# $(a)$ Identify terms which contain x and give the coefficient of $x$ .$(i)$. $y^2x+y$$(ii). 13y^2-8yx$$(iii)$ . $x+y+2$$(iv) . 5+z+zx$$(v)$ . $1+x+xy$$(iv). 12xy^2+25$$(viii)$. $7x+xy^2$$(b) Identify terms which contain y^2 and give the coefficient of y^2.(i). 8-xy^2$$(ii)$. $5y^2+7x$$(iii)$. $2x^2y-15xy^2+7y^2$

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

Given: $(a)$

$(i)$. $y^2x+y$            $(ii)$. $13y^2-8yx$                    $(iii)$ . $x+y+2$

$(iv)$ . $5+z+zx$          $(v)$ . $1+x+xy$                 $(vi)$. $12xy^2+25$

$(viii)$. $7x+xy^2$

$(b)$.  $(i)$. $8-xy^2$      $(ii)$. $5y^2+7x$     $(iii)$. $2x^2y-15xy^2+7y^2$

To do: $(a)$. To identify terms that contain x and give the coefficient of $x$.

$(b)$. To identify terms that contain $y^2$ and give the coefficient of $y^2$.

Solution:

$(a)$

$(i)$. In expression $y^2x+y$, the term containing $x$ is $y^2x$. And $y^2$ is the coefficient of $x$.

$(ii)$. In the expression $13y^2-8yx$, the term $-8yx$ contains $x$. $-8y$ is the coefficient of $x$.

$(iii)$ . In the expression $x+y+2$, the term $x$ contains $x$. $1$ is the coefficient of $x$.

$(iv)$ . In the expression, $5+z+zx$, the term $zx$ contains $x$. $z$ is the coefficient of $x$.

$(v)$ . In the expression $1+x+xy$, terms $x$ and $xy$ contain $x$. $1$ and $y$ are the coefficients of $x$ in each term.

$(vi)$. In the expression $12xy^2+25$, term $12xy^2$ contains $x$. $12y^2$ is the coefficient of $x$.

$(vii)$. In the expression $7x+xy^2$, terms $7x$ and $xy^2$ contain $x$. $7$ and $y^2$ are the coefficients of the $x$ in each term.

$(b)$

$(i)$. In the expression $8-xy^2$, term $-xy^2$ contains $y^2$. $-x$ is the coefficient of $y^2$.

$(ii)$. In the expression $5y^2+7x$, the term $5y^2$ contains $y^2$. $5$ is the coefficient of $y^2$.

$(iii)$. In the expression $2x^2y-15xy^2+7y^2$, the terms $-15xy^2$ and $7y^2$ contains $y^2$. $-15x$ and $7$ are the coefficients of the $y^2$.

Updated on 10-Oct-2022 13:38:20