About the Tutorial

VSAM stands for Virtual Storage Access Method. VSAM is a file storage access method used in MVS, ZOS and OS/390 operating systems. It was introduced by IBM in 1970’s. It is a high performance access method used to organize data in form of files in Mainframes.

VSAM is used by COBOL and CICS in Mainframes to store and retrieve data. VSAM makes it easier for application programs to execute an input-output operation.

Audience

This tutorial is designed for software programmers with a need to understand the VSAM concepts starting from scratch. This tutorial will give you enough understanding on VSAM from where you can take yourself to higher level of expertise.

Prerequisites

Before proceeding with this tutorial, you should have a basic understanding of JCL and COBOL. A basic understanding of any of the file handling method will help you in understanding the VSAM concepts and move fast on the learning track.

Disclaimer & Copyright

© Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish any contents or a part of contents of this e-book in any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our website or its contents including this tutorial. If you discover any errors on our website or in this tutorial, please notify us at contact@tutorialspoint.com.
Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites ... i

Disclaimer & Copyright .. i

Table of Contents .. ii

1. VSAM – OVERVIEW .. 1
 Characteristics of VSAM .. 1
 Limitations of VSAM .. 1

2. VSAM – COMPONENTS ... 2
 VSAM Cluster .. 2
 Control Interval ... 2
 Analysis of Control Interval .. 3
 Control Area .. 3

3. VSAM – CLUSTER .. 4
 Defining a Cluster ... 4
 Deleting a Cluster .. 7

4. VSAM – ENTRY SEQUENCED DATA SET .. 9
 Defining ESDS Cluster ... 9
 Deleting ESDS Cluster ... 11

5. VSAM – KEY SEQUENCED DATA SET .. 12
 KSDS File Structure ... 12
 Defining KSDS Cluster ... 13
 Deleting KSDS Cluster ... 14
11. VSAM – FILE STATUS ... 33

12. VSAM – INTERVIEW QUESTIONS .. 35
1. VSAM - Overview

Virtual Storage Access Method (VSAM) is high performance access method and data set organization, which organizes and maintains data via a catalog structure. It utilizes virtual storage concept and can protect datasets at various levels by giving passwords. VSAM can be used in COBOL programs like physical sequential files. VSAM are the logical datasets for storing records. Files can be read sequentially and randomly in VSAM. It is an improved way of storing data which overcomes some of the limitations of conventional file systems like Sequential Files.

Characteristics of VSAM

Following are the characteristics of VSAM:

- VSAM protects data against unauthorized access by using passwords.
- VSAM provides fast access to data sets.
- VSAM has options for optimizing performance.
- VSAM allows data set sharing in both batch and online environment.
- VSAM are more structured and organized in storing data.
- Free space is reused automatically in VSAM files.

Limitations of VSAM

The only limitation of VSAM is that it cannot be stored on TAPE volume. It is always stored on DASD space. It requires a number of cylinders to store the data which is not cost-effective.
VSAM consists of following components:

- VSAM Cluster
- Control Area
- Control Interval

VSAM Cluster

VSAM are the logical datasets for storing records and are known as clusters. A cluster is an association of the index, sequence set and data portions of the dataset. The space occupied by a VSAM cluster is divided in contiguous areas called Control Intervals. We will discuss about control intervals later in this module.

There are two main components in a VSAM cluster:

- **Index Component** contains the index part. Index records are present in Index component. Using index component VSAM is able to retrieve records from the data component.

- **Data Component** contains the data part. Actual data records are present in Data component.

Control Interval

Control Intervals (CI) in VSAM are equivalent to blocks for non-VSAM data sets. In non-VSAM methods, the unit of data is defined by the block. VSAM works with logical data area which is known as Control Intervals.

Control Intervals are the smallest unit of transfer between a disk and the operating system. Whenever a record is retrieved directly from the storage, the entire CI containing the record is read into VSAM Input-Output buffer. The desired record is then transferred to work area from VSAM buffer.

Control Interval consists of:

- Logical Records
- Control information fields
- Free Space

When a VSAM dataset is loaded, control intervals are created. The default Control Interval size is 4K bytes and it can extend up to 32K bytes.
Analysis of Control Interval

<table>
<thead>
<tr>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>FS</th>
<th>RD</th>
<th>RF</th>
<th>CIDF</th>
</tr>
</thead>
</table>

Following is the description of terms used in the above program:

- **R1..R5**: Records which are stored in Control Interval.
- **FS**: FS is free space, which can be used for further expansion of dataset.
- **RDF**: RDF is known as Record Definition Fields. RDF are 3 bytes long. It describes the length of records and tells how many adjacent records are of the same length.
- **CIDF**: CIDF is known as Control Interval Definition Fields. CIDF are 4 bytes long and contain information about the Control Interval.

Control Area

A Control Area (CA) is formed by putting together two or more Control Intervals. A VSAM dataset is composed of one or more Control Areas. The size of VSAM is always a multiple of its Control Area. VSAM files are extended in units of Control Areas.

Following is the example of Control Area:
VSAM cluster is defined in **JCL**. JCL uses **IDCAMS** utility to create a cluster. IDCAMS is a utility, developed by IBM, for access method services. It is used to primarily define VSAM datasets.

