

Unix

i

About the Tutorial

Unix is a computer Operating System which is capable of handling activities from multiple

users at the same time. The development of Unix started around 1969 at AT&T Bell Labs

by Ken Thompson and Dennis Ritchie. This tutorial gives a very good understanding on

Unix.

Audience

This tutorial has been prepared for the beginners to help them understand the basics to

advanced concepts covering Unix commands, Unix shell scripting and various utilities.

Prerequisites

We assume you have adequate exposure to Operating Systems and their functionalities.

A basic understanding on various computer concepts will also help you in understanding

the various exercises given in this tutorial.

Execute Unix Shell Programs

If you are willing to learn the Unix/Linux basic commands and Shell script but you do not

have a setup for the same, then do not worry — The CodingGround is available on a high-

end dedicated server giving you real programming experience with the comfort of single-

click execution. Yes! It is absolutely free and online.

Copyright & Disclaimer

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

http://www.tutorialspoint.com/codingground.htm
mailto:contact@tutorialspoint.com

Unix

ii

Table of Contents

About the Tutorial .. i
Audience ... i
Prerequisites ... i
Execute Unix Shell Programs .. i
Copyright & Disclaimer ... i
Table of Contents .. ii

UNIX FOR BEGINNERS ... 1

 Unix — Getting Started ... 2
What is Unix? ... 2
Unix Architecture... 2

 Unix — File Management .. 8
Listing Files .. 8
Metacharacters ... 10
Hidden Files ... 10
Creating Files ... 11
Editing Files .. 11
Display Content of a File .. 12
Counting Words in a File ... 12
Copying Files .. 13
Renaming Files ... 13
Deleting Files ... 13
Standard Unix Streams .. 14

 Unix — Directory Management .. 15
Home Directory ... 15
Absolute/Relative Pathnames ... 15
Listing Directories .. 16
Creating Directories ... 16
Creating Parent Directories ... 17
Removing Directories .. 18
Changing Directories ... 18
Renaming Directories .. 18
The directories . (dot) and .. (dot dot) ... 19

 Unix — File Permission / Access Modes .. 20
The Permission Indicators ... 20
File Access Modes .. 20
Directory Access Modes .. 21
Changing Permissions .. 21
Using chmod with Absolute Permissions .. 22
Changing Owners and Groups ... 23
Changing Ownership ... 24
Changing Group Ownership .. 24
SUID and SGID File Permission .. 24

Unix

iii

 Unix — Environment ... 26
The .profile File .. 27
Setting the Terminal Type ... 27
Setting the PATH .. 27
PS1 and PS2 Variables ... 28
Environment Variables .. 30

 Unix — Basic Utilities .. 32
Printing Files .. 32
Sending Email .. 35

 Unix — Pipes and Filters ... 37
The grep Command ... 37
The Sort Command .. 38
The pg and more Commands .. 39

 Unix — Processes Management .. 41
Starting a Process .. 41
Background Processes ... 42
Listing Running Processes .. 42
Stopping Processes .. 44
Parent and Child Processes ... 44
Zombie and Orphan Processes .. 44
Daemon Processes .. 45
The top Command ... 45
Job ID Versus Process ID .. 45

 Unix — Network Communication Utilities .. 46
The ping Utility .. 46
The ftp Utility ... 47
The telnet Utility .. 49
The finger Utility .. 50

 Unix — The vi Editor ... 52
Starting the vi Editor .. 52
Operation Modes .. 53
Getting Out of vi .. 53
Moving within a File .. 54
Control Commands .. 56
Editing Files .. 57
Deleting Characters ... 57
Change Commands .. 58
Copy and Paste Commands ... 58
Advanced Commands .. 59
Word and Character Searching.. 60
Set Commands ... 61
Running Commands .. 62
Replacing Text ... 62
IMPORTANT ... 62

Unix

iv

UNIX SHELL PROGRAMMING .. 63

 Unix — What is Shell? ... 64
Shell Prompt .. 64
Shell Types ... 64
Shell Scripts ... 65
Example Script ... 65
Shell Comments ... 66
Extended Shell Scripts ... 66

 Unix — Using Shell Variables .. 68
Variable Names ... 68
Defining Variables .. 68
Accessing Values .. 69
Read-only Variables ... 69
Unsetting Variables ... 70
Variable Types ... 70

 Unix — Special Variables ... 71
Command-Line Arguments .. 72
Special Parameters $* and $@ .. 72
Exit Status .. 73

 Unix — Using Shell Arrays ... 74
Defining Array Values .. 74
Accessing Array Values .. 75

 Unix — Shell Basic Operators .. 77
Arithmetic Operators... 77
Unix - Shell Arithmetic Operators Example ... 78
Relational Operators ... 80
Unix - Shell Relational Operators Example .. 80
Boolean Operators .. 82
Unix - Shell Boolean Operators Example ... 82
String Operators .. 84
Unix - Shell String Operators Example ... 84
File Test Operators .. 86
Unix - Shell File Test Operators Example ... 87
C Shell Operators ... 89
Unix - C Shell Operators ... 89
Korn Shell Operators ... 92
Unix - Korn Shell Operators ... 92

 Unix — Shell Decision Making ... 94
The if...else statements ... 94
Unix Shell - The if...fi statement .. 94
Unix Shell - The if...else...fi statement ... 95
Unix Shell - The if...elif...fi statement .. 96
The case...esac Statement ... 97
Unix Shell - The case...esac Statement .. 98

Unix

v

 Unix — Shell Loop Types ... 101
Unix Shell - The while Loop ... 101
Unix Shell - The for Loop.. 102
Unix Shell - The until Loop ... 103
Unix Shell - The select Loop ... 104
Nesting Loops .. 107
Nesting while Loops... 107

 Unix — Shell Loop Control .. 109
The infinite Loop .. 109
The break statement ... 109
The continue statement .. 111

 Unix — Shell Substitution ... 113
What is Substitution? .. 113
Command Substitution .. 114
Variable Substitution ... 115

 Unix — Shell Quoting Mechanisms ... 117
The Metacharacters .. 117
The Single Quotes .. 118
The Double Quotes .. 119
The Backquotes ... 120

 Unix — Shell Input/Output Redirections ... 121
Output Redirection .. 121
Input Redirection ... 122
Here Document ... 122
Discard the output ... 124
Redirection Commands ... 125

 Unix — Shell Functions ... 126
Creating Functions ... 126
Pass Parameters to a Function .. 127
Returning Values from Functions .. 127
Nested Functions ... 128
Function Call from Prompt .. 129

 Unix — Shell Man Page Help ... 130
Man Page Sections .. 130
Useful Shell Commands ... 131
Unix - Useful Commands ... 131
Files and Directories .. 131
Manipulating data ... 132
Compressed Files ... 134
Getting Information ... 135
Network Communication .. 135
Messages between Users .. 136
Programming Utilities .. 136
Misc Commands .. 138

Unix

vi

ADVANCED UNIX ... 141

 Unix — Regular Expressions with SED ... 142
Invoking sed ... 142
The sed General Syntax ... 142
Deleting All Lines with sed ... 143
The sed Addresses ... 143
The sed Address Ranges .. 144
The Substitution Command ... 145
Substitution Flags .. 146
Using an Alternative String Separator ... 146
Replacing with Empty Space .. 146
Address Substitution ... 147
The Matching Command ... 148
Using Regular Expression .. 148
Matching Characters ... 149
Character Class Keywords ... 150
Ampersand Referencing .. 151
Using Multiple sed Commands .. 152
Back References .. 152

 Unix — File System Basics ... 154
Directory Structure .. 154
Navigating the File System .. 155
The df Command ... 157
The du Command .. 157
Mounting the File System .. 158
Unmounting the File System ... 159
User and Group Quotas ... 159

 Unix — User Administration ... 161
Managing Users and Groups ... 161
Create a Group .. 162
Modify a Group ... 163
Delete a Group .. 163
Create an Account ... 163
Modify an Account .. 165
Delete an Account ... 165

 Unix — System Performance... 166
Performance Components .. 166
Performance Tools .. 167

 Unix — System Logging ... 168
Syslog Facilities .. 169
Syslog Priorities ... 170
The /etc/syslog.conf file .. 171
Logging Actions .. 172
The logger Command .. 172
Log Rotation .. 173
Important Log Locations .. 173

Unix

vii

 Unix — Signals and Traps .. 174
List of Signals ... 174
Default Actions .. 175
Sending Signals .. 175
Trapping Signals ... 176
Cleaning Up Temporary Files ... 176
Ignoring Signals .. 177
Resetting Traps .. 177

Unix

8

Unix for Beginners

Unix

9

What is Unix?

