
 
Tutorials Point, Simply Easy Learning 

 

1 | P a g e  
 

Apache Struts 2 Tutorial 

Tutorialspoint.com 

 Struts2 is popular and mature web application framework based on the MVC design pattern. 

Struts2 is not just the next version of Struts 1, but it is a complete rewrite of the Struts 
architecture. 

The WebWork framework started off with Struts framework as the basis and its goal was to offer 
an enhanced and improved framework built on Struts to make web development easier for 
the developers. 

After some time, the Webwork framework and the Struts community joined hands to create the 
famous Struts2 framework. 

The framework is designed to streamline the full development cycle, from building, to deploying, 
to maintaining applications over time. Apache Struts 2 was originally known as WebWork 2. For 

more detail kindly check tutorialspoint.com/struts_2 

Struts 2 framework features: 

Here are some of the great features that may force you to consider Struts2: 

1. POJO forms and POJO actions - Struts2 has done away with the Action Forms that 
were an integral part of the Struts framework. With Struts2, you can use any POJO to 
receive the form input. Similarly, you can now see any POJO as an Action class. 

2. Tag support - Struts2 has improved the form tags and the new tags allow the 
developers to write less code. 

3. AJAX support - Struts2 has recognised the take over by Web2.0 technologies, and has 
integrated AJAX support into the product by creating AJAX tags, that function very 

similar to the standard Struts2 tags. 
4. Easy Integration - Integration with other frameworks like Spring, Tiles and SiteMesh 

is now easier with a variety of integration available with Struts2. 
5. Template Support - Support for generating views using templates. 
6. Plugin Support - The core Struts2 behaviour can be enhanced and augmented by the 

use of plugins. A number of plugins are available for Struts2. 
7. Profiling - Struts2 offers integrated profiling to debug and profile the application. In 

addition to this, Struts alos offers integrated debugging with the help of built in 
debugging tools. 

8. Easy to modify tags - Tag markups in Struts2 can be tweaked using Freemarker 
templates. This does not require JSP or java knowledge. Basic HTML, XML and CSS 
knowledge is enough to modify the tags. 

9. Promote less configuration - Struts2 promotes less confinguration with the help of 
using default values for various settings. You don't have to configure something unless 
it deviates from the default settings set by Struts2. 

Struts 2 Environment Setup: 

Our first task is to get a minimal Struts 2 application running. This chapter will guide you on 

how to prepare a development environment to start your work with Struts 2. I assume that you 
already have have JDK (5+), Tomcat and Eclipse installed on your machine. If you do not have 
these components installed then follow the given steps on fast track: 

Step 1 - Setup Java Development Kit (JDK): 

You can download the latest version of SDK from Oracle's Java site: Java SE Downloads. You 
will find instructions for installing JDK in downloaded files, follow the given instructions to install 
and configure the setup. Finally set PATH and JAVA_HOME environment variables to refer to the 

http://www.tutorialspoint.com/struts_2/
http://www.tutorialspoint.com/struts_2/
http://www.tutorialspoint.com/struts_2/
http://www.tutorialspoint.com/struts_2/
http://www.oracle.com/technetwork/java/javase/downloads/index.html


 
Tutorials Point, Simply Easy Learning 

 

2 | P a g e  
 

directory that contains java and javac, typically java_install_dir/bin and java_install_dir 
respectively. 

If you are running Windows and installed the SDK in C:\jdk1.5.0_20, you would have to put the 
following line in your C:\autoexec.bat file. 

set PATH=C:\jdk1.5.0_20\bin;%PATH% 

set JAVA_HOME=C:\jdk1.5.0_20 

Alternatively, on Windows NT/2000/XP, you could also right-click on My Computer, select 

Properties, then Advanced, then Environment Variables. Then, you would update the PATH value 
and press the OK button. 

On Unix (Solaris, Linux, etc.), if the SDK is installed in /usr/local/jdk1.5.0_20 and you use the C 
shell, you would put the following into your .cshrc file. 

setenv PATH /usr/local/jdk1.5.0_20/bin:$PATH 

setenv JAVA_HOME /usr/local/jdk1.5.0_20 

Alternatively, if you use an Integrated Development Environment (IDE) like Borland JBuilder, 

Eclipse, IntelliJ IDEA, or Sun ONE Studio, compile and run a simple program to confirm that the 
IDE knows where you installed Java, otherwise do proper setup as given document of the IDE. 

Step 2 - Setup Apache Tomcat: 

You can download the latest version of Tomcat from http://tomcat.apache.org/. Once you 

downloaded the installation, unpack the binary distribution into a convenient location. For 
example in C:\apache-tomcat-6.0.33 on windows, or /usr/local/apache-tomcat-6.0.33 on 
Linux/Unix and create CATALINA_HOME environment variable pointing to these locations. 