Defining a Cluster

The following syntax shows the main parameters which are grouped under **Define Cluster, Data** and **Index**.

```plaintext
DEFINE CLUSTER (NAME(vsam-file-name) -
BLOCKS(number) -
VOLUMES(volume-serial) -
[INDEXED / NONINDEXED / NUMBERED / LINEAR] -
RECSZ(average maximum) -
[FREESPAC(CI-Percentage,CA-Percentage)] -
CISZ(number) -
[KEYS(length offset)] -
[READPW(password)] -
[FOR(days)]TO(date)] -
[UPDATEPW(password)] -
[REUSE / NOREUSE] ) -
DATA -
(NAME(vsam-file-name.data)) -
INDEX -
(NAME(vsam-file-name.index)) -
CATALOG(catalog-name[/password]))
```

Parameters at the CLUSTER level apply to the entire cluster. Parameters at the DATA or INDEX level apply only to the data or index component.
We will discuss each parameter in detail in the following table:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameters with Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFINE CLUSTER
Define Cluster command is used to define a cluster and specify parameter attributes for the cluster and its components.</td>
</tr>
<tr>
<td>2</td>
<td>NAME
NAME specifies the name of VSAM file for which we are defining the cluster.</td>
</tr>
<tr>
<td>3</td>
<td>BLOCKS
Blocks specifies the number of blocks assigned for the cluster.</td>
</tr>
<tr>
<td>4</td>
<td>VOLUMES
Volumes specifies one or more volumes that will contain the cluster or component.</td>
</tr>
<tr>
<td>5</td>
<td>INDEXED / NONINDEXED / NUMBERED / LINEAR
This parameter can take three values INDEXED, NONINDEXED or NUMBERED depending upon the type of dataset we are creating. For key-sequenced(KSDS) files INDEXED option is used. For entry-sequenced(ESDS) files the NONINDEXED option is used. For relative-record(RRDS) files the NUMBERED option is required. For Linear(LDS) files the LINEAR option is required. The default value of this parameter is INDEXED. We will discuss more about KSDS, ESDS, RRDS and LDS in coming modules.</td>
</tr>
<tr>
<td>6</td>
<td>RECSZ
Record Size parameter has two values which are Average and Maximum record size. The Average specifies the average length of the logical records in the file and the Maximum denotes the length of the records.</td>
</tr>
<tr>
<td>7</td>
<td>FREESPACE
Freespace specifies the percentage of free space to reserve for the control intervals (CI) and control areas (CA) of the data component. The default value of this parameter is zero percentage.</td>
</tr>
<tr>
<td>8</td>
<td>CISZ
CISZ is known as Control interval size. It specifies the size of control intervals.</td>
</tr>
<tr>
<td>9</td>
<td>KEYS
Keys parameter is defined only in key-sequenced (KSDS) files. It specifies the length and offset of primary key from first column. The range of value of this parameter are from 1 to 255 bytes.</td>
</tr>
<tr>
<td>10</td>
<td>READPW
Value in READPW parameter specifies the password of read level.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>FOR/TO
The value of this parameter specifies the amount of time in terms of date and days for retaining the file. The default value for this parameter is zero days.</td>
</tr>
<tr>
<td>12</td>
<td>UPDATEPW
Value in UPDATEPW parameter specifies the password of update level.</td>
</tr>
<tr>
<td>13</td>
<td>REUSE / NOREUSE
REUSE parameter allows clusters to be defined that may be reset to empty status without deleting and re-defining them.</td>
</tr>
<tr>
<td>14</td>
<td>DATA - NAME
The DATA part of the cluster contains the dataset name which contains the actual data of the file.</td>
</tr>
<tr>
<td>15</td>
<td>INDEX-NAME
The INDEX part of the cluster contains the primary key and the memory pointer for the corresponding record in the data part. It is defined when a Key Sequenced cluster is used.</td>
</tr>
<tr>
<td>16</td>
<td>CATALOG
Catalog parameter denotes the catalog under which the file will be defined. We will discuss about catalog separately in upcoming modules.</td>
</tr>
</tbody>
</table>

Example

Following is a basic example to show how to define a cluster in JCL:

```plaintext
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1   EXEC PGM=IDCAMS
//SYSPRINT DD  SYSOUT=*  
//SYSIN    DD  *  
       DEFINE CLUSTER (NAME(MY.VSAM.KSDSFILE) - 
                        INDEXED  -  
                        RECSZ(80 80) -  
                        TRACKS(1,1) -  
                        KEYS(5 0) -  
                        CISZ(4096) -  
                        FREESPACE(3 3) ) -  
                        DATA (NAME(MY.VSAM.KSDSFILE.DATA)) -  
                        INDEX (NAME(MY.VSAM.KSDSFILE.INDEX)) 
/*
```
If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will create MY.VSAM.KSDSFILE VSAM file.