The Unix operating system is a set of programs that act as a link between the computer and

the user.

The computer programs that allocate the system resources and coordinate all the details of

the computer's internals is called the operating system or the kernel.

Users communicate with the kernel through a program known as the shell. The shell is a

command line interpreter; it translates commands entered by the user and converts them

into a language that is understood by the kernel.

 Unix was originally developed in 1969 by a group of AT&T employees Ken Thompson,

Dennis Ritchie, Douglas McIlroy, and Joe Ossanna at Bell Labs.

 There are various Unix variants available in the market. Solaris Unix, AIX, HP Unix and

BSD are a few examples. Linux is also a flavor of Unix which is freely available.

 Several people can use a Unix computer at the same time; hence Unix is called a

multiuser system.

 A user can also run multiple programs at the same time; hence Unix is a

multitasking environment.

Unix Architecture

Here is a basic block diagram of a Unix system –

1. Unix — Getting Started

Unix

10

The main concept that unites all the versions of Unix is the following four basics −

 Kernel: The kernel is the heart of the operating system. It interacts with the hardware

and most of the tasks like memory management, task scheduling and file

management.

 Shell: The shell is the utility that processes your requests. When you type in a

command at your terminal, the shell interprets the command and calls the program

that you want. The shell uses standard syntax for all commands. C Shell, Bourne Shell

and Korn Shell are the most famous shells which are available with most of the Unix

variants.

 Commands and Utilities: There are various commands and utilities which you can

make use of in your day to day activities. cp, mv, cat and grep, etc. are few examples

of commands and utilities. There are over 250 standard commands plus numerous

others provided through 3rd party software. All the commands come along with various

options.

 Files and Directories: All the data of Unix is organized into files. All files are then

organized into directories. These directories are further organized into a tree-like

structure called the filesystem.

System Bootup

If you have a computer which has the Unix operating system installed in it, then you simply

need to turn on the system to make it live.

Unix

11

As soon as you turn on the system, it starts booting up and finally it prompts you to log into

the system, which is an activity to log into the system and use it for your day-to-day activities.

Login Unix

When you first connect to a Unix system, you usually see a prompt such as the following:

login:

To log in

 Have your userid (user identification) and password ready. Contact your system

administrator if you don't have these yet.

 Type your userid at the login prompt, then press ENTER. Your userid is case-

sensitive, so be sure you type it exactly as your system administrator has instructed.

 Type your password at the password prompt, then press ENTER. Your password is

also case-sensitive.

 If you provide the correct userid and password, then you will be allowed to enter into

the system. Read the information and messages that comes up on the screen, which

is as follows.

login : amrood

amrood's password:

Last login: Sun Jun 14 09:32:32 2009 from 62.61.164.73

$

[[

You will be provided with a command prompt (sometime called the $ prompt) where you

type all your commands. For example, to check calendar, you need to type the cal command

as follows –

$ cal

 June 2009

Su Mo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

Unix

12

28 29 30

$

Change Password

All Unix systems require passwords to help ensure that your files and data remain your own

and that the system itself is secure from hackers and crackers. Following are the steps to

change your password –

Step 1: To start, type password at the command prompt as shown below.

Step 2: Enter your old password, the one you're currently using.

Step 3: Type in your new password. Always keep your password complex enough so that

nobody can guess it. But make sure, you remember it.

Step 4: You must verify the password by typing it again.

$ passwd

Changing password for amrood

(current) Unix password:******

New Unix password:*******

Retype new Unix password:*******

passwd: all authentication tokens updated successfully

$

Note − We have added asterisk (*) here just to show the location where you need to enter

the current and new passwords otherwise at your system. It does not show you any character

when you type.

Listing Directories and Files

All data in Unix is organized into files. All files are organized into directories. These directories

are organized into a tree-like structure called the filesystem.

You can use the ls command to list out all the files or directories available in a directory.

Following is the example of using ls command with -l option.

$ ls -l

total 19621

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

Unix

13

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia

-rw-r--r-- 1 root root 276480 Dec 9 2007 urlspedia.tar

drwxr-xr-x 8 root root 4096 Nov 25 2007 usr

-rwxr-xr-x 1 root root 3192 Nov 25 2007 webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

$

Here entries starting with d..... represent directories. For example, uml, univ and urlspedia

are directories and rest of the entries are files.

Who Are You?

While you're logged into the system, you might be willing to know : Who am I?

The easiest way to find out "who you are" is to enter the whoami command −

$ whoami

 amrood

$

Try it on your system. This command lists the account name associated with the current login.

You can try who am i command as well to get information about yourself.

Who is Logged in?

Sometime you might be interested to know who is logged in to the computer at the same

time.

There are three commands available to get you this information, based on how much you

wish to know about the other users: users, who, and w.

$ users

 amrood bablu qadir

Unix

14

$ who

amrood ttyp0 Oct 8 14:10 (limbo)

bablu ttyp2 Oct 4 09:08 (calliope)

qadir ttyp4 Oct 8 12:09 (dent)

$

Try the w command on your system to check the output. This lists down information

associated with the users logged in the system.

Logging Out

When you finish your session, you need to log out of the system. This is to ensure that nobody

else accesses your files.

To log out

 Just type the logout command at the command prompt, and the system will clean up

everything and break the connection.

System Shutdown

The most consistent way to shut down a Unix system properly via the command line is to use

one of the following commands −

Command Description

halt Brings the system down immediately

init 0 Powers off the system using predefined scripts to synchronize and

clean up the system prior to shutting down

init 6 Reboots the system by shutting it down completely and then

restarting it

poweroff Shuts down the system by powering off

reboot Reboots the system

Unix

15

shutdown Shuts down the system

You typically need to be the super user or root (the most privileged account on a Unix system)

to shut down the system. However, on some standalone or personally-owned Unix boxes, an

administrative user and sometimes regular users can do so.

Unix

16

In this chapter, we will discuss in detail about file management in Unix. All data in Unix is

organized into files. All files are organized into directories. These directories are organized

into a tree-like structure called the filesystem.

When you work with Unix, one way or another, you spend most of your time working with

files. This tutorial will help you understand how to create and remove files, copy and rename

them, create links to them, etc.

In Unix, there are three basic types of files –

 Ordinary Files − An ordinary file is a file on the system that contains data, text, or

program instructions. In this tutorial, you look at working with ordinary files.

 Directories − Directories store both special and ordinary files. For users familiar with

Windows or Mac OS, Unix directories are equivalent to folders.

 Special Files − Some special files provide access to hardware such as hard drives,

CD-ROM drives, modems, and Ethernet adapters. Other special files are similar to

aliases or shortcuts and enable you to access a single file using different names.