Tomcat can be started by executing the following commands on windows machine, or you can 
simply double click on startup.bat 

 %CATALINA_HOME%\bin\startup.bat 

  

 or 

  

 C:\apache-tomcat-6.0.33\bin\startup.bat 

Tomcat can be started by executing the following commands on Unix (Solaris, Linux, etc.) 
machine: 

$CATALINA_HOME/bin/startup.sh 

  

or 

  

/usr/local/apache-tomcat-6.0.33/bin/startup.sh 

After a successful startup, the default web applications included with Tomcat will be available by 
visiting http://localhost:8080/. If everything is fine then it should display following result: 

http://tomcat.apache.org/


 
Tutorials Point, Simply Easy Learning 

 

3 | P a g e  
 

 

Further information about configuring and running Tomcat can be found in the documentation 
included here, as well as on the Tomcat web site: http://tomcat.apache.org 

Tomcat can be stopped by executing the following commands on windows machine: 

%CATALINA_HOME%\bin\shutdown 

or 

 

C:\apache-tomcat-5.5.29\bin\shutdown 

Tomcat can be stopped by executing the following commands on Unix (Solaris, Linux, etc.) 
machine: 

$CATALINA_HOME/bin/shutdown.sh 

 

or 

 

/usr/local/apache-tomcat-5.5.29/bin/shutdown.sh 

Step 3 - Setup Eclipse (IDE) 

All the examples in this tutorial has been written using Eclipse IDE. So I would suggest you have 
latest version of Eclipse installed on your machine. 

To install Eclipse dDownload the latest Eclipse binaries from http://www.eclipse.org/downloads/. 
Once you downloaded the installation, unpack the binary distribution into a convenient location. 
For example in C:\eclipse on windows, or /usr/local/eclipse on Linux/Unix and finally set PATH 
variable appropriately. 

Eclipse can be started by executing the following commands on windows machine, or you can 
simply double click on eclipse.exe 

http://www.eclipse.org/downloads/


 
Tutorials Point, Simply Easy Learning 

 

4 | P a g e  
 

 %C:\eclipse\eclipse.exe 

Eclipse can be started by executing the following commands on Unix (Solaris, Linux, etc.) 
machine: 

$/usr/local/eclipse/eclipse 

After a successful startup, if everything is fine then it should display following result: 

 

Step 4 - Setup Struts2 Libraries 

Now if everything is fine, then you can proceed to setup your Struts 2 faremwork. Following are 
the simple steps to download and install Struts2 on your machine. 

 Make a choice whether you want to install Hibernate on Windows, or Unix and then 

proceed to the next step to download .zip file for windows and .tz file for Unix. 

 Download the latest version of Struts2 binaries 

fromhttp://struts.apache.org/download.cgi. 

 At the time of writing this tutorial, I downloaded struts-2.0.14-all.zip and when you 
unzip the downloaded file it will give you directory structure inside C:\struts-2.2.3 as 
follows. 

http://struts.apache.org/download.cgi


 
Tutorials Point, Simply Easy Learning 

 

5 | P a g e  
 

 

Second step is to extract the zip file in any location, I downloaded & extracted struts-2.2.3-
all.zip in c:\ folder on my Windows 7 machine so that I have all the jar files into C:\struts-

2.2.3\lib. Make sure you set your CLASSPATH variable properly otherwise you will face 
problem while running your application. 

Struts 2 Architecture: 

From a high level, Struts2 is a pull-MVC (or MVC2) framework. The Model-View-Controller 
pattern in Struts2 is realized with following five core components: 

1. Actions 
2. Interceptors 
3. Value Stack / OGNL 

4. Results / Result types 
5. View technologies 

Struts 2 is slightly different from a traditional MVC framework in that the action takes the role of 
the model rather than the controller, although there is some overlap. 



 
Tutorials Point, Simply Easy Learning 

 

6 | P a g e  
 

 

The above diagram depicts the Model, View and Controller to the Struts2 high level 

architecture. The controller is implemented with a Struts2 dispatch servlet filter as well as 
interceptors, the model is implemented with actions, and the view as a combination of result 
types and results. The value stack and OGNL provide common thread, linking and enabling 
integration between the other components. 

Apart from the above components, there will be a lot of information that relates to 
configuration. Configuration for the web application, as well as configuration for actions, 
interceptors, results, etc. 

This is the architectural overview of the Struts 2 MVC pattern. We will go through each 
component in more detail in the subsequent chapters. 

Request life cycle: 

Based on the above digram, one can explain the user's request life cycle in Struts 2 as follows: 

1. User sends a request to the server for requesting for some resource (i.e pages). 
2. The FilterDispatcher looks at the request and then determines the appropriate Action. 
3. Configured interceptors functionalities applies such as validation, file upload etc. 
4. Selected action is executed to perform the requested operation. 
5. Again, configured interceptors are applied to do any post-processing if required. 
6. Finally the result is prepared by the view and returns the result to the user. 