Deleting a Cluster

To delete a VSAM file, the VSAM cluster needs to be deleted using IDCAMS utility. DELETE command removes the entry of the VSAM cluster from the catalog and optionally removes the file, thereby freeing up the space occupied by the object. If the VSAM data set has not expired, then it will not be deleted. To delete such types of datasets, use PURGE option.

```
DELETE data-set-name CLUSTER
[ERASE / NOERASE]
[FORCE / NOFORCE]
[PURGE / NOPURGE]
[SCRATCH / NOSCRATCH]
```

Above syntax shows the parameters which we can use with Delete statement. We will discuss each of them in detail in the following table:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameters with Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ERASE / NOERASE
ERASE option is specified to override the ERASE attribute specified for the object in the catalog. NOERASE option is taken by default.</td>
</tr>
<tr>
<td>2</td>
<td>FORCE / NOFORCE
FORCE option is specified to delete the SPACE and USRCATALOG even if they are not empty. NOFORCE option is taken by default.</td>
</tr>
<tr>
<td>3</td>
<td>PURGE / NOPURGE
PURGE option is used to delete the VSAM dataset if dataset has not expired. NOPURGE option is taken by default.</td>
</tr>
<tr>
<td>4</td>
<td>SCRATCH / NOSCRATCH
SCRATCH option is specified to remove the associated entry for the object from the Volume Table of Contents. It is mainly used for non-vsam datasets like GDGs. NOSCRATCH option is taken by default.</td>
</tr>
</tbody>
</table>
Example

Following is a basic example to show how to delete a cluster in JCL:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEPNAME EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*  
//SYSIN DD *
  
   DELETE MY.VSAM.KSDSFILe CLUSTER
   PURGE
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will delete MY.VSAM.KSDSFILe VSAM file.
ESDS is known as Entry Sequenced Data Set. An entry-sequenced data set behaves like sequential file organization with some more features included. We can access the records directly and for safety purpose we can use passwords also. We must code NONINDEXED inside the DEFINE CLUSTER command for ESDS datasets. Following are the key features of ESDS:

- Records in ESDS cluster are stored in the order in which they were inserted into the dataset.
- Records are referenced by physical address which is known as **Relative Byte Address (RBA)**. Suppose if in an ESDS dataset, we have 80 byte records, the RBA of first record will be 0, RBA for second record will be 80, for third record it will be 160 and so on.
- Records can be accessed sequentially by RBA which is known as **addressed access**.
- Records are held in the order in which they were inserted. New records are inserted at the end.
- Deletion of records is not possible in ESDS dataset. But they can be marked as inactive.
- Records in ESDS dataset can be of fixed length or variable length.
- ESDS is non-indexed. Keys are not present in ESDS dataset, so it may contain duplicate records.
- ESDS can be used in COBOL programs like any other file. We will specify the file name in JCL and we can use the ESDS file for processing inside program. In COBOL program specify file organization as **Sequential** and access mode as **Sequential** with ESDS dataset.

Defining ESDS Cluster

The following syntax shows which parameters we can use while creating ESDS cluster. The parameter description remains the same as mentioned in VSAM - Cluster module.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINE CLUSTER</td>
<td>(NAME(esds-file-name)) -</td>
</tr>
<tr>
<td>BLOCKS(number)</td>
<td>-</td>
</tr>
<tr>
<td>VOLUMES(volume-serial)</td>
<td>-</td>
</tr>
<tr>
<td>NONINDEXED</td>
<td>-</td>
</tr>
<tr>
<td>RECSZ(average maximum)</td>
<td>-</td>
</tr>
</tbody>
</table>
Example

Following example shows how to create an ESDS cluster in JCL using IDCAMS utility:

```plaintext
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=* 
//SYSIN DD * 

   DEFINE CLUSTER (NAME(MY.VSAM.ESDSFILE)) - 
      NONINDEXED - 
      RECSZ(80 80) - 
      TRACKS(1,1) - 
      CISZ(4096) - 
      FREESPACE(3 3) - 
      DATA (NAME(MY.VSAM.ESDSFILE.DATA)) 
/*

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will create MY.VSAM.ESDSFILE VSAM file.
Deleting ESDS Cluster

ESDS cluster is deleted using IDCAMS utility. DELETE command removes the entry of the VSAM cluster from the catalog and optionally removes the file, thereby freeing up the space occupied by the object.

DELETE data-set-name CLUSTER
[ERASE / NOERASE]
[FORCE / NOFORCE]
[PURGE / NOPURGE]
[SCRATCH / NOSCRATCH]

Above syntax shows which parameters we can use while deleting ESDS cluster. The parameter description remains the same as mentioned in VSAM - Cluster module.

Example

Following example shows how to delete an ESDS cluster in JCL using IDCAMS utility:

//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEPNAME EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*  
//SYSIN DD *
   DELETE MY.VSAM.ESDSFILE CLUSTER
/*

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will delete MY.VSAM.ESDSFILE VSAM Cluster.
KSDS is known as Key Sequenced Data Set. A key-sequenced data set (KSDS) is more complex than ESDS and RRDS but is more useful and versatile. We must code **INDEXED** inside the DEFINE CLUSTER command for KSDS datasets. KSDS cluster consists of following two components:

- **Index**: The index component of the KSDS cluster contains the list of key values for the records in the cluster with pointers to the corresponding records in the data component. Index component refers the physical address of a KSDS record. This relates the key of each record to the record's relative location in the data set. When a record is added or deleted, this index is updated accordingly.

- **Data**: The data component of the KSDS cluster contains the actual data. Each record in the data component of a KSDS cluster contains a key field with same number of characters and occur in the same relative position in each record.

Following are the key features of KSDS:

- Records within KSDS data set are always kept sorted by key-field. Records are stored in ascending, collating sequence by key.

- Records can be accessed sequentially and direct access is also possible.

- Records are identified using a key. The key of each record is a field in a predefined position within the record. Each key must be unique in KSDS dataset. So duplication of records is not possible.

- When new records are inserted, the logical order of the records depends on the collating sequence of the key field.

- Records in KSDS dataset can be of fixed length or variable length.

- KSDS can be used in **COBOL** programs like any other file. We will specify the file name in JCL and we can use the KSDS file for processing inside program. In COBOL program specify file organization as **Indexed** and you can use any access mode (**Sequential, Random** or **Dynamic**) with KSDS dataset.

### KSDS File Structure

In order to search for a particular record, we give a unique key value. Key value is searched in the index component. Once key is found the corresponding memory address which refers to the data component is retrieved. From the memory address we can fetch the actual data which is stored in the data component. Following example shows the basic structure of index and data file:
Defining KSDS Cluster

The following syntax shows which parameters we can use while creating KSDS cluster. The parameter description remains the same as mentioned in VSAM - Cluster module.