Listing Files

To list the files and directories stored in the current directory, use the following command:

$ls

Here is the sample output of the above command –

$ls

bin hosts lib res.03

ch07 hw1 pub test_results

ch07.bak hw2 res.01 users

docs hw3 res.02 work

The command ls supports the -l option which would help you to get more information about

the listed files –

$ls -l

2. Unix — File Management

Unix

17

total 1962188

drwxrwxr-x 2 amrood amrood 4096 Dec 25 09:59 uml

-rw-rw-r-- 1 amrood amrood 5341 Dec 25 08:38 uml.jpg

drwxr-xr-x 2 amrood amrood 4096 Feb 15 2006 univ

drwxr-xr-x 2 root root 4096 Dec 9 2007 urlspedia

-rw-r--r-- 1 root root 276480 Dec 9 2007 urlspedia.tar

drwxr-xr-x 8 root root 4096 Nov 25 2007 usr

drwxr-xr-x 2 200 300 4096 Nov 25 2007 webthumb-1.01

-rwxr-xr-x 1 root root 3192 Nov 25 2007 webthumb.php

-rw-rw-r-- 1 amrood amrood 20480 Nov 25 2007 webthumb.tar

-rw-rw-r-- 1 amrood amrood 5654 Aug 9 2007 yourfile.mid

-rw-rw-r-- 1 amrood amrood 166255 Aug 9 2007 yourfile.swf

drwxr-xr-x 11 amrood amrood 4096 May 29 2007 zlib-1.2.3

$

Here is the information about all the listed columns –

 First Column: Represents the file type and the permission given on the file. Below is

the description of all type of files.

 Second Column: Represents the number of memory blocks taken by the file or

directory.

 Third Column: Represents the owner of the file. This is the Unix user who created

this file.

 Fourth Column: Represents the group of the owner. Every Unix user will have an

associated group.

 Fifth Column: Represents the file size in bytes.

 Sixth Column: Represents the date and the time when this file was created or

modified for the last time.

 Seventh Column: Represents the file or the directory name.

In the ls -l listing example, every file line begins with a d, -, or l. These characters indicate

the type of the file that's listed.

Prefix Description

Unix

18

- Regular file, such as an ASCII text file, binary executable, or hard link

b Block special file. Block input/output device file such as a physical hard

drive

c Character special file. Raw input/output device file such as a physical

hard drive

d Directory file that contains a listing of other files and directories

l Symbolic link file. Links on any regular file

p Named pipe. A mechanism for interprocess communications

s Socket used for interprocess communication

Metacharacters

Metacharacters have a special meaning in Unix. For example, * and ? are metacharacters.

We use * to match 0 or more characters, a question mark (?) matches with a single character.

For Example −

$ls ch*.doc

Displays all the files, the names of which start with ch and end with .doc –

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc c

Here, * works as meta character which matches with any character. If you want to display all

the files ending with just .doc, then you can use the following command –

$ls *.doc

Unix

19

Hidden Files

An invisible file is one, the first character of which is the dot or the period character (.). Unix

programs (including the shell) use most of these files to store configuration information.

Some common examples of the hidden files include the files −

 .profile − The Bourne shell (sh) initialization script

 .kshrc − The Korn shell (ksh) initialization script

 .cshrc − The C shell (csh) initialization script

 .rhosts − The remote shell configuration file

To list the invisible files, specify the -a option to ls –

$ ls -a

. .profile docs lib test_results

.. .rhosts hosts pub users

.emacs bin hw1 res.01 work

.exrc ch07 hw2 res.02

.kshrc ch07.bak hw3 res.03

$

 Single dot (.) − This represents the current directory.

 Double dot (..) − This represents the parent directory.

Creating Files

You can use the vi editor to create ordinary files on any Unix system. You simply need to give

the following command −

$ vi filename

The above command will open a file with the given filename. Now, press the key i to come

into the edit mode. Once you are in the edit mode, you can start writing your content in the

file as in the following program –

This is unix file....I created it for the first time.....

Unix

20

I'm going to save this content in this file.

Once you are done with the program, follow these steps −

 Press the key esc to come out of the edit mode.

 Press two keys Shift + Z together to come out of the file completely.

You will now have a file created with filename in the current directory.

$ vi filename

$

Editing Files

You can edit an existing file using the vi editor. We will discuss in short how to open an

existing file −

$ vi filename

Once the file is opened, you can come in the edit mode by pressing the key i and then you

can proceed by editing the file. If you want to move here and there inside a file, then first you

need to come out of the edit mode by pressing the key Esc. After this, you can use the

following keys to move inside a file –

 l key to move to the right side.

 h key to move to the left side.

 k key to move upside in the file.

 j key to move downside in the file.

So using the above keys, you can position your cursor wherever you want to edit. Once you

are positioned, then you can use the i key to come in the edit mode. Once you are done with

the editing in your file, press Esc and finally two keys Shift + ZZ together to come out of the

file completely.

Display Content of a File

You can use the cat command to see the content of a file. Following is a simple example to

see the content of the above created file −

$ cat filename

This is unix file....I created it for the first time.....

I'm going to save this content in this file.

Unix

21

$

You can display the line numbers by using the -b option along with the cat command as

follows –

$ cat -b filename

1 This is unix file....I created it for the first time.....

2 I'm going to save this content in this file.

$

Counting Words in a File

You can use the wc command to get a count of the total number of lines, words, and

characters contained in a file. Following is a simple example to see the information about the

file created above −

$ wc filename

2 19 103 filename

$

Here is the detail of all the four columns −

 First Column: Represents the total number of lines in the file.

 Second Column: Represents the total number of words in the file.

 Third Column: Represents the total number of bytes in the file. This is the actual size

of the file.

 Fourth Column: Represents the file name.

You can give multiple files and get information about those files at a time. Following is simple

syntax −

$ wc filename1 filename2 filename3

Copying Files

To make a copy of a file use the cp command. The basic syntax of the command is −

$ cp source_file destination_file

Unix

22

Following is the example to create a copy of the existing file filename.

$ cp filename copyfile

$

You will now find one more file copyfile in your current directory. This file will exactly be the

same as the original file filename.

Renaming Files

To change the name of a file, use the mv command. Following is the basic syntax −

$ mv old_file new_file

The following program will rename the existing file filename to newfile.

$ mv filename newfile

$

The mv command will move the existing file completely into the new file. In this case, you

will find only newfile in your current directory.

Deleting Files

To delete an existing file, use the rm command. Following is the basic syntax −

$ rm filename

Caution: A file may contain useful information. It is always recommended to be careful while

using this Delete command. It is better to use the -i option along with rm command.

Following is the example which shows how to completely remove the existing file filename.

$ rm filename

$

You can remove multiple files at a time with the command given below –

$ rm filename1 filename2 filename3

$

Unix

23

Standard Unix Streams

Under normal circumstances, every Unix program has three streams (files) opened for it when

it starts up −

 stdin − This is referred to as the standard input and the associated file descriptor is

0. This is also represented as STDIN. The Unix program will read the default input from

STDIN.

 stdout − This is referred to as the standard output and the associated file descriptor

is 1. This is also represented as STDOUT. The Unix program will write the default

output at STDOUT

 stderr − This is referred to as the standard error and the associated file descriptor is

2. This is also represented as STDERR. The Unix program will write all the error

messages at STDERR.

Unix

24

In this chapter, we will discuss in detail about directory management in Unix.

A directory is a file the solo job of which is to store the file names and the related information.

All the files, whether ordinary, special, or directory, are contained in directories.

Unix uses a hierarchical structure for organizing files and directories. This structure is often

referred to as a directory tree. The tree has a single root node, the slash character (/), and

all other directories are contained below it.

Home Directory

The directory in which you find yourself when you first login is called your home directory.

You will be doing much of your work in your home directory and subdirectories that you'll be

creating to organize your files.

