- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
A ball is dropped from a height of $10\ m$. If the energy of the ball reduces by 40% after striking the ground, how much high can the ball bounce back? $(g=10\ m s^{-2})$
As given, Height $h_1=10\ m$
$g=10\ ms^{-2}$
Let $m$ be the mass of the ball.
Therefore, potential energy $P.E.=mgh_1=m\times 10\times 10=100\times m\ J$
After reaching the ground, it losses its $40$% energy, so the remaining energy is $60$% of P.E.
The remained energy $=60$% of P.E.
$=\frac{60}{100}\times100\times m$
$=60\times m\ J$
Let the ball bounce at $h_2$ height with the remaining energy.
Therefore, $m\times g\times h_2=60\times m$
Or $h_2=\frac{60\times m}{g\times m}$
Or $h_2=\frac{60\times m}{10\times m}$
Or $h_2=6\ meter$
Therefore, the ball will bounce $6\ meter$ with the remaining energy.
Advertisements