```
DEFINE CLUSTER (NAME(ksds-file-name) -
BLOCKS(number) -
VOLUMES(volume-serial) -
INDEXED -
KEYS(length offset) -
RECSZ(average maximum) -
[FREESPAC(CI-Percentage,CA-Percentage)] -
CISZ(number) -
[READPW(password)] -
[FOR(days)|TO(date)] -
[UPDATEPW(password)] -
[REUSE / NOREUSE]] -
DATA -
(NAME(ksds-file-name.data)) -
INDEX -
(NAME(ksds-file-name.index))
```

Example

Following example shows how to create an KSDS cluster in JCL using IDCAMS utility:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
```
DEFINE CLUSTER (NAME(MY.VSAM.KSDSFILE)) -
INDEXED -
KEYS(6 1) -
RECSZ(80 80) -
TRACKS(1,1) -
CISZ(4096) -
FREESPACE(3 3) -
DATA (NAME(MY.VSAM.KSDSFILE.DATA)) -
INDEX (NAME(MY.VSAM.KSDSFILE.INDEX)) -

/*

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will create MY.VSAM.KSDSFILE VSAM file.

Deleting KSDS Cluster

KSDS cluster is deleted using IDCAMS utility. DELETE command removes the entry of the VSAM cluster from the catalog and optionally removes the file, thereby freeing up the space occupied by the object.

DELETE data-set-name CLUSTER
[ERASE / NOERASE]
[FORCE / NOFORCE]
[PURGE / NOPURGE]
[SCRATCH / NOSCRATCH]

Above syntax shows which parameters we can use while deleting KSDS cluster. The parameter description remains the same as mentioned in VSAM - Cluster module.
Example

Following example shows how to delete an KSDS cluster in JCL using IDCAMS utility:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEPNAME EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

 DELETE MY.VSAM.KSDSFILE CLUSTER
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will delete MY.VSAM.KSDSFILE VSAM Cluster.
RRDS is known as Relative Record Data Set. RRDS cluster is similar to an ESDS cluster. The only difference is that RRDS records are accessed by **Relative Record Number (RRN)**, we must code **NUMBERED** inside the DEFINE CLUSTER command. Following are the key features of RRDS:

- A Relative record dataset has records that are identified by the **Relative Record Number (RRN)**, which is the sequence number relative to the first record.

- RRDS allows access of records by number like record 1, record 2, and so on. This provides random access and assumes the application program has a way to get the desired record numbers.

- The records in an RRDS dataset can be accessed sequentially, in relative record number order, or directly, by supplying the relative record number of the desired record.

- The records in a RRDS dataset are stored in fixed length slots. Each record is referenced by the number of its slot, number can vary from 1 to the maximum number of records in the dataset.

- Records in a RRDS can be written by inserting new record into an empty slot.

- Records can be deleted from an RRDS cluster, thereby leaving an empty slot.

- Applications which use fixed-length records or a record number with contextual meaning that can use RRDS datasets.

- RRDS can be used in **COBOL** programs like any other file. We will specify the file name in JCL and we can use the KSDS file for processing inside program. In COBOL program specify file organization as **RELATIVE** and you can use any access mode (**Sequential, Random** or **Dynamic**) with RRDS dataset.

### RRDS File Structure

Space is divided into fixed length slots in RRDS file structure. A slot can be either completely vacant or completely full. Thus, new records can be added to empty slots and existing records can be deleted from slots which are filled. We can access any record directly by giving Relative Record Number. Following example shows the basic structure of data file:
Defining RRDS Cluster

The following syntax shows which parameters we can use while creating RRDS cluster. The parameter description remains the same as mentioned in VSAM - Cluster module.

```
DEFINE CLUSTER (NAME(rrds-file-name) -
BLOCKS(number) -
VOLUMES(volume-serial) -
NUMBERED -
RECSZ(average maximum) -
[FREESPAC(CI-Percentage,CA-Percentage)] -
CISZ(number) -
[READPW(password)] -
[FOR(days)|TO(date)] -
[UPDATEPW(password)] -
[REUSE / NOREUSE]) -
DATA -
(NAME(rrds-file-name.data))
```

