

Adaptive Software Development

i

About the Tutorial

Adaptive Software Development is a move towards adaptive practices, leaving the

deterministic practices in the context of complex systems and complex environments.

Adaptive Software Development focuses on collaboration and learning as a technique to

build complex systems. It is evolved from the best practices of Rapid Application

Development (RAD) and Evolutionary Life Cycles.

Audience

Adaptive Software Development is written for project teams that have been struggling

with high-speed, high-change projects and are looking for ways to improve performance

and to moderate burnout, especially as the projects they undertake get larger and the

teams become more distributed.

Prerequisites

Before you start proceeding with this tutorial, we are assuming that you are already aware

about the basics of Software Development Life Cycle. If you are not well aware of these

concepts, then we will suggest you to go through our short tutorials on SDLC.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Adaptive Software Development

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Copyright & Disclaimer ... i
Table of Contents .. ii

1. ASD – Introduction .. 1
What is Agile? .. 1
Agile Manifesto.. 1
What is Adaptive Software Development? ... 2

2. SDLC Models – Evolution... 3

3. SDLC ─ Waterfall Model .. 5
Waterfall Model – Strengths ... 5
Waterfall Model – Weaknesses ... 6
When to Use Waterfall Model? ... 6
Evolutionary Prototyping Model ... 6
Evolutionary Prototyping Model – Strengths .. 7
Evolutionary Prototyping Model – Weaknesses.. 8
When to Use Evolutionary Prototyping Model?.. 8

4. SDLC ─ Iterative Incremental Model .. 9
Iterative Incremental Model – Strengths .. 9
Iterative Incremental Model – Weaknesses .. 10
When to Use Iterative Incremental Model? .. 10

5. SDLC ─ Rapid Application Development Model ... 11
Rapid Application Development Model – Strengths ... 11
Rapid Application Development Model – Weaknesses ... 12
When to Use Rapid Application Development Model? ... 12

6. SDLC ─ Spiral Model .. 13
Spiral Model – Strengths ... 14
Spiral Model – Weaknesses ... 14
When to Use Spiral Model? ... 15

7. SDLC ─ Agile Methods ... 16
Agile Methods – Strengths .. 16
Agile Methods – Weaknesses .. 16
When to Use Agile methods? .. 17

8. ASD ─ Evolution .. 18
The Adaptive Life Cycle.. 19

9. ASD – Concepts ... 20
Complex Adaptive Systems (CAS) Theory .. 20
Complex Software Development ... 20
Complex Adaptive Systems (CAS) Concepts .. 21
Adaptive Software Development Practices ... 22

Adaptive Software Development

iii

10. ASD – Life Cycle ... 23
Phases of ... 23
ASD Life Cycle .. 23

11. ASD Lifecycle – Characteristics .. 26

12. ASD – Practices ... 28
Adaptive SDLC ... 28
Speculate ─ Initiation and Planning ... 29
Collaborate ─ Concurrent Feature Development .. 31
Learn - Quality Review ... 32

13. ASD – Adaptive Management ... 34
Adaptive Management .. 34
Passive Adaptive Management ... 35
Active Adaptive Management ... 35
Leadership-Collaboration Management .. 36

Adaptive Software Development

1

What is Agile?

In literary terms, the word “agile” means someone who can move quickly and easily or

someone who can think and act quickly and clearly. In business, “agile” is used for

describing ways of planning and doing work wherein it is understood that making changes

as needed is an important part of the job. Business “agility” means that a company is always

in a position to take account of the market changes.

In software development, the term “agile” is adapted to mean “the ability to respond to

changes – changes from Requirements, Technology and People.”

Agile Manifesto

The Agile Manifesto was published by a team of software developers in 2001, highlighting

the importance of the development team, accommodating changing requirements and

customer involvement.

The Agile Manifesto is:

We are uncovering better ways of developing software by doing it and helping others do

it. Through this work, we have come to value-

 Individuals and interactions over processes and tools.

 Working software over comprehensive documentation.

 Customer collaboration over contract negotiation.

 Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the left more.

Characteristics of Agility

Following are the characteristics of Agility-

 Agility in Agile Software Development focuses on the culture of the whole team

with multi-discipline, cross-functional teams that are empowered and self-

organizing.

 It fosters shared responsibility and accountability.

 Facilitates effective communication and continuous collaboration.

 The whole-team approach avoids delays and wait times.

 Frequent and continuous deliveries ensure quick feedback that in in turn enable the

team align to the requirements.

1. ASD – Introduction

Adaptive Software Development

2

 Collaboration facilitates combining different perspectives timely in implementation,

defect fixes and accommodating changes.

 Progress is constant, sustainable, and predictable emphasizing transparency.

Agile Methodologies

Early implementations of Agile methods include Rational Unified Process, Scrum, Crystal

Clear, Extreme Programming, Adaptive Software Development, Feature Driven

Development, and Dynamic Systems Development Method (DSDM). These are now

collectively referred to as the Agile methodologies, after the Agile manifesto was published

in 2001.

In this tutorial, we will learn the Agile Methodology – Adaptive Software Development.

What is Adaptive Software Development?

Adaptive Software Development is a move towards adaptive practices, leaving the

deterministic practices in the context of complex systems and complex environments.