You can go in your home directory anytime using the following command −

$cd ~

$

Here ~ indicates the home directory. Suppose you have to go in any other user's home

directory, use the following command –

$cd ~username

$

To go in your last directory, you can use the following command –

$cd -

$

Absolute/Relative Pathnames

Directories are arranged in a hierarchy with root (/) at the top. The position of any file within

the hierarchy is described by its pathname.

Elements of a pathname are separated by a /. A pathname is absolute, if it is described in

relation to root, thus absolute pathnames always begin with a /.

3. Unix — Directory Management

Unix

25

Following are some examples of absolute filenames.

/etc/passwd

/users/sjones/chem/notes

/dev/rdsk/Os3

A pathname can also be relative to your current working directory. Relative pathnames never

begin with /. Relative to user amrood's home directory, some pathnames might look like this

–

chem/notes

personal/res

To determine where you are within the filesystem hierarchy at any time, enter the

command pwd to print the current working directory –

$pwd

/user0/home/amrood

$

Listing Directories

To list the files in a directory, you can use the following syntax −

$ls dirname

Following is the example to list all the files contained in /usr/local directory –

$ls /usr/local

X11 bin gimp jikes sbin

ace doc include lib share

atalk etc info man ami

Unix

26

Creating Directories

We will now understand how to create directories. Directories are created by the following

command −

$mkdir dirname

Here, directory is the absolute or relative pathname of the directory you want to create. For

example, the command –

$mkdir mydir

$

Creates the directory mydir in the current directory. Here is another example –

$mkdir /tmp/test-dir

$

This command creates the directory test-dir in the /tmp directory. The mkdir command

produces no output if it successfully creates the requested directory.

If you give more than one directory on the command line, mkdir creates each of the

directories. For example, −

$mkdir docs pub

$

Creates the directories docs and pub under the current directory.

Creating Parent Directories

We will now understand how to create parent directories. Sometimes when you want to create

a directory, its parent directory or directories might not exist. In this case, mkdir issues an

error message as follows −

$mkdir /tmp/amrood/test

mkdir: Failed to make directory "/tmp/amrood/test";

No such file or directory

$

Unix

27

In such cases, you can specify the -p option to the mkdir command. It creates all the

necessary directories for you. For example –

$mkdir -p /tmp/amrood/test

$

The above command creates all the required parent directories.

Removing Directories

Directories can be deleted using the rmdir command as follows −

$rmdir dirname

$

Note − To remove a directory, make sure it is empty which means there should not be any

file or sub-directory inside this directory.

You can remove multiple directories at a time as follows −

$rmdir dirname1 dirname2 dirname3

$

The above command removes the directories dirname1, dirname2, and dirname3, if they are

empty. The rmdir command produces no output if it is successful.

Changing Directories

You can use the cd command to do more than just change to a home directory. You can use

it to change to any directory by specifying a valid absolute or relative path. The syntax is as

given below −

$cd dirname

$

Here, dirname is the name of the directory that you want to change to. For example, the

command –

$cd /usr/local/bin

$

Changes to the directory /usr/local/bin. From this directory, you can cd to the directory

/usr/home/amrood using the following relative path –

Unix

28

$cd ../../home/amrood

$

Renaming Directories

The mv (move) command can also be used to rename a directory. The syntax is as follows:

$mv olddir newdir

$

You can rename a directory mydir to yourdir as follows –

$mv mydir yourdir

$

The directories . (dot) and .. (dot dot)

The filename . (dot) represents the current working directory; and the filename .. (dot dot)

represents the directory one level above the current working directory, often referred to as

the parent directory.

If we enter the command to show a listing of the current working directories/files and use the

-a option to list all the files and the -l option to provide the long listing, we will receive the

following result.

$ls -la

drwxrwxr-x 4 teacher class 2048 Jul 16 17.56 .

drwxr-xr-x 60 root 1536 Jul 13 14:18 ..

---------- 1 teacher class 4210 May 1 08:27 .profile

-rwxr-xr-x 1 teacher class 1948 May 12 13:42 memo

$

Unix

29

In this chapter, we will discuss in detail about file permission and access modes in Unix. File

ownership is an important component of Unix that provides a secure method for storing files.

Every file in Unix has the following attributes –

 Owner permissions − The owner's permissions determine what actions the owner of

the file can perform on the file.

 Group permissions − The group's permissions determine what actions a user, who

is a member of the group that a file belongs to, can perform on the file.

 Other (world) permissions − The permissions for others indicate what action all

other users can perform on the file.

The Permission Indicators

While using ls -l command, it displays various information related to file permission as follows

−

$ls -l /home/amrood

-rwxr-xr-- 1 amrood users 1024 Nov 2 00:10 myfile

drwxr-xr--- 1 amrood users 1024 Nov 2 00:10 mydir

Here, the first column represents different access modes, i.e., the permission associated with

a file or a directory.

The permissions are broken into groups of threes, and each position in the group denotes a

specific permission, in this order: read (r), write (w), execute (x) −

 The first three characters (2-4) represent the permissions for the file's owner. For

example, -rwxr-xr-- represents that the owner has read (r), write (w) and execute

(x) permission.

 The second group of three characters (5-7) consists of the permissions for the group

to which the file belongs. For example, -rwxr-xr-- represents that the group has read

(r) and execute (x) permission, but no write permission.

 The last group of three characters (8-10) represents the permissions for everyone

else. For example, -rwxr-xr-- represents that there is read (r) only permission.

4. Unix — File Permission / Access Modes

Unix

30

File Access Modes

The permissions of a file are the first line of defense in the security of a Unix system. The

basic building blocks of Unix permissions are the read, write, and execute permissions,

which have been described below −

Read

Grants the capability to read, i.e., view the contents of the file.

Write

Grants the capability to modify, or remove the content of the file.

Execute

User with execute permissions can run a file as a program.

Directory Access Modes

Directory access modes are listed and organized in the same manner as any other file. There

are a few differences that need to be mentioned:

Read

Access to a directory means that the user can read the contents. The user can look at the

filenames inside the directory.

Write

Access means that the user can add or delete files from the directory.

Execute

Executing a directory doesn't really make sense, so think of this as a traverse permission.

A user must have execute access to the bin directory in order to execute the ls or the cd

command.

Changing Permissions

To change the file or the directory permissions, you use the chmod (change mode)

command. There are two ways to use chmod — the symbolic mode and the absolute mode.

Using chmod in Symbolic Mode

Unix

31

The easiest way for a beginner to modify file or directory permissions is to use the symbolic

mode. With symbolic permissions you can add, delete, or specify the permission set you want

by using the operators in the following table.

chmod Operator Description

+ Adds the designated permission(s) to a file or directory.

- Removes the designated permission(s) from a file or

directory.

= Sets the designated permission(s).

[[[[

Here's an example using testfile. Running ls -1 on the testfile shows that the file's

permissions are as follows –

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on the testfile, followed

by ls –l, so you can see the permission changes –

$chmod o+wx testfile

$ls -l testfile

-rwxrwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod u-x testfile

$ls -l testfile

-rw-rwxrwx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Here's how you can combine these commands on a single line:

$chmod o+wx,u-x,g=rx testfile

$ls -l testfile

-rw-r-xrwx 1 amrood users 1024 Nov 2 00:10 testfile

Unix

32

Using chmod with Absolute Permissions

The second way to modify permissions with the chmod command is to use a number to specify

each set of permissions for the file.

Each permission is assigned a value, as the following table shows, and the total of each set

of permissions provides a number for that set.