Example

Following example shows how to create an RRDS cluster in JCL using IDCAMS utility:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD SYSOUT=*
DEFINE CLUSTER (NAME(MY.VSAM.RRDSFILE) -
NUMBERED -
RECSZ(80 80) -
TRACKS(1,1) -
REUSE -
```
FREESPACEx3x3) -
   DATA (NAME(MY.VSAM.RRDSFILE.DATA))
/*

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0
and it will create MY.VSAM.RRDSFILE VSAM file.

Deleting RRDS Cluster

RRDS cluster is deleted using IDCAMS utility. DELETE command removes the entry of the
VSAM cluster from the catalog and optionally removes the file, thereby freeing up the
space occupied by the object.

DELETE data-set-name CLUSTER
   [ERASE / NOERASE]
   [FORCE / NOFORCE]
   [PURGE / NOPURGE]
   [SCRATCH / NOSCRATCH]

Above syntax shows which parameters we can use while deleting RRDS cluster. The
parameter description remains the same as mentioned in VSAM - Cluster module.

Example

Following example shows how to delete an RRDS cluster in JCL using IDCAMS utility:

//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEPNAME EXEC PGM=IDCAMS
//SYSPRINT DD  SYSOUT=*  
//SYSIN    DD  *
   DELETE MY.VSAM.RRDSFILE CLUSTER
/*

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0
and it will delete MY.VSAM.RRDSFILE VSAM Cluster.
LDS is known as Linear Data Set. Linear dataset is the only form of byte-stream dataset which is used in traditional operating system files. Linear datasets are rarely used. Following are the key features of LDS:

- Linear datasets do not contain RDF's and CIDF's as it does not have any control information embedded in its CI.
- Data that can be accessed as byte-addressable strings in virtual storage in Linear datasets.
- Linear datasets have a control interval size of 4KBytes.
- LDS is a kind of non-vsam file with some VSAM facilities like use of IDCAMS and VSAM specific information in the catalog.
- DB2 is currently the biggest user of Linear Data Sets.
- IDCAMS is used to define an LDS but it is accessed using a Data-In-Virtual (DIV) macro.
- Linear dataset does not have concepts of records. All LDS bytes are data bytes.

**Defining LDS Cluster**

The following syntax shows which parameters we can use while creating LDS cluster. The parameter description remains the same as mentioned in VSAM - Cluster module.

```
DEFINE CLUSTER (NAME(lds-file-name) -
BLOCKS(number) -
VOLUMES(volume-serial) -
LINEAR -
CISZ(number) -
[READPW(password)] -
[FOR(days)|TO(date)] -
[UPDATEPW(password)] -
[REUSE / NOREUSE]) -
DATA -
(NAME(lds-file-name.data))
```
Example

Following example shows how to create an LDS cluster in JCL using IDCAMS utility:

```jcl
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER (NAME(MY.VSAM.LDSFILE)) -
 LINEAR -
 TRACKS(1,1) -
 CISZ(4096) -
 DATA (NAME(MY.VSAM.LDSFILE.DATA))
/*

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0
and it will create MY.VSAM.LDSFILE VSAM file.

Deleting LDS Cluster

LDS cluster is deleted using IDCAMS utility. DELETE command removes the entry of the
VSAM cluster from the catalog and optionally removes the file, thereby freeing up the
space occupied by the object.

```jcl
DELETE data-set-name CLUSTER
  [ERASE / NOERASE]
  [FORCE / NOFORCE]
  [PURGE / NOPURGE]
  [SCRATCH / NOSCRATCH]
```

Above syntax shows which parameters we can use while deleting LDS cluster. The
parameter description remains the same as mentioned in VSAM - Cluster module.
Example

Following example shows how to delete an LDS cluster in JCL using IDCAMS utility:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEPNAME EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*  
//SYSIN DD *
   DELETE MY.VSAM.LDSFILE CLUSTER
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will delete MY.VSAM.LDSFILE VSAM Cluster.
VSAM commands are used to perform certain operations on VSAM datasets. Following are the most useful VSAM commands:

- Alter
- Repro
- Listcat
- Examine
- Verify

Alter

ALTER command is used to modify VSAM file attributes. We can change the attributes of VSAM file which we have mentioned in VSAM Cluster definition. Following is the syntax to change the attributes:

```
ALTER  file-cluster-name [password]
   [ADDVOLUMES(volume-serial)]
   [BUFFERSPACE(size)]
   [EMPTY / NOEMPTY]
   [ERASE / NOERASE]
   [FREESPACExCI-percentage CA-percentage)]
   [KEYS(length offset)]
   [NEWNAME(new-name)]
   [RECORDSIZE(average maximum)]
   [REMOVEVOLUMES(volume-serial)]
   [SCRATCH / NOSCRATCH]
   [TO(date) / FOR(days)]
   [UPGRADE / NOUPGRADE]
   [CATALOG(catalog-name [password])]
```

Above syntax shows which parameters we can alter in an existing VSAM cluster. The parameter description remains the same as mentioned in VSAM - Cluster module.
Example

Following example shows how to use ALTER command to increase Freespace, to add more volumes and to Alter Keys:

```plaintext
//SAMPLE JOB(TESTJCL,XXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

  ALTER MY.VSAM.KSDSFILE
      [ADDVOLUMES(2)]
      [FREESPACE(6 6)]
      [KEYS(10 2)]

/*

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will alter the Freespace, Volumes and Keys.

Repro

REPRO command is used to load data into VSAM dataset. It is also used to copy data from one VSAM data set to another. We can use this command to copy data from sequential file to VSAM file. IDCAMS utility uses REPRO command to load the datasets.