Adaptive Software Development focuses on collaboration and learning as a technique to

build complex systems. It is evolved from the best practices of Rapid Application

Development (RAD) and Evolutionary Life Cycles. Adaptive Software Development was

then extended to include adaptive approaches for the management, with speculation

replacing Planning.

Jim Highsmith published a book on Adaptive Software Development in 2000. In

Highsmith’s words –

“Adaptive Software Development is cyclical like the evolutionary model, with the

phase names Speculate, collaborate, learn reflecting the unpredictable realm of

increasingly complex systems. Adaptive development goes further than its

evolutionary heritage in two key ways. First, it explicitly replaces determinism with

emergence. Second, it goes beyond a change in Life Cycle to a deeper change in

management style.”

http://en.wikipedia.org/wiki/Unified_Process
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Crystal_Clear_(software_development)
http://en.wikipedia.org/wiki/Crystal_Clear_(software_development)
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Adaptive_Software_Development
http://en.wikipedia.org/wiki/Feature_Driven_Development
http://en.wikipedia.org/wiki/Feature_Driven_Development
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method

Adaptive Software Development

3

A Software Development Life Cycle (SDLC) model is a framework that describes the

activities performed at each stage of a software development project.

In a Software Development Life Cycle, the activities are performed in five phases-

 Requirements Gathering: Requirements for a software to be developed are

gathered. These requirements will be in a language that is understood by the

customer / user. Domain specific terminology is recommended.

 Analysis: The gathered requirements are analyzed from implementation point of

view and the software specifications are written to cover both, the functional

requirements and the non-functional requirements.

 Design: This phase involves arriving at the software architecture and

implementation specifics based on technology chosen for development.

 Construction: In this phase, the code is developed, unit tested, integrated,

integration tested and the build is produced.

 Testing: Functional testing of the built software is done in this phase. This also

includes the testing of non-functional requirements.

There are two approaches to performing these activities-

 Prescriptive: The SDLC models that will provide you ways of performing the

activities in a prescribed manner as defined by the framework.

 Adaptive: The SDLC models that will give you flexibility in performing the

activities, with certain rules that need to be followed. The agile methods mostly

follow this approach, with each one having its rules. However, following an adaptive

or agile approach does not mean that the software is developed without following

any discipline. This would lead to a chaos.

You need to understand that we cannot say that a specific SDLC model is good or bad.

Each of them has its own strengths and weaknesses and thus are suitable in certain

contexts.

When you choose an SDLC model for your project, you need to understand-

 Your Organization Context

 Your Technology Context

 Your Team Composition

 Your Customer Context

For example, if the software development is predictable, you can use a Prescriptive

approach. On the other hand, if the software development is unpredictable, i.e.

requirements are not entirely known, or the development team does not have prior

2. SDLC Models – Evolution

Adaptive Software Development

4

exposure to the current domain or technology, etc. then Adaptive approach is the best

choice.

In the following sections, you will understand the most prevalent SDLC models that are

evolved during the execution of software development projects across the industry. You

will also get to know the strengths and weaknesses of each of them and in what contexts

they are suitable.

Adaptive Software Development

5

The Waterfall model is a classic SDLC model that is widely known, understood and

commonly used. It was introduced by Royce in 1970 and is still being followed as a

common approach for software development in various organizations across the industry.

In Waterfall model, each lifecycle phase can start only after the earlier lifecycle phase is

complete. Thus, it is a linear model with no feedback loops.

Waterfall Model – Strengths

The strengths of the Waterfall model are-

 Easy to understand, easy to use.

 Provides structure to inexperienced development team.

 Milestones are well understood.

 Sets requirements stability.

 Ideal for management control (planning, monitoring, reporting).

 Works well when quality is more important than cost or schedule.

3. SDLC ─ Waterfall Model

Adaptive Software Development

6

Waterfall Model – Weaknesses

The weaknesses or the disadvantages of the Waterfall model are-

 Idealised – It does not match reality well.

 Unrealistic – cannot expect accurate requirements early in the project.

 Does not reflect iterative nature of exploratory development that is more common.

 Difficult and expensive to make changes.

 Software is delivered only at the end of the project. Due to this -

o Delays discovery of serious defects.

o Possibility of delivery of obsolete requirements.

 Significant management overhead, which can be costly for small teams and

projects.

 Requires experienced resources at every phase – analysts, designers, developers,

testers.

 Testing starts only after the development is complete and the testers are not

involved in any of the earlier phases.

 The expertize of the cross-functional teams is not shared as each phase is executed

in silos.

When to Use Waterfall Model?

You can use the Waterfall model if -

 Requirements are very well known.

 Product definition is stable.

 Technology is well understood.

 New version of an existing product.

 Porting an existing product to a new platform.

 Large organization with structured cross-functional teams.

 Communication channels are well established within the organization and with the

customer as well.

Evolutionary Prototyping Model

In software development using Evolutionary Prototyping model, the developers build a

prototype during the requirements phase. The end users then evaluate the prototype and

give feedback. The feedback can be corrections to the prototype or additional functionality.

Based on the feedback, the developers further refine the prototype.