Number Octal Permission Representation Ref

0 No permission ---

1 Execute permission --x

2 Write permission -w-

3 Execute and write permission: 1 (execute) + 2 (write) = 3 -wx

4 Read permission r--

5 Read and execute permission: 4 (read) + 1 (execute) = 5 r-x

6 Read and write permission: 4 (read) + 2 (write) = 6 rw-

7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

[[

Here's an example using the testfile. Running ls -1 on the testfile shows that the file's

permissions are as follows –

$ls -l testfile

-rwxrwxr-- 1 amrood users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on the testfile, followed

by ls –l, so you can see the permission changes –

$ chmod 755 testfile

$ls -l testfile

-rwxr-xr-x 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 743 testfile

Unix

33

$ls -l testfile

-rwxr---wx 1 amrood users 1024 Nov 2 00:10 testfile

$chmod 043 testfile

$ls -l testfile

----r---wx 1 amrood users 1024 Nov 2 00:10 testfile

Changing Owners and Groups

While creating an account on Unix, it assigns a owner ID and a group ID to each user. All

the permissions mentioned above are also assigned based on the Owner and the Groups.

Two commands are available to change the owner and the group of files −

 chown − The chown command stands for "change owner" and is used to change

the owner of a file.

 chgrp − The chgrp command stands for "change group" and is used to change the

group of a file.

Changing Ownership

The chown command changes the ownership of a file. The basic syntax is as follows −

$ chown user filelist

The value of the user can be either the name of a user on the system or the user id (uid)

of a user on the system.

The following example will help you understand the concept −

$ chown amrood testfile

$

Changes the owner of the given file to the user amrood.

NOTE: The super user, root, has the unrestricted capability to change the ownership of any

file but normal users can change the ownership of only those files that they own.

Changing Group Ownership

The chgrp command changes the group ownership of a file. The basic syntax is as follows:

Unix

34

$ chgrp group filelist

The value of group can be the name of a group on the system or the group ID (GID) of a

group on the system.

Following example helps you understand the concept:

$ chgrp special testfile

$

Changes the group of the given file to special group.

SUID and SGID File Permission

Often when a command is executed, it will have to be executed with special privileges in order

to accomplish its task.

As an example, when you change your password with the passwd command, your new

password is stored in the file /etc/shadow.

As a regular user, you do not have read or write access to this file for security reasons, but

when you change your password, you need to have the write permission to this file. This

means that the passwd program has to give you additional permissions so that you can write

to the file /etc/shadow.

Additional permissions are given to programs via a mechanism known as the Set User ID

(SUID) and Set Group ID (SGID) bits.

When you execute a program that has the SUID bit enabled, you inherit the permissions of

that program's owner. Programs that do not have the SUID bit set are run with the

permissions of the user who started the program.

This is the case with SGID as well. Normally, programs execute with your group permissions,

but instead your group will be changed just for this program to the group owner of the

program.

The SUID and SGID bits will appear as the letter "s" if the permission is available. The SUID

"s" bit will be located in the permission bits where the owners’ execute permission normally

resides.

For example, the command -

$ ls -l /usr/bin/passwd

-r-sr-xr-x 1 root bin 19031 Feb 7 13:47 /usr/bin/passwd*

$

Unix

35

Shows that the SUID bit is set and that the command is owned by the root. A capital letter S

in the execute position instead of a lowercase s indicates that the execute bit is not set.

If the sticky bit is enabled on the directory, files can only be removed if you are one of the

following users −

 The owner of the sticky directory

 The owner of the file being removed

 The super user, root

To set the SUID and SGID bits for any directory try the following command −

$ chmod ug+s dirname

$ ls -l

drwsr-sr-x 2 root root 4096 Jun 19 06:45 dirname

$

Unix

36

In this chapter, we will discuss in detail about the Unix environment. An important Unix

concept is the environment, which is defined by environment variables. Some are set by the

system, others by you, yet others by the shell, or any program that loads another program.

A variable is a character string to which we assign a value. The value assigned could be a

number, text, filename, device, or any other type of data.

For example, first we set a variable TEST and then we access its value using

the echo command:

$TEST="Unix Programming"

$echo $TEST

Unix Programming

Note that the environment variables are set without using the $ sign but while accessing them

we use the $ sign as prefix. These variables retain their values until we come out of the shell.

When you log in to the system, the shell undergoes a phase called initialization to set up

the environment. This is usually a two-step process that involves the shell reading the

following files −

 /etc/profile

 profile

The process is as follows –

 The shell checks to see whether the file /etc/profile exists.

 If it exists, the shell reads it. Otherwise, this file is skipped. No error message is

displayed.

 The shell checks to see whether the file .profile exists in your home directory. Your

home directory is the directory that you start out in after you log in.

 If it exists, the shell reads it; otherwise, the shell skips it. No error message is

displayed.

As soon as both of these files have been read, the shell displays a prompt –

$

This is the prompt where you can enter commands in order to have them executed.

5. Unix — Environment

Unix

37

Note − The shell initialization process detailed here applies to all Bourne type shells, but

some additional files are used by bash and ksh.

The .profile File

The file /etc/profile is maintained by the system administrator of your Unix machine and

contains shell initialization information required by all users on a system.

The file .profile is under your control. You can add as much shell customization information

as you want to this file. The minimum set of information that you need to configure includes

-

 The type of terminal you are using

 A list of directories in which to locate the commands

 A list of variables affecting the look and feel of your terminal

You can check your .profile available in your home directory. Open it using the vi editor and

check all the variables set for your environment.

Setting the Terminal Type

Usually, the type of terminal you are using is automatically configured by either

the login or getty programs. Sometimes, the auto configuration process guesses your

terminal incorrectly.

If your terminal is set incorrectly, the output of the commands might look strange, or you

might not be able to interact with the shell properly.

To make sure that this is not the case, most users set their terminal to the lowest common

denominator in the following way −

$TERM=vt100

$

Setting the PATH

When you type any command on the command prompt, the shell has to locate the command

before it can be executed.

The PATH variable specifies the locations in which the shell should look for commands. Usually

the Path variable is set as follows −

$PATH=/bin:/usr/bin

$

Unix

38

Here, each of the individual entries separated by the colon character (:) are directories. If

you request the shell to execute a command and it cannot find it in any of the directories

given in the PATH variable, a message similar to the following appears –

$hello

hello: not found

$

There are variables like PS1 and PS2 which are discussed in the next section.

PS1 and PS2 Variables

The characters that the shell displays as your command prompt are stored in the variable

PS1. You can change this variable to be anything you want. As soon as you change it, it'll be

used by the shell from that point on.

For example, if you issued the command −

$PS1='=>'

=>

=>

=>

Your prompt will become =>. To set the value of PS1 so that it shows the working directory,

issue the command –

=>PS1="[\u@\h \w]\$"

[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$

[root@ip-72-167-112-17 /var/www/tutorialspoint/unix]$

The result of this command is that the prompt displays the user's username, the machine's

name (hostname), and the working directory.

There are quite a few escape sequences that can be used as value arguments for PS1; try

to limit yourself to the most critical so that the prompt does not overwhelm you with

information.

Unix

39

Escape Sequence Description

\t Current time, expressed as HH:MM:SS

\d Current date, expressed as Weekday Month Date

\n Newline

\s Current shell environment

\W Working directory

\w Full path of the working directory

\u Current user’s username

\h Hostname of the current machine

\# Command number of the current command. Increases when a

new command is entered

\$ If the effective UID is 0 (that is, if you are logged in as root), end

the prompt with the # character; otherwise, use the $ sign

[[

You can make the change yourself every time you log in, or you can have the change made

automatically in PS1 by adding it to your .profile file.

When you issue a command that is incomplete, the shell will display a secondary prompt and

wait for you to complete the command and hit Enter again.