```plaintext
REPRO INFILE(in-ddname)
 OUTFILE(out-ddname)
```

In the above syntax, the in-ddname is DD name for the Input Dataset which is having records. The out-ddname is the DD name for the Output Dataset, where the input datasets records will be copied.

Example

Following example shows how to copy records from one dataset to another VSAM dataset:

```plaintext
//SAMPLE JOB(TESTJCL,XXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//IN DD DSN=MY.VSAM.KSDSFILE,DISP=SHR
//OUT DD DSN=MY.VSAM1.KSDSFILE,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

 REPRO INFILE(IN)
 OUTFILE(OUT)/*
```
If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will copy all the records from MY.VSAM.KSDSFILE to MY.VSAM1.KSDSFILE VSAM file.

**Listcat**

LISTCAT command is used to get the catalog details of a VSAM dataset. LISTCAT command provides following information about VSAM datasets:

- SMS Information
- RLS Information
- Volume Information
- Sphere Information
- Allocation Information
- Dataset Attributes

```
LISTCAT ENTRY(vsam-file-name) ALL
```

In the above syntax, vsam-file-name is the VSAM dataset name for which we need all the information. ALL keyword is specified to get all catalog details.

**Example**

Following example shows how to fetch all the details using Listcat command for a VSAM dataset:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LISTCAT ENTRY(MY.VSAM.KSDSFILE)
 ALL
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will show all the catalog details about MY.VSAM.KSDSFILE dataset.
Examine

Examine command is used to check the structural integrity of a key-sequenced data set cluster. It checks for index and data components and if any problem is found, the error messages are sent spool. You can check any of the IDCxxxxxx messages.

```
EXAMINE NAME(vsam-ksds-name) -
 INDEXTEST DATATEST -
 ERRORLIMIT(50)
```

In the above syntax, vsam-ksds-name is the VSAM dataset name for which we need to examine index and data part of VSAM cluster.

Example

Following example shows how to check whether Index and Data part of KSDS dataset are synchronized or not:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 EXAMINE NAME(MY.VSAM.KSDSFILE) -
 INDEXTEST DATATEST -
 ERRORLIMIT(50)
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will show all problems with the VSAM data set in one of the IDCxxxxxx messages in spool.

Verify

Verify command is used to check and fix VSAM files which have not been closed properly after an error. The command adds correct End-Of-Data records to the file.

```
VERIFY DS(vsam-file-name)
```

In the above syntax, vsam-file-name is the VSAM dataset name for which we need to check the errors.
Example
Following example shows how to check and fix errors in VSAM dataset:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 VERIFY DS(MY.VSAM.KSDSFILE)
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will fix the errors in VSAM dataset.
Alternate index is the additional index that are created for KSDS/ESDS datasets in addition to their primary index. An alternate index provides access to records by using more than one key. The key of alternate index can be a non-unique key; it can have duplicates.

**Creation of Alternate Index**

Following steps are used to create an Alternate Index:

- Define Alternate Index
- Define Path
- Building Index

**Define Alternate Index**

Alternate Index is defined using **DEFINE AIX** command.

```
DEFINE AIX
(NAME(alternate-index-name))
(RELATE(vsam-file-name))
(CISZ(number))
(FREESPAC(CI-Percentage,CA-Percentage))
(KEYS(length offset))
(NONUNIQUEKEY / UNIQUEKEY)
(UPGRADE / NOUPGRADE)
(RECORDSIZE(average maximum))
(DATA)
(NAME(vsam-file-name.data))
(INDEX)
(NAME(vsam-file-name.index))
```
Above syntax shows the parameters which are used while defining Alternate Index. We have already discussed some parameters in Define Cluster Module and some of the new parameters are used in defining Alternate Index, which we will discuss here:

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameters with Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DEFINE AIX</td>
</tr>
<tr>
<td></td>
<td>Define AIX command is used to define Alternate Index and specify parameter attributes for its components.</td>
</tr>
<tr>
<td>2</td>
<td>NAME</td>
</tr>
<tr>
<td></td>
<td>NAME specifies the name of Alternate Index.</td>
</tr>
<tr>
<td>3</td>
<td>RELATE</td>
</tr>
<tr>
<td></td>
<td>RELATE specifies the name of the VSAM cluster for which the alternate index is created.</td>
</tr>
<tr>
<td>4</td>
<td>NONUNIQUEKEY / UNIQUEKEY</td>
</tr>
<tr>
<td></td>
<td>UNIQUEKEY specifies that the alternate index is unique and NONUNIQUEKEY specifies that duplicates may exist.</td>
</tr>
<tr>
<td>5</td>
<td>UPGRADE / NOUPGRADE</td>
</tr>
<tr>
<td></td>
<td>UPGRADE specifies that the alternate index should be modified if the base cluster is modified and NOUPGRADE specifies that the alternate indexes should be left alone if the base cluster is modified.</td>
</tr>
</tbody>
</table>

**Example**

Following is a basic example to show how to define an Alternate Index in JCL:

```plaintext
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE AIX (NAME(MY.VSAM.KSDSAIX) -
RELATE(MY.VSAM.KSDSFILE) -
CISZ(4096) -
FREESPAC(20,20) -
KEYS(20,7) -
NONUNIQUEKEY -
UPGRADE -
```
If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will create MY.VSAM.KSDSAIX Alternate Index.

**Define Path**

Define Path is used to relate the alternate index to the base cluster. While defining path we specify the name of the path and the alternate index to which this path is related.