Adaptive Software Development

7

Thus, the product evolves through the Prototype -> Feedback -> Refined Prototype Cycles

and hence the name Evolutionary Prototyping. When the user is satisfied with the

functionality, and working of the product, the prototype code is brought up to the required

standards for the final product delivery.

Evolutionary Prototyping Model – Strengths

The strengths or the advantages of an Evolutionary Prototyping model are-

 Customers / end users can visualize the system requirements as they are gathered

looking at the prototype.

 Developers learn from customers and hence no ambiguities regarding domain or

production environment.

 Allows flexible design and development.

 Interaction with the prototype stimulates the awareness of additionally needed

functionality.

 Unexpected requirements and requirements changes are easily accommodated.

 Steady and visible signs of progress are produced.

 Delivery of an accurate and maintainable end-product.

Adaptive Software Development

8

Evolutionary Prototyping Model – Weaknesses

The weaknesses or disadvantages of the Evolutionary Prototyping model are as follows-

 Tendency to abandon structured development in the code-and-fix development,

though it is not what is prescribed by the model.

 This model received bad reputation for the quick-and-dirty methods.

 Overall maintainability can possibly be overlooked.

 The customer can possibly ask for the delivery of the prototype as the final, not

giving the opportunity for the developers to execute the final step i.e.

standardization of the end-product.

 Project can continue forever (with continuous scope creep) and the management

may not appreciate it.

When to Use Evolutionary Prototyping Model?

You can use the Evolutionary Prototyping model-

 When requirements are unstable or have to be clarified

 As the requirements clarification stage of a waterfall model

 To develop user interfaces

 For short-lived demonstrations

 For new or original development

 For implementing a new technology

Adaptive Software Development

9

In an Iterative Incremental model, initially, a partial implementation of a total system is

constructed so that it will be in a deliverable state. Increased functionality is added.

Defects, if any, from the prior delivery are fixed and the working product is delivered. The

process is repeated until the entire product development is completed. The repetitions of

these processes are called iterations. At the end of every iteration, a product increment is

delivered.

Iterative Incremental Model – Strengths

The advantages or strengths of Iterative Incremental model are-

 You can develop prioritized requirements first.

 Initial product delivery is faster.

 Customers gets important functionality early.

 Lowers initial delivery cost.

 Each release is a product increment, so that the customer will have a working

product at hand all the time.

 Customer can provide feedback to each product increment, thus avoiding surprises

at the end of development.

 Requirements changes can be easily accommodated.

4. SDLC ─ Iterative Incremental Model

Adaptive Software Development

10

Iterative Incremental Model – Weaknesses

The disadvantages of the Iterative Incremental model are-

 Requires effective planning of iterations.

 Requires efficient design to ensure inclusion of the required functionality and

provision for changes later.

 Requires early definition of a complete and fully functional system to allow the

definition of increments.

 Well-defined module interfaces are required, as some are developed long before

others are developed.

 Total cost of the complete system is not lower.

When to Use Iterative Incremental Model?

Iterative Incremental model can be used when-

 Most of the requirements are known up-front but are expected to evolve over time.

 The requirements are prioritized.

 There is a need to get the basic functionality delivered fast.

 A project has lengthy development schedules.

 A project has new technology.

 The domain is new to the team.

Adaptive Software Development

11

Rapid Application Development (RAD) model has the following phases-

 Requirements Planning phase - In the requirements planning phase, a

workshop needs to be conducted to discuss business problems in a structured

manner.

 User Description phase - In the User Description phase, automated tools are

used to capture information from users.

 Construction phase - In the Construction phase, productivity tools, such as code

generators, screen generators, etc. are used inside a time-box, with a “Do until

Done” approach.

 Cut Over phase - In the Cut over phase, installation of the system, user

acceptance testing and user training are performed.

Rapid Application Development Model – Strengths

The advantages or strengths of the Rapid Application Development model are as follows-

 Reduced cycle time and improved productivity with fewer team members would

mean lower costs.

 Customer’s involvement throughout the complete cycle minimizes the risk of not

achieving customer satisfaction and business value.

 Focus moves to the code in a what-you-see-is-what-you-get mode (WYSIWYG).

This brings clarity on what is being built is the right thing.

5. SDLC ─ Rapid Application Development Model

Adaptive Software Development

12

 Uses modelling concepts to capture information about business, data, and

processes.

Rapid Application Development Model – Weaknesses

The disadvantages or strengths of Rapid Application Development model are as follows-

 Accelerated development process must give quick responses to the user.

 Risk of never achieving closure.

 Hard to use with legacy systems.

 Developers and customers must be committed to rapid-fire activities in an

abbreviated time frame.

When to Use Rapid Application Development Model?

Rapid Application Development model can be used when-

 User can be involved throughout the life cycle.

 Project can be time-boxed.

 Functionality can be delivered in increments.

Though the strengths of Rapid Application Development model are appreciated, it is

sparingly used in the industry.

Adaptive Software Development

13

Spiral model adds Risk Analysis and RAD prototyping to the Waterfall model. Each cycle

involves the same sequence of steps as the Waterfall model.

Spiral model has four quadrants. Let us discuss them in detail.

Quadrant 1: Determine objectives, alternatives and constraints

 Objectives: Functionality, performance, hardware/software interface, critical

success factors, etc.

