wave	34
	Power Calculations of SSBSC Wave	34
11.	ANALOG COMMUNICATION – SSBSC MODULATORS	36
	Frequency Discrimination Method	36
	Phase Discrimination Method	37

12.	ANALOG COMMUNICATION – SSBSC DEMODULATOR	39
	Coherent Detector	39
13.	ANALOG COMMUNICATION – VSBSC MODULATION	41
	Bandwidth of VSBSC Modulation	41
	Generation of VSBSC	42
	Demodulation of VSBSC	43
14.	ANALOG COMMUNICATION – ANGLE MODULATION	45
	Frequency Modulation	45
	Phase Modulation	48
15.	ANALOG COMMUNICATION – NUMERICAL PROBLEMS	51
16.	ANALOG COMMUNICATION – FM MODULATORS	54
	Generation of NBFM	54
	Generation of WBFM	55
17.	ANALOG COMMUNICATION – FM DEMODULATORS	57
	Frequency Discrimination Method	57
	Phase Discrimination Method	58
18.	ANALOG COMMUNICATION – MULTIPLEXING	59
	Types of Multiplexers	59
	Analog Multiplexing	60
	Digital Multiplexing	61
	De-Multiplexer	61
19.	ANALOG COMMUNICATION – NOISE	62
	What is Noise?	62
	Types of Noise	62

	Effects of Noise	63
20.	ANALOG COMMUNICATION – SNR CALCULATIONS	64
	Signal to Noise Ratio	64
	Figure of Merit	64
	SNR Calculations in AM System	64
	SNR Calculations in DSBSC System	66
	SNR Calculations in SSBSC System	68
21.	ANALOG COMMUNICATION – TRANSMITTERS	71
	AM Transmitter	71
	FM Transmitter	71
22.	ANALOG COMMUNICATION – RECEIVERS	73
	Requirements of a Receiver	73
	AM Receiver	75
	FM Receiver	76
23.	FM Receiver	76 78
23.	FM Receiver ANALOG COMMUNICATION – SAMPLING Sampling Theorem	76 78 79
23. 24.	FM Receiver	76 78 79 81
23. 24.	FM Receiver ANALOG COMMUNICATION – SAMPLING Sampling Theorem ANALOG COMMUNICATION – PULSE MODULATION Pulse Amplitude Modulation	76 78 81 81
23. 24.	FM Receiver ANALOG COMMUNICATION – SAMPLING Sampling Theorem ANALOG COMMUNICATION – PULSE MODULATION Pulse Amplitude Modulation Pulse Width Modulation	76 78 81 81 81
23. 24.	FM Receiver ANALOG COMMUNICATION – SAMPLING Sampling Theorem ANALOG COMMUNICATION – PULSE MODULATION Pulse Amplitude Modulation Pulse Width Modulation Pulse Position Modulation	76 78 81 81 81 82 83
23.	FM Receiver ANALOG COMMUNICATION – SAMPLING Sampling Theorem ANALOG COMMUNICATION – PULSE MODULATION Pulse Amplitude Modulation Pulse Width Modulation Pulse Position Modulation Comparison between PAM, PWM, and PPM	76 78 79 81 81 82 83 83
23. 24. 25.	FM Receiver	78 79 81 81 81 83 83 85 86
23. 24. 25.	FM Receiver ANALOG COMMUNICATION – SAMPLING Sampling Theorem ANALOG COMMUNICATION – PULSE MODULATION Pulse Amplitude Modulation Pulse Width Modulation Pulse Position Modulation Comparison between PAM, PWM, and PPM ANALOG COMMUNICATION – TRANSDUCERS Why do We Need Transducers?	78 79 81 81 81 82 83 85 86

The word communication arises from the Latin word *commūnicāre*, which means "to share". Communication is the basic step for exchange of information.

For example, a baby in a cradle, communicates with a cry when she needs her mother. A cow moos loudly when it is in danger. A person communicates with the help of a language. Communication is the bridge to share.

Communication can be defined as the process of exchange of information through means such as words, actions, signs, etc., between two or more individuals.

Parts of a Communication System

Any system, which provides communication consists of the three important and basic parts as shown in the following figure.

- **Sender** is the person who sends a message. It could be a transmitting station from where the signal is transmitted.
- **Channel** is the medium through which the message signals travel to reach the destination.
- **Receiver** is the person who receives the message. It could be a receiving station where the transmitted signal is being received.

Types of Signals

Conveying an information by some means such as gestures, sounds, actions, etc., can be termed as **signaling**. Hence, a signal can be a source of energy which transmits some information. This signal helps to establish a communication between the sender and the receiver.