```
DEFINE PATH -
NAME(alternate-index-path-name) -
PATHENTRY(alternate-index-name))
```

Above syntax has two parameters. NAME is used to specify the Alternate Index Path Name and PATHENTRY is used to specify Alternate Index Name.

**Example**

Following is a basic example to define Path in JCL:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE PATH -
 NAME(MY.VSAM.KSDSAIX.PATH) -
 PATHENTRY(MY.VSAM.KSDSAIX))
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will create path between Alternate Index to the base cluster.
**Building Index**

BLDINDEX command is used to build the alternate index. BLDINDEX reads all the records in the VSAM indexed data set (or base cluster) and extracts the data needed to build the alternate index.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLDINDEX</td>
<td></td>
</tr>
<tr>
<td>INDATASET</td>
<td>(vsam-cluster-name) -</td>
</tr>
<tr>
<td>OUTDATASET</td>
<td>(alternate-index-name)</td>
</tr>
</tbody>
</table>

Above syntax has two parameters. INDATASET is used to specify the VSAM Cluster Name and OUTDATASET is used to specify Alternate Index Name.

**Example**

Following is a basic example to Build Index in JCL:

```
//SAMPLE JOB(TESTJCL,XXXXXX),CLASS=A,MSGCLASS=C
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 BLDINDEX -
 INDATASET(MY.VSAM.KSDSFILE) -
 OUTDATASET(MY.VSAM.KSDSAIX))
/*
```

If you will execute the above JCL on Mainframes server. It should execute with MAXCC=0 and it will build the index.
Catalog maintains the unit and volume where dataset resides. Catalog is used for retrieval of datasets. Non-VSAM datasets create a catalog entry by means of Disposition Parameter in JCL. VSAM datasets maintains its own catalog in form of KSDS cluster. In the following image, you can see the type of VSAM catalogs:

**Master Catalog**

Master catalog is itself a file which monitors and manages operations of VSAM. There is only one master catalog in any system which contains entries about system datasets and VSAM datasets. VSAM and Non-VSAM datasets may have entry in master catalog but this is not a good practice. The master catalog is created during system generation process and resides on system volume. Master catalog owns all VSAM resources in operating system. All files used in VSAM are controlled by master catalog. Master catalog is responsible for the following operations:

- Password Authorization for files
- Enhancing the Security
- VSAM access for files
- Space Management of file
- Location of file
- Free Space available in file

When any of the above files’ attributes change, they are automatically updated in master catalog. Master catalog is defined using IDCAMS programs.

**User Catalog**

User catalog has same structure and concepts as the master catalog. It is present at next hierarchy level after master catalog. User catalog is not mandatory in the system but it is used to enhance security of VSAM system. Master catalog points to VSAM files but if User catalog is present then master catalog points to user catalog. User catalogs can be many in number as per the system requirement. In VSAM structure if master catalog is removed then it will not affect the user catalog. User catalog contain entries about application specific datasets. The information of user catalog is stored in the master catalog.

**Data Space**

Data space is an area of the direct access storage device that is exclusively allocated for VSAM use. Data space must be created before creating VSAM clusters. The area occupied by the data space is recorded in the Volume Table of Contents (VTOC), so that the space will not be available for allocation to any other use, either VSAM or non-VSAM. VTOC has entry of area occupied by space. VSAM creates a data space to hold the user catalog entries. VSAM takes control of this space and monitors and maintains this space as needed by VSAM files.

**Unique Clusters**

Unique Clusters consists of a separate data space which is utilized completely by the cluster created within it. Unique clusters are created out of unallocated space on direct access storage.

**Sub-allocated Clusters**

A sub-allocated VSAM file shares the VSAM space with other sub-allocated files. It specifies that file should be sub-allocated within existing VSAM space. Sub-allocation is used for easier management and control of VSAM spaces.

**Non-VSAM datasets**

Non-VSAM datasets resides on both tape and direct access storage. Non-VSAM datasets may have entries in both master catalog and user catalogs. The main function of cataloging non-VSAM datasets is to retain unit and volume serial information.
While working with VSAM datasets you may encounter abends. Following are the common file status codes with their description, which will help you to resolve the issues:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Operation completed successfully</td>
</tr>
<tr>
<td>02</td>
<td>Non-Unique Alternate Index duplicate key found</td>
</tr>
<tr>
<td>04</td>
<td>Invalid fixed length record</td>
</tr>
<tr>
<td>05</td>
<td>While performing OPEN File and file is not present</td>
</tr>
<tr>
<td>10</td>
<td>End of File encountered</td>
</tr>
<tr>
<td>14</td>
<td>Attempted to READ a relative record outside file boundary</td>
</tr>
<tr>
<td>20</td>
<td>Invalid Key for VSAM KSDS or RRDS</td>
</tr>
<tr>
<td>21</td>
<td>Sequence error while performing WRITE or changing key on REWRITE</td>
</tr>
<tr>
<td>22</td>
<td>Primary duplicate Key found</td>
</tr>
<tr>
<td>23</td>
<td>Record not found or File not found</td>
</tr>
<tr>
<td>24</td>
<td>Key outside boundary of file</td>
</tr>
<tr>
<td>30</td>
<td>Permanent I/O Error</td>
</tr>
<tr>
<td>34</td>
<td>Record outside file boundary</td>
</tr>
<tr>
<td>35</td>
<td>While performing OPEN file and file is not present</td>
</tr>
<tr>
<td>37</td>
<td>OPEN file with wrong mode</td>
</tr>
<tr>
<td>38</td>
<td>Tried to OPEN a Locked file</td>
</tr>
<tr>
<td>39</td>