 Alternatives: Build, reuse, buy, sub-contract, etc.

 Constraints: Cost, schedule, interface, etc.

Quadrant 2: Evaluate alternatives, identify and resolve risks

 Study alternatives relative to the objectives and constraints that are determined.

 Identify risks such as lack of experience, new technology, tight schedules, etc.

6. SDLC ─ Spiral Model

Adaptive Software Development

14

 Resolve the identified risks evaluating their impact on the project, identifying the

needed mitigation and contingency plans and implementing them. Risks always

need to be monitored.

Quadrant 3: Develop next-level product

Typical activities include -

 Create a design

 Review design

 Develop code

 Inspect code

 Test product

Quadrant 4: Plan next phase

Typical activities include -

 Develop project plan

 Develop configuration management plan

 Develop a test plan

 Develop an installation plan

Spiral Model – Strengths

The advantages or strengths of the Spiral method are-

 Provides early indication of the risks, without involving much cost.

 Users can view the system early because of the rapid prototyping tools.

 Critical high-risk functions are developed first.

 The design does not have to be perfect.

 Users can be closely involved in all lifecycle steps.

 Early and frequent feedback from users.

 Cumulative costs assessed frequently.

Spiral Model – Weaknesses

The disadvantages or weaknesses of the Spiral method are-

 May be hard to define objectives, verifiable milestones that indicate readiness to

proceed through the next iteration.

 Time spent in planning, resetting objectives, doing risk analysis and prototyping

may be an overhead.

 Time spent for evaluating risks can be too large for small or low-risk projects.

Adaptive Software Development

15

 Spiral model is complex to understand for new team members.

 Risk assessment expertise is required.

 Spiral may continue indefinitely.

 Developers must be reassigned during non-development phase activities.

When to Use Spiral Model?

The Spiral model can be used when-

 Creation of a prototype is appropriate.

 Risk evaluation is important.

 A project is of medium to high-risk.

 Users are unsure of their needs.

 Requirements are complex.

 Product-line is new.

 Significant changes are expected during exploration.

 Long-term project commitment unwise because of potential business changes.

Adaptive Software Development

16

Agile Methods are based on the Agile manifesto and are adaptive in nature. Agile methods

ensure-

 Team collaboration.

 Customer collaboration.

 Constant and continuous communication.

 Response to changes.

 Readiness of a working product.

Several Agile methods came into existence, promoting iterative and incremental

development with time-boxed iterations. Though the Agile methods are adaptive, rules of

the specific method cannot be by-passed and hence requires disciplined implementation.

Agile Methods – Strengths

The advantages or strengths of Agile method are-

 Early and frequent releases.

 Accommodation of changing requirements.

 Daily communication among the customer and developers.

 Projects built around motivated individuals.

 Self-organizing teams.

 Simplicity, focusing on what is immediately required.

 No building for future or overburdening the code.

 Regular reflection to adjust behavior to improve effectiveness.

Agile Methods – Weaknesses

The disadvantages or weaknesses of Spiral method are-

 Customer availability may not be possible.

 Teams should be experienced to follow the rules of the method.

 Appropriate planning is required to quickly decide on the functionality that needs

to be delivered in an iteration.

 Team is expected to have estimation skills and negotiation skills.

 Team should have effective communication skills.

 New teams may not be able to organize themselves.

 Requires discipline to develop and deliver in time-boxed iterations.

7. SDLC ─ Agile Methods

Adaptive Software Development

17

 Design needs to be kept simple and maintainable, thus requiring effective design

skills.

When to Use Agile methods?

The Agile methods can be used when-

 Application is time-critical.

 The scope is limited and less formal (scaling agile methods to larger projects is

underway, with certain extensions to some of the agile methods).

 Organization employs disciplined methods.

Adaptive Software Development

18

The earlier SDLC models are more oriented to the practices of stability, predictability and

decreasing returns. The industry, such as the Internet Platforms has been moving to

increase return environments, unpredictable, nonlinear, and fast approaches.

Adaptive Software Development (ASD) has evolved to address these issues. It focuses on

emergence as the most important factor from the management’s perspective, to enhance

the ability to manage product development.

In Jim Highsmith’s words, “Adaptive Software Development framework is based on years

of experience with traditional Software Development methodologies, consulting on,

practicing, and writing about Rapid Application Development (RAD) techniques and

working with high-technology software companies on managing their product development

practices”.

Waterfall model is found to be characterized by linearity and predictability, with meagre

feedback. It can be viewed as a sequence of Plan -> Build -> Implement.

The Evolutionary Lifecycle models such as the Spiral model moved the Deterministic

approach to the Adaptive one, with Plan -> Build -> Revise Cycles.

However, the practitioners’ mindset remained Deterministic with long-term predictability

turning to short-term predictability. The practices of Evolutionary Lifecycle models such as

RAD are found to be less Deterministic.

8. ASD ─ Evolution

Adaptive Software Development

19

The Adaptive Life Cycle

The Adaptive model is built from a different point of view. Though cyclical like the

Evolutionary model, the names of the phase reflect the unpredictable nature of

increasingly complex systems.

Adaptive Development goes further than its evolutionary heritage in two key ways-

 It explicitly replaces Determinism with Emergence.