An electrical impulse or an electromagnetic wave which travels a distance to convey a message, can be termed as a **signal** in communication systems.

Depending on their characteristics, signals are mainly classified into two types: Analog and Digital. Analog and Digital signals are further classified, as shown in the following figure.

Analog Signal

A continuous time varying signal, which represents a time varying quantity can be termed as an **Analog Signal**. This signal keeps on varying with respect to time, according to the instantaneous values of the quantity, which represents it.

Example

Let us consider a tap that fills a tank of 100 liters capacity in an hour (6 AM to 7 AM). The portion of filling the tank is varied by the varying time. Which means, after 15 minutes (6:15 AM) the quarter portion of the tank gets filled, whereas at 6:45 AM, $3/4^{th}$ of the tank is filled.

If we try to plot the varying portions of water in the tank according to the varying time, it would look like the following figure.

As the result shown in this image varies (increases) according to time, this **time varying quantity** can be understood as Analog quantity. The signal which represents this condition with an inclined line in the figure, is an **Analog Signal**. The communication based on analog signals and analog values is called as **Analog Communication**.

Digital Signal

A signal which is discrete in nature or which is non-continuous in form can be termed as a **Digital signal**. This signal has individual values, denoted separately, which are not based on the previous values, as if they are derived at that particular instant of time.

Example

Let us consider a classroom having 20 students. If their attendance in a week is plotted, it would look like the following figure.

In this figure, the values are stated separately. For instance, the attendance of the class on Wednesday is 20 whereas on Saturday is 15. These values can be considered individually and separately or discretely, hence they are called as **discrete values**.

The binary digits which has only 1s and 0s are mostly termed as **digital values**. Hence, the signals which represent 1s and 0s are also called as **digital signals**. The communication based on digital signals and digital values is called as **Digital Communication**.

Periodic Signal

Any analog or digital signal, that repeats its pattern over a period of time, is called as a **Periodic Signal**. This signal has its pattern continued repeatedly and is easy to be assumed or to be calculated.

Example

If we consider a machinery in an industry, the process that takes place one after the other is a continuous procedure. For example, procuring and grading the raw material, processing the material in batches, packing a load of products one after the other, etc., follows a certain procedure repeatedly.

Such a process whether considered analog or digital, can be graphically represented as follows.

Aperiodic Signal

Any analog or digital signal, that doesn't repeat its pattern over a period of time is called as **Aperiodic Signal**. This signal has its pattern continued but the pattern is not repeated. It is also not so easy to be assumed or to be calculated.

Example

The daily routine of a person, if considered, consists of various types of work which take different time intervals for different tasks. The time interval or the work doesn't continuously repeat. For example, a person will not continuously brush his teeth from morning to night, that too with the same time period.

Such a process whether considered analog or digital, can be graphically represented as follows.

In general, the signals which are used in communication systems are analog in nature, which are transmitted in analog or converted to digital and then transmitted, depending upon the requirement.

For a signal to be transmitted to a distance, without the effect of any external interferences or noise addition and without getting faded away, it has to undergo a process called as **Modulation**. It improves the strength of the signal without disturbing the parameters of the original signal.

What is Modulation?

A message carrying a signal has to get transmitted over a distance and for it to establish a reliable communication, it needs to take the help of a high frequency signal which should not affect the original characteristics of the message signal.

The characteristics of the message signal, if changed, the message contained in it also alters. Hence, it is a must to take care of the message signal. A high frequency signal can travel up to a longer distance, without getting affected by external disturbances. We take the help of such high frequency signal which is called as a **carrier signal** to transmit our message signal. Such a process is simply called as Modulation.

Modulation is the process of changing the parameters of the carrier signal, in accordance with the instantaneous values of the modulating signal.

Need for Modulation

Baseband signals are incompatible for direct transmission. For such a signal, to travel longer distances, its strength has to be increased by modulating with a high frequency carrier wave, which doesn't affect the parameters of the modulating signal.

Advantages of Modulation

The antenna used for transmission, had to be very large, if modulation was not introduced. The range of communication gets limited as the wave cannot travel a distance without getting distorted.

Following are some of the advantages for implementing modulation in the communication systems.

- Reduction of antenna size
- No signal mixing
- Increased communication range
- Multiplexing of signals
- Possibility of bandwidth adjustments
- Improved reception quality

End of ebook preview If you liked what you saw... Buy it from our store @ **https://store.tutorialspoint.com**