The default secondary prompt is > (the greater than sign), but can be changed by re-defining

the PS2 shell variable −

Following is the example which uses the default secondary prompt −

$ echo "this is a

> test"

this is a

Unix

40

test

$

The example given below re-defines PS2 with a customized prompt –

$ PS2="secondary prompt->"

$ echo "this is a

secondary prompt->test"

this is a

test

$

Environment Variables

Following is the partial list of important environment variables. These variables are set and

accessed as mentioned below –

Variable Description

DISPLAY
Contains the identifier for the display that X11 programs should

use by default.

HOME
Indicates the home directory of the current user: the default
argument for the cd built-in command.

IFS
Indicates the Internal Field Separator that is used by the
parser for word splitting after expansion.

LANG

LANG expands to the default system locale; LC_ALL can be used

to override this. For example, if its value is pt_BR, then the

language is set to (Brazilian) Portuguese and the locale to
Brazil.

LD_LIBRARY_PATH

A Unix system with a dynamic linker, contains a colon-

separated list of directories that the dynamic linker should

search for shared objects when building a process image after
exec, before searching in any other directories.

Unix

41

PATH
Indicates the search path for commands. It is a colon-separated
list of directories in which the shell looks for commands.

PWD
Indicates the current working directory as set by the cd
command.

RANDOM
Generates a random integer between 0 and 32,767 each time
it is referenced.

SHLVL

Increments by one each time an instance of bash is started.

This variable is useful for determining whether the built-in exit
command ends the current session.

TERM Refers to the display type.

TZ Refers to Time zone. It can take values like GMT, AST, etc.

UID
Expands to the numeric user ID of the current user, initialized
at the shell startup.

Following is the sample example showing few environment variables −

$ echo $HOME

/root

]$ echo $DISPLAY

$ echo $TERM

xterm

$ echo $PATH

/usr/local/bin:/bin:/usr/bin:/home/amrood/bin:/usr/local/bin

$

Unix

42

In this chapter, we will discuss in detail about Printing and Email as the basic utilities of Unix.

So far, we have tried to understand the Unix OS and the nature of its basic commands. In

this chapter, we will learn some important Unix utilities that can be used in our day-to-day

life.

Printing Files

Before you print a file on a Unix system, you may want to reformat it to adjust the margins,

highlight some words, and so on. Most files can also be printed without reformatting, but the

raw printout may not be that appealing.

Many versions of Unix include two powerful text formatters, nroff and troff.

The pr Command

The pr command does minor formatting of files on the terminal screen or for a printer. For

example, if you have a long list of names in a file, you can format it onscreen into two or

more columns.

Following is the syntax for the pr command −

pr option(s) filename(s)

The pr changes the format of the file only on the screen or on the printed copy; it doesn't

modify the original file. Following table lists some pr options –

Option Description

-k Produces k columns of output

-d Double-spaces the output (not on all pr versions)

-h "header" Takes the next item as a report header

-t Eliminates the printing of header and the top/bottom margins

6. Unix — Basic Utilities

Unix

43

-l PAGE_LENGTH
Sets the page length to PAGE_LENGTH (66) lines. The default
number of lines of text is 56

-o MARGIN Offsets each line with MARGIN (zero) spaces

-w PAGE_WIDTH
Sets the page width to PAGE_WIDTH (72) characters for multiple
text-column output only

Before using pr, here are the contents of a sample file named food.

$cat food

Sweet Tooth

Bangkok Wok

Mandalay

Afghani Cuisine

Isle of Java

Big Apple Deli

Sushi and Sashimi

Tio Pepe's Peppers

........

$

Let's use the pr command to make a two-column report with the header Restaurants –

$pr -2 -h "Restaurants" food

Nov 7 9:58 1997 Restaurants Page 1

Sweet Tooth Isle of Java

Bangkok Wok Big Apple Deli

Mandalay Sushi and Sashimi

Afghani Cuisine Tio Pepe's Peppers

........

$

The lp and lpr Commands

Unix

44

The command lp or lpr prints a file onto paper as opposed to the screen display. Once you

are ready with formatting using the pr command, you can use any of these commands to

print your file on the printer connected to your computer.

Your system administrator has probably set up a default printer at your site. To print a file

named food on the default printer, use the lp or lpr command, as in the following example:

$lp food

request id is laserp-525 (1 file)

$

The lp command shows an ID that you can use to cancel the print job or check its status.

 If you are using the lp command, you can use the -nNum option to print Num number

of copies. Along with the command lpr, you can use -Num for the same.

 If there are multiple printers connected with the shared network, then you can choose

a printer using -dprinter option along with lp command and for the same purpose you

can use -Pprinter option along with lpr command. Here printer is the printer name.

The lpstat and lpq Commands

The lpstat command shows what's in the printer queue: request IDs, owners, file sizes, when

the jobs were sent for printing, and the status of the requests.

Use lpstat -o if you want to see all output requests other than just your own. Requests are

shown in the order they'll be printed −

$lpstat -o

laserp-573 john 128865 Nov 7 11:27 on laserp

laserp-574 grace 82744 Nov 7 11:28

laserp-575 john 23347 Nov 7 11:35

$

The lpq gives slightly different information than lpstat -o –

$lpq

laserp is ready and printing

Unix

45

Rank Owner Job Files Total Size

active john 573 report.ps 128865 bytes

1st grace 574 ch03.ps ch04.ps 82744 bytes

2nd john 575 standard input 23347 bytes

$

Here the first line displays the printer status. If the printer is disabled or running out of paper,

you may see different messages on this first line.

The cancel and lprm Commands

The cancel command terminates a printing request from the lp command. The lprm

command terminates all lpr requests. You can specify either the ID of the request (displayed

by lp or lpq) or the name of the printer.

$cancel laserp-575

request "laserp-575" cancelled

$

To cancel whatever request is currently printing, regardless of its ID, simply enter cancel and

the printer name –

$cancel laserp

request "laserp-573" cancelled

$

The lprm command will cancel the active job if it belongs to you. Otherwise, you can give job

numbers as arguments, or use a dash (-) to remove all of your jobs –

$lprm 575

dfA575diamond dequeued

cfA575diamond dequeued

$

The lprm command tells you the actual filenames removed from the printer queue.

Unix

46

Sending Email

You use the Unix mail command to send and receive mail. Here is the syntax to send an email

−

$mail [-s subject] [-c cc-addr] [-b bcc-addr] to-addr

Here are important options related to mail command:

Option Description

-s Specifies subject on the command line.

-c Sends carbon copies to the list of users. List should be a comma-

separated list of names.

-b Sends blind carbon copies to list. List should be a comma-

separated list of names.

Following is an example to send a test message to admin@yahoo.com.

$mail -s "Test Message" admin@yahoo.com

You are then expected to type in your message, followed by "control-D" at the beginning of

a line. To stop, simply type dot (.) as follows –

Hi,

This is a test

.

Cc:

You can send a complete file using a redirect < operator as follows –

$mail -s "Report 05/06/07" admin@yahoo.com < demo.txt

To check incoming email at your Unix system, you simply type email as follows –

$mail

no email

Unix

47

In this chapter, we will discuss in detail about pipes and filters in Unix. You can connect two

commands together so that the output from one program becomes the input of the next

program. Two or more commands connected in this way form a pipe.

To make a pipe, put a vertical bar (|) on the command line between two commands.

When a program takes its input from another program, it performs some operation on that

input, and writes the result to the standard output. It is referred to as a filter.

The grep Command

The grep command searches a file or files for lines that have a certain pattern. The syntax is

−

$grep pattern file(s)

The name "grep" comes from the ed (a Unix line editor) command g/re/p which means

“globally search for a regular expression and print all lines containing it”.

A regular expression is either some plain text (a word, for example) and/or special characters

used for pattern matching.