 It goes beyond a change in life cycle to a deeper change in management style.

The three phases in Adaptive Software Development Lifecycle are-

 Speculate: Speculate replaces the deterministic word planning, planning of

product specifications or planning of project management tasks.

 Collaborate: Collaborate represents drawing a balance between

o Managing in the traditional project management sense, and

o Creating and maintaining the collaborative environment needed for

emergence.

Collaborative Activities build products, keeping up the pace of changes in the

environment.

 Learn: Learn aims both, the developers and the customers, to use the results of

each development cycle to learn the direction of the next.

Adaptive Software Development

20

In this chapter, we will understand the various concepts of Adaptive Software

Development.

Complex Adaptive Systems (CAS) Theory

Brian Arthur and his colleagues, at the Santa Fe institute, used the Complex Adaptive

Systems (CAS) theory to revolutionize the understanding of Physics, Biology, Evolution,

and Economics.

Brian Arthur culminated his more than two decades of trying to convince mainstream

economists that their view, dominated by fundamental assumptions of decreasing returns,

equilibrium, and deterministic dynamics, was no longer sufficient to understand reality.

The new world is one of increasing returns, instability, and inability to determine cause

and effect.

The two worlds differ in behavior, style, and culture. They call for-

 Different Management Techniques

 Different Strategies

 Different Understanding

Complex Software Development

With the scope of Software Applications being exploded, even the software development

organizations are accruing similar contradictions as mentioned above.

 One World is represented by the Deterministic development, derived from

management practices that are rooted with the basics of stability and predictability

(which in Arthur's terms means decreasing returns)

 Second World is represented by the industries moving from decreasing to

increasing return environments that are unpredictable, nonlinear and fast.

To address the issues of this second world, Jig Highsmith offered a framework, Adaptive

Software Development that is different from the Deterministic Software Development.

The Adaptive Software Development focuses on addressing the complex systems-

 Adaptive Software Development for the development life cycle.

 Adaptive Management Techniques calling for a different mindset from that of

traditional project management practices.

In this tutorial, you can understand both these implementations.

9. ASD – Concepts

Adaptive Software Development

21

Adaptive Software Development (ASD) is based on two perspectives-

 Conceptual perspective based on the Complex Adaptive Systems (CAS) theory, as

given in the first section of this chapter.

 Practical Perspective based on

o Years of experience with Deterministic software development methodologies.

o Consulting, practicing, and writing about Rapid Application Development

(RAD) techniques; and working with high-technology software companies

on managing their product development.

In this chapter, you will understand the conceptual perspective of Adaptive Software

Development.

Complex Adaptive Systems (CAS) Concepts

Complex Adaptive Systems (CAS) theory has many concepts. Adaptive Software

Development is based on two of these concepts-

 Emergence

 Complexity

Emergence

In complex software product-development projects, the outcomes are inherently

unpredictable. However, successful products emerge from such environments all the time.

This can happen by Emergence, as illustrated in the Complex Adaptive Systems (CAS)

theory. It can be understood by a simple example, flocking behavior of birds.

When you observe a flock of birds, you notice that-

 Each bird tries to

o Maintain a minimum distance from other objects in the environment,

including other birds.

o Match velocities with birds in its neighborhood.

o Move towards the perceived center of mass of birds in its neighborhood.

 There are no rules of behavior for the group. The only rules are about the behavior

of individual birds.

 However, there exists an emergent behavior, the flocking of birds. When errant

birds rush to catch up, the flock splits around obstacles and reforms on the other

side.

This shows the requirement of the most difficult mental model changes in Adaptive

Development ─ From ways of managing and organizing that individual freedom to the

notion that a creative new order emerges unpredictably from spontaneous self-

organization.

Adaptive Software Development

22

In addition to the development, emergence is the most important concept from the

management perspective also.

Complexity

In the Software Development context, Complexity is about-

 The individuals of a team such as the developers, customers, vendors, competitors,

and stockholders, their numbers and their speed.

 Size and technological complexity.

Adaptive Software Development Practices

Adaptive Software Development offers a different perspective on software management

practices. In the sections below, you can understand the two important practices - Quality

and RAD, both of which have ramifications for gathering requirements.

You can find the details of all the practices in the chapter, Adaptive Software Development

Practices in this tutorial.

Quality

In a complex environment, the age-old practice of "Do it right the first time" does not work

as you cannot predict what is right at the beginning. You need to have an aim to produce

the right value. However, in complex environment, the combinations and permutations of

value components like scope (features, performance, defect levels), schedule, and

resources is so vast that there can never be an optimum value. Hence, the focus is to shift

to deliver the best value in the competitive market.

RAD Practices

RAD Practices generally involve a combination of the following-

 Evolutionary Lifecycle

 Customer Focus Groups, JAD Sessions, Technical Reviews

 Time-boxed Project Management

 Continuous Software Engineering

 Dedicated Teams with war rooms

The RAD projects have an inherent adaptive, emergent flavor. Many IT organizations are

against RAD. However, Microsoft and others have produced incredibly large and complex

software using techniques comparable to RAD because it raises questions about their

fundamental world view.

RAD practices and Microsoft process are both examples of Adaptive Development in action.