<td>OPEN failed because of conflicting file attributes</td>
</tr>
<tr>
<td>41</td>
<td>Tried to OPEN a file that is already open</td>
</tr>
<tr>
<td>42</td>
<td>Tried to CLOSE a file that is not OPEN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>43</td>
<td>Tried to REWRITE without READING a record first</td>
</tr>
<tr>
<td>44</td>
<td>Tried to REWRITE a record of a different length</td>
</tr>
<tr>
<td>46</td>
<td>Tried to READ beyond End-of-file</td>
</tr>
<tr>
<td>47</td>
<td>Tried to READ from a file that was not opened I-O or INPUT</td>
</tr>
<tr>
<td>48</td>
<td>Tried to WRITE to a file that was not opened I-O or OUTPUT</td>
</tr>
<tr>
<td>49</td>
<td>Tried to DELETE or REWRITE to a file that was not opened I-O</td>
</tr>
<tr>
<td>91</td>
<td>Password or authorization failed</td>
</tr>
<tr>
<td>92</td>
<td>Logic Error</td>
</tr>
<tr>
<td>93</td>
<td>Resources are not available</td>
</tr>
<tr>
<td>94</td>
<td>Sequential record unavailable or concurrent OPEN error</td>
</tr>
<tr>
<td>95</td>
<td>File Information invalid or incomplete</td>
</tr>
<tr>
<td>96</td>
<td>No DD statement for the file</td>
</tr>
<tr>
<td>97</td>
<td>OPEN successful and file integrity verified</td>
</tr>
<tr>
<td>98</td>
<td>File is Locked - OPEN failed</td>
</tr>
<tr>
<td>99</td>
<td>Record Locked - Record access failed</td>
</tr>
</tbody>
</table>
Dear readers, these **VSAM Interview Questions** have been designed especially to get you acquainted with the nature of questions you may encounter during your interview for the subject of **VSAM File System**. As per my experience, good interviewers hardly plan to ask any particular question during your interview, normally questions start with some basic concept of the subject and later they continue based on further discussion and what you answer:

**Q: What are the different types of VSAM datasets?**

**A:** Entry sequenced datasets (ESDS), Key sequenced datasets (KSDS), Relative record dataset (RRDS) and Linear dataset (LDS).

**Q: What is a control interval?**

**A:** A control interval is the unit of information that VSAM transfers between virtual and auxiliary storage.

**Q: How are records stored in an ESDS?**

**A:** Records are stored in the order in which they are included in the file.

**Q: What is a control area?**

**A:** A group of control intervals make up a control area.

**Q: What is a cluster?**

**A:** A cluster is the combination of the index, sequence set and data portions of the dataset. The operating system gives program access to the cluster, that is to all parts of the dataset simultaneously.

**Q: What is the catalog?**

**A:** The catalog contains the names of all datasets, VSAM and non-VSAM. It is used to access these datasets.

**Q: What is an alternate index?**

**A:** An alternate index is a file that allows access to a VSAM dataset by a key other than the primary one.
Q: What is a path?
A: A path is a file that allows you to access a file by alternate index. The path provides an association between the AIX and the base cluster.

Q: What is free space?
A: Free space is reserved within the data component of a KSDS to accommodate insertion of new records.

Q: Do primary key values and alternate key values have to be unique?
A: Primary key values must be unique and alternate key values need not be unique.

Q: What is the ORGANIZATION for a KSDS in COBOL SELECT statement?
A: The ORGANIZATION for KSDS is INDEXED.

Q: What access modes available for KSDS dataset?
A: ACCESS can be SEQUENTIAL, RANDOM or DYNAMIC.

Q: What is the purpose of the FILE STATUS clause in the SELECT statement?
A: File Status provide information about each I/O operation for the file.

Q: Which utility program is closely associated with VSAM?
A: IDCAMS, the access method services utility, is associated with VSAM.

Q: What are the three levels of definition for the VSAM DEFINE?
A: They are DEFINE CLUSTER, DATA and INDEX.

Q: During processing of a VSAM file, some system error occurs and it is subsequently unusable. What do you do?
A: Run VERIFY.

Q: What does '02' file status code indicate?
A: '02' indicates Non-Unique Alternate Index duplicate key found.
**Q: What are Unique Clusters?**

**A:** Unique Clusters consist of a separate data space, which is utilized completely by the cluster created within it. Unique clusters are created out of unallocated space on direct access storage.

**Q: What are Sub-allocated Clusters?**

**A:** A sub-allocated VSAM file shares the VSAM space with other sub-allocated files. It specifies that the file should be sub-allocated within existing VSAM space. Sub-allocation is used for easier management and control of VSAM spaces.

**Q: What is Upgrade and Noupgrade option in Alternate Index?**

**A:** UPGRADE specifies that the alternate index should be modified if the base cluster is modified and NOUPGRADE specifies that the alternate indexes should be left alone, if the base cluster is modified.

**Q: Explain the different steps to create an Alternate Index?**

**A:** First step is to Define Alternate Index. Second is to Define Path and third step is to Build an Index.

**Q: What is the use of ALTER command in VSAM?**

**A:** ALTER command is used to change most of the VSAM dataset attributes that were specified while defining VSAM cluster.

**What is Next?**

Further, you can go through the examples which you have practiced with the subject and make sure you are able to speak confidently on them. If you are a fresher, then the interviewer does not expect you will answer very complex questions, rather you have to make your basics concepts very strong. Second, it really doesn't matter much if you are not able to answer a few questions but it matters that whatever you answer, you must answer with confidence. So just feel confident during your interview. We at Tutorialspoint, wish you best luck to have a good interviewer and all the very best for your future endeavors. Cheers :-}