The simplest use of grep is to look for a pattern consisting of a single word. It can be used in

a pipe so that only those lines of the input files containing a given string are sent to the

standard output. If you don't give grep a filename to read, it reads its standard input; that's

the way all filter programs work −

$ls -l | grep "Aug"

-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02

-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

$

[

7. Unix — Pipes and Filters

Unix

48

There are various options which you can use along with the grep command –

Option Description

-v Prints all lines that do not match pattern.

-n Prints the matched line and its line number.

-l Prints only the names of files with matching lines (letter "l")

-c Prints only the count of matching lines.

-i Matches either upper or lowercase.

Let us now use a regular expression that tells grep to find lines with "carol", followed by zero

or other characters abbreviated in a regular expression as ".*"), then followed by "Aug".

Here, we are using the -i option to have case insensitive search −

$ls -l | grep -i "carol.*aug"

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

$

The Sort Command

The sort command arranges lines of text alphabetically or numerically. The following example

sorts the lines in the food file −

$sort food

Afghani Cuisine

Bangkok Wok

Big Apple Deli

Unix

49

Isle of Java

Mandalay

Sushi and Sashimi

Sweet Tooth

Tio Pepe's Peppers

$

The sort command arranges lines of text alphabetically by default. There are many options

that control the sorting –

Option Description

-n Sorts numerically (example: 10 will sort after 2), ignores blanks

and tabs.

-r Reverses the order of sort.

-f Sorts upper and lowercase together.

+x Ignores first x fields when sorting.

More than two commands may be linked up into a pipe. Taking a previous pipe example

using grep, we can further sort the files modified in August by the order of size.

The following pipe consists of the commands ls, grep, and sort −

$ls -l | grep "Aug" | sort +4n

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02

$

This pipe sorts all files in your directory modified in August by the order of size, and prints

them on the terminal screen. The sort option +4n skips four fields (fields are separated by

blanks) then sorts the lines in numeric order.

Unix

50

The pg and more Commands

A long output can normally be zipped by you on the screen, but if you run text through more

or use the pg command as a filter; the display stops once the screen is full of text.

Let's assume that you have a long directory listing. To make it easier to read the sorted listing,

pipe the output through more as follows −

$ls -l | grep "Aug" | sort +4n | more

-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros

-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro

-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07

-rw-rw-r-- 1 john doc 14827 Aug 9 12:40 ch03

 .

 .

 .

-rw-rw-rw- 1 john doc 16867 Aug 6 15:56 ch05

--More--(74%)

The screen will fill up once the screen is full of text consisting of lines sorted by the order of

the file size. At the bottom of the screen is the more prompt, where you can type a command

to move through the sorted text.

Once you're done with this screen, you can use any of the commands listed in the discussion

of the more program.

Unix

51

In this chapter, we will discuss in detail about process management in Unix. When you execute

a program on your Unix system, the system creates a special environment for that program.

This environment contains everything needed for the system to run the program as if no other

program were running on the system.

Whenever you issue a command in Unix, it creates, or starts, a new process. When you tried

out the ls command to list the directory contents, you started a process. A process, in simple

terms, is an instance of a running program.

The operating system tracks processes through a five-digit ID number known as the pid or

the process ID. Each process in the system has a unique pid.

Pids eventually repeat because all the possible numbers are used up and the next pid rolls or

starts over. At any point of time, no two processes with the same pid exist in the system

because it is the pid that Unix uses to track each process.

Starting a Process

When you start a process (run a command), there are two ways you can run it −

 Foreground Processes

 Background Processes

Foreground Processes

By default, every process that you start runs in the foreground. It gets its input from the

keyboard and sends its output to the screen.

You can see this happen with the ls command. If you wish to list all the files in your current

directory, you can use the following command −

$ls ch*.doc

This would display all the files, the names of which start with ch and end with .doc –

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc

8. Unix — Processes Management

Unix

52

The process runs in the foreground, the output is directed to my screen, and if the ls command

wants any input (which it does not), it waits for it from the keyboard.

While a program is running in the foreground and is time-consuming, no other commands can

be run (start any other processes) because the prompt would not be available until the

program finishes processing and comes out.

Background Processes

A background process runs without being connected to your keyboard. If the background

process requires any keyboard input, it waits.

The advantage of running a process in the background is that you can run other commands;

you do not have to wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at the end of the

command.

$ls ch*.doc &

This displays all those files the names of which start with ch and end with .doc –

ch01-1.doc ch010.doc ch02.doc ch03-2.doc

ch04-1.doc ch040.doc ch05.doc ch06-2.doc

ch01-2.doc ch02-1.doc

Here, if the ls command wants any input (which it does not), it goes into a stop state until

we move it into the foreground and give it the data from the keyboard.

That first line contains information about the background process - the job number and the

process ID. You need to know the job number to manipulate it between the background and

the foreground.

Press the Enter key and you will see the following −

[1] + Done ls ch*.doc &

$

The first line tells you that the ls command background process finishes successfully. The

second is a prompt for another command.

Listing Running Processes

It is easy to see your own processes by running the ps (process status) command as follows

−

Unix

53

$ps

PID TTY TIME CMD

18358 ttyp3 00:00:00 sh

18361 ttyp3 00:01:31 abiword

18789 ttyp3 00:00:00 ps

One of the most commonly used flags for ps is the -f (f for full) option, which provides more

information as shown in the following example –

$ps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one

amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one

amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh

amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

Here is the description of all the fields displayed by ps -f command –

Column Description

UID User ID that this process belongs to (the person running it)

PID Process ID

PPID Parent process ID (the ID of the process that started it)

C CPU utilization of process

STIME Process start time

TTY Terminal type associated with the process

TIME CPU time taken by the process

Unix

54

CMD The command that started this process

There are other options which can be used along with ps command −

Option Description

-a Shows information about all users

-x Shows information about processes without terminals

-u Shows additional information like -f option

-e Displays extended information

Stopping Processes

Ending a process can be done in several different ways. Often, from a console-based

command, sending a CTRL + C keystroke (the default interrupt character) will exit the

command. This works when the process is running in the foreground mode.

If a process is running in the background, you should get its Job ID using the ps command.

After that, you can use the kill command to kill the process as follows −

$ps -f

UID PID PPID C STIME TTY TIME CMD

amrood 6738 3662 0 10:23:03 pts/6 0:00 first_one

amrood 6739 3662 0 10:22:54 pts/6 0:00 second_one

amrood 3662 3657 0 08:10:53 pts/6 0:00 -ksh

amrood 6892 3662 4 10:51:50 pts/6 0:00 ps -f

$kill 6738

Terminated

Here, the kill command terminates the first_one process. If a process ignores a regular kill

command, you can use kill -9 followed by the process ID as follows –

$kill -9 6738

Terminated

Unix

55

Parent and Child Processes

Each unix process has two ID numbers assigned to it: The Process ID (pid) and the Parent

process ID (ppid). Each user process in the system has a parent process.

Most of the commands that you run have the shell as their parent. Check the ps -f example

where this command listed both the process ID and the parent process ID.

Zombie and Orphan Processes

Normally, when a child process is killed, the parent process is updated via a SIGCHLD signal.

Then the parent can do some other task or restart a new child as needed. However, sometimes

the parent process is killed before its child is killed. In this case, the "parent of all

processes," the init process, becomes the new PPID (parent process ID). In some cases,

these processes are called orphan processes.

When a process is killed, a ps listing may still show the process with a Z state. This is a

zombie or defunct process. The process is dead and not being used. These processes are

different from the orphan processes. They have completed execution but still find an entry in

the process table.

Daemon Processes

Daemons are system-related background processes that often run with the permissions of

root and services requests from other processes.

A daemon has no controlling terminal. It cannot open /dev/tty. If you do a "ps -ef" and

look at the tty field, all daemons will have a ? for the tty.