Giving them a label (i.e., Adaptive Development) and realizing that there is a growing

body of scientific knowledge (i.e., CAS theory) explains why they work. This should provide

a basis for more extensive use of these practices.

Adaptive Software Development

23

Adaptive Software Development has evolved from RAD practices. The team aspects also

were added to these practices. Companies from New Zealand to Canada, for a wide range

of project and product types, have used adaptive Software Development.

Jim Highsmith published Adaptive Software Development in 2000.

Adaptive Software Development practices provide ability to accommodate change and are

adaptable in turbulent environments with products evolving with little planning and

learning.

Phases of ASD Life Cycle

Adaptive Software Development is cyclical like the Evolutionary model, with the phase

names reflecting the unpredictability in the complex systems. The phases in the Adaptive

software development life cycle are-

 Speculate

 Collaborate

 Learn

These three phases reflect the dynamic nature of Adaptive Software Development. The

Adaptive Development explicitly replaces Determinism with Emergence. It goes beyond a

mere change in lifecycle to a deeper change in management style. Adaptive Software

Development has a dynamic Speculate-Collaborate-Learn Lifecycle.

The Adaptive Software Development Lifecycle focuses on results, not tasks, and the results

are identified as application features.

10. ASD – Life Cycle

Adaptive Software Development

24

Speculate

The term plan is too deterministic and indicates a reasonably high degree of certainty

about the desired result. The implicit and explicit goal of conformance to plan, restricts

the manager's ability to steer the project in innovative directions.

In Adaptive Software Development, the term plan is replaced by the term speculate. While

speculating, the team does not abandon planning, but it acknowledges the reality of

uncertainty in complex problems. Speculate encourages exploration and experimentation.

Iterations with short cycles are encouraged.

Collaborate

Complex applications are not built, they evolve. Complex applications require that a large

volume of information be collected, analyzed, and applied to the problem. Turbulent

environments have high rates of information flow. Hence, complex applications require

that a large volume of information be collected, analyzed, and applied to the problem. This

results in diverse Knowledge requirements that can only be handled by team collaboration.

Collaborate would require the ability to work jointly to produce results, share knowledge

or make decisions.

In the context of project management, Collaboration portrays a balance between

managing with traditional management techniques and creating and maintaining the

collaborative environment needed for emergence.

Learn

The Learn part of the Lifecycle is vital for the success of the project. Team has to enhance

their knowledge constantly, using practices such as-

 Technical Reviews

 Project Retrospectives

 Customer Focus Groups

Reviews should be done after each iteration. Both, the developers and customers examine

their assumptions and use the results of each development cycle to learn the direction of

the next. The team learns-

 About product changes

 More fundamental changes in underlying assumptions about how the products are
being developed

The iterations need to be short, so that the team can learn from small rather than large

mistakes.

Adaptive Software Development

25

Speculate - Collaborate - Learn Cycle as a Whole

As you observe from the Speculate-Collaborate-Learn cycle, given above, it is obvious that

the three phases are nonlinear and overlap.

We observe the following from an Adaptive framework.

 It is difficult to Collaborate without Learning or to Learn without Collaborating.

 It is difficult to Speculate without Learning or to Learn without Speculating.

 It is difficult to Speculate without Collaborating or to Collaborate without

Speculating.

Adaptive Software Development

26

Adaptive Software Development Lifecycle has six basic characteristics-

 Mission focused

 Feature based

 Iterative

 Time-boxed

 Risk driven

 Change tolerant

In this chapter, you will understand these six characteristics of Adaptive Software

Development.

Mission-focused

For many projects, the overall mission that guides the team is well articulated, though the

requirements may be uncertain at the beginning of the project. Mission statements act as

guides that encourage exploration in the beginning but have a narrow focus over the

course of a project. A mission provides boundaries rather than a fixed destination. Mission

statements and the discussions that result in those statements provide direction and

criteria for making critical project tradeoff decisions.

Without a clear mission and a constant mission refinement practice, iterative lifecycles

become oscillating lifecycles, swinging back and forth with no progress in the development.

Feature-based

The Adaptive Software Development Lifecycle is based on application features and not on

tasks. Features are the functionality that are developed during an iteration based on the

customer’s priorities.

Features can evolve over several iterations when the customers provide feedback.

The application features that provide direct results to the customer after implementation

are primary. A customer-oriented document such as a user manual is also considered as

a feature. The other documents such as the data model, even if defined as deliverables

are always secondary.

Iterative

The Adaptive Software Development Lifecycle is iterative and focuses on frequent releases

in order to obtain feedback, assimilate the resulting learning and setting the right direction

for further development.

Time-boxed

In Adaptive Software Development Lifecycle, the iterations are time-boxed. However, one

should remember that time-boxing in Adaptive Software Development is not about time

11. ASD Lifecycle – Characteristics

Adaptive Software Development

27

deadlines. It should not be used to make the team work for long hours challenging a

collaborative environment or for compromising on the quality of the deliverables.

In Adaptive Software Development, time-boxing is considered as a direction for focusing

and forcing hard tradeoff decisions as and when required. In an uncertain environment, in

which change rates are high, there needs to be a periodic forcing function such as a time-

box to get the work finished.

Risk-driven

In Adaptive Software Development, the iterations are driven by identifying and evaluating

the critical risks.