Struts 2 Hello World Example: 

As you learnt from the Struts 2 architecture, when you click on a hyperlink or submit an HTML 
form in a Struts 2 web application, the input is collected by the Controller which is sent to a 
Java class called Actions. After the Action is executed, a Result selects a resource to render the 

response. The resource is generally a JSP, but it can also be a PDF file, an Excel spreadsheet, or 
a Java applet window. 



 
Tutorials Point, Simply Easy Learning 

 

7 | P a g e  
 

Assume you already build-up your development environment. Now let us proceed for building 
our first Hello World struts2 project. The aim of this project is to build a web application that 

collects the user's name and displays "Hello World" followed by the user name. We would have 
to create following four components for any Struts 2 project: 

SN Components & Description 

1 Action 

Create an action class which will contain complete business logic and conrol the interaction 

between the user, the model, and the view. 

2 Interceptors 

Create interceptors if required, or use existing interceptors. This is part of Controller. 

3 View 

Create a JSPs to interact with the user to take input and to present the final messages. 

4 Configuration Files 

Create configuration files to couple the Action, View and Controllers. These files are 

struts.xml, web.xml, struts.properties. 

I am going to use Eclipse IDE, so all the required components will be created under a Dynamic 
Web Project. So let us start with creating Dynamic Web Project. 

Create a Dynamic Web Project: 

Start your Eclipse and then go with File > New > Dynamic Web Project and enter project 
name as HelloWorldStruts2 and set rest of the options as given in the following screen: 



 
Tutorials Point, Simply Easy Learning 

 

8 | P a g e  
 

 

Select all the default options in the next screens and finally check Generate Web.xml 

deployment descriptor option. This will create a dynamic web project for you in Eclipse. Now 
go with Windows > Show View > Project Explorer, and you will see your project window 
something as below: 



 
Tutorials Point, Simply Easy Learning 

 

9 | P a g e  
 

 

Now copy following files from sturts 2 lib folder C:\struts-2.2.3\lib to our project's WEB-

INF\lib folder. To so this, you can simply drag and drop all the following files into WEB-INF\lib 
folder. 

 commons-fileupload-x.y.z.jar 

 commons-io-x.y.z.jar 

 commons-lang-x.y.jar 

 commons-logging-x.y.z.jar 

 commons-logging-api-x.y.jar 

 freemarker-x.y.z.jar 

 javassist-.xy.z.GA 

 ognl-x.y.z.jar 

 struts2-core-x.y.z.jar 

 xwork-core.x.y.z.jar 

Create Action Class: 

Action class is the key to Struts 2 application and we implement most of the business logic in 
action class. So let us create a java file HelloWorldAction.java under Java Resources > 
src with a package name com.tutorialspoint.struts2 with the contents given below. 

The Action class responds to a user action when user clicks a URL. One or more of the Action 
class's methods are executed and a String result is returned. Based on the value of the result, a 
specific JSP page is rendered. 

package com.tutorialspoint.struts2; 

 

public class HelloWorldAction{ 



 
Tutorials Point, Simply Easy Learning 

 

10 | P a g e  
 

   private String name; 

 

   public String execute() throws Exception { 

      return "success"; 

   } 

    

   public String getName() { 

      return name; 

   } 

 

   public void setName(String name) { 

      this.name = name; 

   } 

} 

This is a very simple class with one property called "name". We have standard getters and 

setter methods for the "name" property and an execute method that returns the string 
"success". 

The Struts 2 framework will create an object of the HelloWorldAction class and call the execute 

method in response to a user's action. You put your business logic inside execute method and 
finally returns the String constant. Simply saying for for each URL, you would have to 
implement one action class and either you can use that class name directly as your action name 
or you can map to some other name using struts.xml file as shown below. 

Create a View 

We need a JSP to present the final message, this page will be called by Struts 2 framework 
when a predefined action will happen and this mapping will be defined in struts.xml file. So let 
us create the below jsp file HelloWorld.jsp in the WebContent folder in your eclipse project. To 
do this, right click on the WebContent folder in the project explorer and select New >JSP File. 

<%@ page contentType="text/html; charset=UTF-8" %> 

<%@ taglib prefix="s" uri="/struts-tags" %> 

<html> 

<head> 

<title>Hello World</title> 

</head> 

<body> 

   Hello World, <s:property value="name"/> 

</body> 

</html> 

The taglib directive tells the Servlet container that this page will be using the Struts 2 tags and 

that these tags will be preceded by s. The s:property tag displays the value of action class 
property "name> which is returned by the method getName() of the HelloWorldAction class. 