To be precise, a daemon is a process that runs in the background, usually waiting for

something to happen that it is capable of working with. For example, a printer daemon waiting

for print commands.

If you have a program that calls for lengthy processing, then it’s worth to make it a daemon

and run it in the background.

The top Command

The top command is a very useful tool for quickly showing processes sorted by various

criteria.

It is an interactive diagnostic tool that updates frequently and shows information about

physical and virtual memory, CPU usage, load averages, and your busy processes.

Here is the simple syntax to run top command and to see the statistics of CPU utilization by

different processes −

Unix

56

$top

Job ID Versus Process ID

Background and suspended processes are usually manipulated via job number (job ID).

This number is different from the process ID and is used because it is shorter.

In addition, a job can consist of multiple processes running in a series or at the same time,

in parallel. Using the job ID is easier than tracking individual processes.

Unix

57

In this chapter, we will discuss in detail about network communication utilities in Unix. When

you work in a distributed environment, you need to communicate with remote users and you

also need to access remote Unix machines.

There are several Unix utilities that help users compute in a networked, distributed

environment. This chapter lists a few of them.

The ping Utility

The ping command sends an echo request to a host available on the network. Using this

command, you can check if your remote host is responding well or not.

The ping command is useful for the following −

 Tracking and isolating hardware and software problems.

 Determining the status of the network and various foreign hosts.

 Testing, measuring, and managing networks.

Syntax

Following is the simple syntax to use the ping command −

$ping hostname or ip-address

The above command starts printing a response after every second. To come out of the

command, you can terminate it by pressing CNTRL + C keys.

Example

Following is an example to check the availability of a host available on the network −

$ping google.com

PING google.com (74.125.67.100) 56(84) bytes of data.

64 bytes from 74.125.67.100: icmp_seq=1 ttl=54 time=39.4 ms

64 bytes from 74.125.67.100: icmp_seq=2 ttl=54 time=39.9 ms

64 bytes from 74.125.67.100: icmp_seq=3 ttl=54 time=39.3 ms

64 bytes from 74.125.67.100: icmp_seq=4 ttl=54 time=39.1 ms

64 bytes from 74.125.67.100: icmp_seq=5 ttl=54 time=38.8 ms

9. Unix — Network Communication Utilities

Unix

58

--- google.com ping statistics ---

22 packets transmitted, 22 received, 0% packet loss, time 21017ms

rtt min/avg/max/mdev = 38.867/39.334/39.900/0.396 ms

$

If a host does not exist, you will receive the following output –

$ping giiiiiigle.com

ping: unknown host giiiiigle.com

$

The ftp Utility

Here, ftp stands for File Transfer Protocol. This utility helps you upload and download your

file from one computer to another computer.

The ftp utility has its own set of Unix-like commands. These commands help you perform

tasks such as −

 Connect and login to a remote host.

 Navigate directories.

 List directory contents.

 Put and get files.

 Transfer files as ascii, ebcdic or binary.

Syntax

Following is the simple syntax to use the ping command −

$ftp hostname or ip-address

The above command would prompt you for the login ID and the password. Once you are

authenticated, you can access the home directory of the login account and you would be able

to perform various commands.

The following tables lists out a few important commands −

Command Description

Unix

59

put filename Uploads filename from the local machine to the remote machine.

get filename Downloads filename from the remote machine to the local machine.

mput file list
Uploads more than one file from the local machine to the remote

machine.

mget file list
Downloads more than one file from the remote machine to the local

machine.

prompt off
Turns the prompt off. By default, you will receive a prompt to upload

or download files using mput or mget commands.

prompt on Turns the prompt on.

dir
Lists all the files available in the current directory of the remote

machine.

cd dirname Changes directory to dirname on the remote machine.

lcd dirname Changes directory to dirname on the local machine.

quit Helps logout from the current login.

It should be noted that all the files would be downloaded or uploaded to or from the current

directories. If you want to upload your files in a particular directory, you need to first change

to that directory and then upload the required files.

Example

Following is the example to show the working of a few commands −

$ftp amrood.com

Connected to amrood.com.

220 amrood.com FTP server (Ver 4.9 Thu Sep 2 20:35:07 CDT 2009)

Name (amrood.com:amrood): amrood

331 Password required for amrood.

Unix

60

Password:

230 User amrood logged in.

ftp> dir

200 PORT command successful.

150 Opening data connection for /bin/ls.

total 1464

drwxr-sr-x 3 amrood group 1024 Mar 11 20:04 Mail

drwxr-sr-x 2 amrood group 1536 Mar 3 18:07 Misc

drwxr-sr-x 5 amrood group 512 Dec 7 10:59 OldStuff

drwxr-sr-x 2 amrood group 1024 Mar 11 15:24 bin

drwxr-sr-x 5 amrood group 3072 Mar 13 16:10 mpl

-rw-r--r-- 1 amrood group 209671 Mar 15 10:57 myfile.out

drwxr-sr-x 3 amrood group 512 Jan 5 13:32 public

drwxr-sr-x 3 amrood group 512 Feb 10 10:17 pvm3

226 Transfer complete.

ftp> cd mpl

250 CWD command successful.

ftp> dir

200 PORT command successful.

150 Opening data connection for /bin/ls.

total 7320

-rw-r--r-- 1 amrood group 1630 Aug 8 1994 dboard.f

-rw-r----- 1 amrood group 4340 Jul 17 1994 vttest.c

-rwxr-xr-x 1 amrood group 525574 Feb 15 11:52 wave_shift

-rw-r--r-- 1 amrood group 1648 Aug 5 1994 wide.list

-rwxr-xr-x 1 amrood group 4019 Feb 14 16:26 fix.c

226 Transfer complete.

ftp> get wave_shift

200 PORT command successful.

150 Opening data connection for wave_shift (525574 bytes).

226 Transfer complete.

528454 bytes received in 1.296 seconds (398.1 Kbytes/s)

Unix

61

ftp> quit

221 Goodbye.

$

The telnet Utility

There are times when we are required to connect to a remote Unix machine and work on that

machine remotely. Telnet is a utility that allows a computer user at one site to make a

connection, login and then conduct work on a computer at another site.

Once you login using Telnet, you can perform all the activities on your remotely connected

machine. The following is an example of Telnet session −

C:>telnet amrood.com

Trying...

Connected to amrood.com.

Escape character is '^]'.

login: amrood

amrood's Password:

* *

* *

* WELCOME TO AMROOD.COM *

* *

* *

Last unsuccessful login: Fri Mar 3 12:01:09 IST 2009

Last login: Wed Mar 8 18:33:27 IST 2009 on pts/10

 { do your work }

$ logout

Connection closed.

Unix

62

C:>

The finger Utility

The finger command displays information about users on a given host. The host can be either

local or remote.

Finger may be disabled on other systems for security reasons.

Following is the simple syntax to use the finger command −

Check all the logged-in users on the local machine −

$ finger

Login Name Tty Idle Login Time Office

amrood pts/0 Jun 25 08:03 (62.61.164.115)

Get information about a specific user available on the local machine –

$ finger amrood

Login: amrood Name: (null)

Directory: /home/amrood Shell: /bin/bash

On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115

No mail.

No Plan.

Check all the logged-in users on the remote machine –

$ finger @avtar.com

Login Name Tty Idle Login Time Office

amrood pts/0 Jun 25 08:03 (62.61.164.115)

Get the information about a specific user available on the remote machine −

$ finger amrood@avtar.com

Login: amrood Name: (null)

Directory: /home/amrood Shell: /bin/bash

On since Thu Jun 25 08:03 (MST) on pts/0 from 62.61.164.115

No mail.

Unix

63

No Plan.

Unix

64

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