Change-tolerant

Adaptive Software Development is change-tolerant, viewing change as the ability to

incorporate competitive advantage, but not as a problem for development.

Adaptive Software Development

28

The Adaptive Software Development practices are driven by a belief in continuous

adaptation, with the lifecycle equipped to accepting continuous change as the norm.

Adaptive Software Development Lifecycle is dedicated to-

 Continuous learning

 Change orientation

 Re-evaluation

 Peering into an uncertain future

 Intense collaboration among developers, management, and customers

Adaptive SDLC

Adaptive Software Development combines RAD with Software Engineering Best Practices,

such as-

 Project initiation.

 Adaptive cycle planning.

 Concurrent component engineering.

 Quality review.

 Final QA and release.

Adaptive Software Development practices can be illustrated as follows-

12. ASD – Practices

Adaptive Software Development

29

As illustrated above, Adaptive Software Development practices are spread across the three

phases as follows-

 Speculate – Initiation and planning

o Project Initiation

o Establishing time-box for the entire project

o Decide on the number of iterations and assign a time-box to each one

o Develop a theme or objective for each of the iterations

o Assign features to each iteration

 Collaborate – Concurrent feature development

o Collaboration for distributed teams

o Collaboration for smaller projects

o Collaboration for larger projects

 Learn – Quality Review

o Result quality from the customer's perspective

o Result quality from a technical perspective

o The functioning of the delivery team and the practices team members are

utilizing

o The project status

Speculate ─ Initiation and Planning

In Adaptive Software Development, the speculate phase has two activities-

 Initiation

 Planning

Speculate has five practices that can be executed repetitively during the initiation and

planning phase. They are-

 Project initiation

 Establishing time-box for the entire project

 Decide on the number of iterations and assign a time-box to each one

 Develop a theme or objective for each of the iterations

 Assign features to each iteration

Adaptive Software Development

30

Project Initiation

Project Initiation involves-

 Setting the project's mission and objectives

 Understanding constraints

 Establishing the project organization

 Identifying and outlining requirements

 Making initial size and scope estimates

 Identifying key project risks

The project initiation data should be gathered in a preliminary JAD session, considering

speed as the major aspect. Initiation can be completed in a concentrated two to five day

effort for a small to medium sized projects, or two to three weeks effort for larger projects.

During the JAD sessions, requirements are gathered in enough detail to identify features

and establish an overview of the object, data, or other architectural model.

Establishing Time-box for the Entire Project

The time-box for the entire project should be established, based on the scope, feature-set

requirements, estimates, and resource availability that result from project initiation work.

As you know, Speculating does not abandon estimating, but it just means accepting that

estimates can go wrong.

Iterations and Time-box

Decide on the number of iterations and the individual iteration lengths based on the overall

project scope and the degree of uncertainty.

For a small to medium sized application-

 Iterations usually vary from four to eight weeks.

 Some projects work best with two-week iterations.

 Some projects might require more than eight weeks.

Choose the time, based on what works for you. Once you decide on the number of

iterations and the lengths of each of the iterations, assign a schedule to each of the

iterations.

Develop a Theme or Objective

The team members should develop a theme or objective for each iteration. This is

something similar to the Sprint Goal in Scrum. Each iteration should deliver a set of

features that can demonstrate the product functionality making the product visible to the

customer to enable review and feedback.

Within the iterations, the builds should deliver working features on a preferably daily basis

enabling integration process and making the product visible to the development team.

Adaptive Software Development

31

Testing should be an ongoing, integral part of the feature development. It should not be

delayed until the end of the project.

Assign Features

Developers and customers should together assign features to each iteration. The most

important criteria for this feature assignment is that every iteration must deliver a visible

set of features with considerable functionality to the customer.

During the assignment of features to the iterations-

 Development team should come up with the feature estimates, risks, and

dependencies and provide them to the customer.

 Customers should decide on feature prioritization, using the information provided

by the development team.

Thus iteration planning is feature-based and done as a team with developers and

customers. Experience has shown that this type of planning provides better understanding

of the project than a task-based planning by the project manager. Further, feature-based

planning reflects the uniqueness of each project.

Collaborate ─ Concurrent Feature Development

During the Collaborate phase, the focus is on the development. The Collaborate phase has

two activities-

 The Development team collaborate and deliver working software.

 The project managers facilitate collaboration and concurrent development

activities.

Collaboration is an act of shared creation that encompasses the development team, the

customers and the managers. Shared creation is fostered by trust and respect.

Teams should collaborate on-

 Technical problems

 Business requirements

 Rapid decision making

Following are the practices relevant to the Collaborate phase in Adaptive Software

Development-

 Collaboration for distributed teams

 Collaboration for smaller projects

 Collaboration for larger projects

Adaptive Software Development

32

Collaboration for Distributed Teams

In the projects involving distributed teams, the following should be considered-

 Varying alliance partners

 Broad-based knowledge

 The way people interact

 The way they manage interdependencies

Collaboration for Smaller Projects

In the smaller projects, when team members are working in physical proximity,

Collaboration with informal hallway chats and whiteboard scribbling should be encouraged,

as this is found to be effective.

