- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
A rectangular sheet of paper is $12\frac{1}{2}\ cm$ long and $10\frac{2}{3}\ cm$ wide. Find its perimeter.
Given :
Length of the rectangular sheet of paper$= 12 \frac{1}{2}\ cm$.
Breadth of the rectangular sheet of paper $= 10 \frac{2}{3}\ cm$.
To do :
We have to find the perimeter of the rectangle.
Solution :
Length $(l)= 12 \frac{1}{2}\ cm$
$= \frac{(12\times 2+1)}{2}\ cm$
$= \frac{(24+1)}{2}\ cm$
$=\frac{25}{2}\ cm$
Breadth $(b)= 10 \frac{2}{3}\ cm$
$= \frac{(10\times3+2)}{3}\ cm$
$= \frac{(30+2)}{3}\ cm$
$= \frac{32}{3}\ cm$
The perimeter of a rectangle of length $l$ and breadth $b$ is $2(l+b)$.
Therefore,
Perimeter of the rectangular sheet of paper $= 2 (\frac{25}{2} + \frac{32}{3})\ cm$
$= 2( \frac{25 \times 3}{2 \times 3} + \frac{32 \times 2}{3 \times 2})$ (LCM of $2$ and $3$ is $6$)
$=2(\frac{75}{6} + \frac{64}{6})$
$= 2(\frac{75+64}{6})$
$= 2(\frac{139}{6})$
$= \frac{139}{3}$
$= 46\frac{1}{3}\ cm$
Therefore, the perimeter of the rectangular sheet of paper is $46\frac{1}{3}\ cm$ .
- Related Articles
- A Rectangular sheet of paper is $\displaystyle 12\frac{1}{2} \ cm\ $ and $\displaystyle 10\frac{2}{3} \ cm\ $ wide. Find its Perimeter.
- Are single sheet of paper is $\frac{25}{2}$ cm long and $\frac{32}{3}$ cm is wide find its perimeter
- Curved surface area of a hollow cylinder is $4224\ cm^2$. A rectangular sheet having width $33\ cm$ is formed cutting it along its height. Find perimeter of sheet.
- The perimeter of a rectangular sheet is $100\ cm$. If the length is $35\ cm$, find its breadth. Also find the area.
- Write each of the following as decimals:(a) \( \frac{5}{10} \)(b) \( 3+\frac{7}{10} \)(c) \( 200+60+5+\frac{1}{10} \)(d) \( 70+\frac{8}{10} \)(e) \( \frac{88}{10} \)(f) \( 4 \frac{2}{10} \)(g) \( \frac{3}{2} \)(h) \( \frac{2}{5} \)(i) \( \frac{12}{5} \)(j) \( 3 \frac{3}{5} \)(k) \( 4 \frac{1}{2} \)
- $3\frac{1}{3} \ -\ \frac{2}{3}\left\{\frac{3}{10} \ +\ \frac{1}{2}\left( 3\ -\ \frac{3}{5}\right)\right\}$$$
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- The area of a rhombus is $72\ cm^2$ . If its perimeter is $32\ cm$, find its altitude.
- Write four more rational numbers in each of the following patterns:$(i)$. $\frac{-3}{5},\ \frac{-6}{10},\ \frac{-9}{15},\ \frac{-12}{20}$........$(ii)$. $\frac{-1}{4},\ \frac{-2}{8},\ \frac{-3}{12}$.....$(iii)$. $\frac{-1}{6},\ \frac{2}{-12},\ \frac{3}{-18},\ \frac{4}{-24}$......$(iv)$. $\frac{-2}{3},\ \frac{2}{-3},\ \frac{4}{-6},\ \frac{6}{-9}$.....
- Solve $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$.
- Find the perimeter of a book whose lenght is $8\frac{1}{2}$ and breadth is $3\frac{5}{8}$
- Find the product of:$(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4}) \ldots(1-\frac{1}{10})$
- The area of a rhombus is $72\ cm^ 2$ . If its perimeter is $36\ cm$, then find its altitude.
- Find:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
- Find the sum: $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$.