Collaboration for Larger Projects

Larger projects require additional practices, collaboration tools, and project manager

interaction and should be arranged on the contextual basis.

Learn - Quality Review

Adaptive Software Development encourages the concept of ‘Experiment and Learn’.

Learning from the mistakes and experimentation requires that the team members share

partially completed code and artifacts early, in order to-

 Find mistakes

 Learn from them

 Reduce rework by finding small problems before they become large ones

At the end of each development iteration, there are four general categories of things to

learn-

 Result quality from the customer's perspective

 Result quality from a technical perspective

 The functioning of the delivery team and the practices team

 The project status

Result Quality from the Customer's Perspective

In the Adaptive Software Development projects, getting feedback from the customers is

the first priority. The recommended practice for this is a customer focus group. These

sessions are designed to explore a working model of the application and record customer

change requests.

Customer focus group sessions are facilitated sessions, similar to jad sessions, but rather

than generating requirements or defining project plans, they are designed to review the

Adaptive Software Development

33

application itself. The customers provide feedback on the working software resulting from

an iteration.

Result Quality from a Technical Perspective

In the Adaptive Software Development projects, periodic review of technical artifacts

should be given importance. Code Reviews should be done on a continuous basis. Reviews

of other technical artifacts, such as technical architecture can be conducted weekly or at

the end of an iteration.

In Adaptive Software Development projects, the team should monitor its own performance

periodically. Retrospectives encourage the teams to learn about themselves and their

work, together as a team.

Iteration-end retrospectives facilitate periodic team performance self-review such as-

 Determine what is not working.

 What the Team needs to do more.

 What the Team needs to do less.

The Project Status

The Project status review helps in planning further work. In the adaptive software

development projects, determining the project status is feature-based approach, the end

of each iteration marked by completed features resulting in working software.

The Project Status review should include-

 Where is the project?

 Where is the project versus the plans?

 Where should the project be?

As the plans in the Adaptive Software Development projects are speculative, more than

the question 2 above, question 3 is important. That is, the project team and the customers

need to continuously ask themselves, "What have we learned so far, and does it change

our perspective on where we need to go?"

Adaptive Software Development

34

A flowchart of the Traditional software management is shown below.

Traditional software management has been characterized by the term command-control.

Many organizations are steeped in a tradition of optimization, efficiency, predictability,

control, rigor and process improvement. However, the emerging information age economy

requires adaptability, speed, collaboration, improvisation, flexibility, innovation, and

suppleness.

Harvard business review and management books have come up with the terms such as

empowerment, participative management, learning organization, human-centered

management, etc., but none of these are being put into managing modern organizations.

In the context of Adaptive Software Development, the gap looks much wider and there is

a necessity to consider the Adaptive management techniques that have been proven

successful in other fields.

Adaptive Management

Adaptive management has proven successful in the environments where the resource

managers worked together with stakeholders and scientists as a team, with the following

goals-

 To learn how managed systems respond to human interventions.

 To improve resource policies and practices in future.

The principle behind adaptive management is that many resource management activities

are experiments as their outcomes cannot be reliably predicted beforehand. These

experiments are then used as learning opportunities for the improvements in the future.

Adaptive management is intended to increase the ability to respond timely in the face of

new information and in a setting of varied stakeholder objectives and preferences. It

encourages stakeholders to bound disputes and discuss them in an orderly fashion while

the environmental uncertainties are being investigated and better understood.

Adaptive management helps the stakeholders, the managers and other decision makers

recognize the limits of knowledge and the need to act on imperfect information.

13. ASD – Adaptive Management

Adaptive Software Development

35

Adaptive management helps to change the decisions made by making it clear that-

 The decisions are provisional.

 A management’s decision need not always be right.

 Modifications are expected.

There are two types of Adaptive management approaches-

 Passive Adaptive Management.

 Active Adaptive Management.

Passive Adaptive Management

Adaptive management aims to enhance the scientific knowledge and thereby reduce

uncertainties.

Within Passive Adaptive management, a single preferred course of action, based on

existing information and understanding, is selected. The outcomes of management actions

are monitored, and subsequent decisions are adjusted based on the outcomes.

This approach contributes to the learning and effective management. However, it is limited

in its ability to enhance scientific and management capabilities for conditions that go

beyond the course of action selected.

Active Adaptive Management

An Active Adaptive management approach reviews the information before management

actions are taken.

A range of competing, alternative system models of ecosystem and related responses (e.g.

demographic changes; recreational uses), rather than a single model, is then

developed. Management options are chosen based on the evaluations of these alternative

models.

Adaptive Software Development

36

Leadership-Collaboration Management

Adaptive management is what is best suited for Adaptive Software Development. The

approach requires resource managers, i.e. the managers who can work with people, allow

human-interventions, and create an amicable environment.

In software development, the leaders often take up these responsibilities. We need leaders

more than the commanders. The leaders are collaborators and work alongside with the

team. Collaborative-Leadership is the most sought after practice in Adaptive development.

The leaders have the following qualities-

 Grasp and set the direction.

 Influence people involved and provide guidance.

 Collaborate, facilitate and macro-manage the team.

 Provide direction.

 Create environments where talented people can be innovative, creative, and make

effective decisions.

 Understand that occasionally they need to command, but that is not their
predominant style.