Create main page: 

We also need to create index.jsp in the WebContent folder. This file will serve as the initial 
action URL where a user can click to tell the Struts 2 framework to call the a defined method of 
the HelloWorldAction class and render the HelloWorld.jsp view. 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

   pageEncoding="ISO-8859-1"%> 

<%@ taglib prefix="s" uri="/struts-tags"%> 

   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 



 
Tutorials Point, Simply Easy Learning 

 

11 | P a g e  
 

<head> 

<title>Hello World</title> 

</head> 

<body> 

   <h1>Hello World From Struts2</h1> 

   <form action="hello"> 

      <label for="name">Please enter your name</label><br/> 

      <input type="text" name="name"/> 

      <input type="submit" value="Say Hello"/> 

   </form> 

</body> 

</html> 

The hello action defined in the above view file will be mapped to the HelloWorldAction class and 

its execute method using struts.xml file. When a user clicks on the Submit button it will cause 
the Struts 2 framework to run the execute method defined in the HelloWorldAction class and 
based on the returned value of the method, an appropriate view will be selected and rendered 
as a response. 

Configuration Files 

We need a mapping to tie the URL, the HelloWorldAction class (Model), and the HelloWorld.jsp 
(the view) together. The mapping tells the Struts 2 framework which class will respond to the 

user's action (the URL), which method of that class will be executed, and what view to render 
based on the String result that method returns. 

So let us create a file called struts.xml. Since Struts 2 requires struts.xml to be present in 
classes folder. So create struts.xml file under the WebContent/WEB-INF/classes folder. Eclipse 

does not create the "classes" folder by default, so you need to do this yourself. To do this, right 
click on the WEB-INF folder in the project explorer and select New > Folder. Your struts.xml 
should look like: 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

   "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

   "http://struts.apache.org/dtds/struts-2.0.dtd"> 

<struts> 

<constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

      

      <action name="hello"  

            class="com.tutorialspoint.struts2.HelloWorldAction"  

            method="execute"> 

            <result name="success">/HelloWorld.jsp</result> 

      </action> 

   </package> 

</struts> 

Few words about the above configuration file. Here we set the 

constant struts.devMode to true, because we are working in development environment and 
we need to see some useful log messages. Then, we defined a package called helloworld. 
Creating a package is useful when you want to group your actions together. In our example, we 
named our action as "hello" which is corresponding to the URL /hello.action and is backed up 
by the HelloWorldAction.class. The execute method of HelloWorldAction.class is the 
method that is run when the URL/hello.action is invoked. If the outcome of 
the execute method returns "success", then we take the user to HelloWorld.jsp. 

Next step is to create a web.xml file which is an entry point for any request to Struts 2. The 
entry point of Struts2 application will be a filter defined in deployment descriptor (web.xml). 
Hence we will define an entry oforg.apache.struts2.dispatcher.FilterDispatcher class in web.xml. 
The web.xml file needs to be created under the WEB-INF folder under WebContent. Eclipse had 



 
Tutorials Point, Simply Easy Learning 

 

12 | P a g e  
 

already created a skelton web.xml file for you when you created the project. So, lets just modify 
it as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

   xmlns="http://java.sun.com/xml/ns/javaee"  

   xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" 

   xsi:schemaLocation="http://java.sun.com/xml/ns/javaee  

   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 

   id="WebApp_ID" version="3.0"> 

    

   <display-name>Struts 2</display-name> 

   <welcome-file-list> 

      <welcome-file>index.jsp</welcome-file> 

   </welcome-file-list> 

   <filter> 

      <filter-name>struts2</filter-name> 

      <filter-class> 

         org.apache.struts2.dispatcher.FilterDispatcher 

      </filter-class> 

   </filter> 

 

   <filter-mapping> 

      <filter-name>struts2</filter-name> 

      <url-pattern>/*</url-pattern> 

   </filter-mapping> 

</web-app> 

We have specified index.jsp to be our welcome file. Then we have configured the Struts2 filter 
to run on all urls (i.e, any url that match the pattern /*) 

Enable Detailed Log: 

You can enabled complete logging functionality while working with Struts 2 by 

creatinglogging.properties file under WEB-INF/classes folder. Keep the following two lines 
in your property file: 

  

org.apache.catalina.core.ContainerBase.[Catalina].level = INFO 

org.apache.catalina.core.ContainerBase.[Catalina].handlers = \ 

                              java.util.logging.ConsoleHandler 

The default logging.properties specifies a ConsoleHandler for routing logging to stdout and also 

a FileHandler. A handler's log level threshold can be set using SEVERE, WARNING, INFO, 
CONFIG, FINE, FINER, FINEST or ALL. 

That's it. We are ready to run our Hello World application using Struts 2 framework. 

Execute the Application 

Right click on the project name and click Export > WAR File to create a War file. Then deploy 
this WAR in the Tomcat's webapps directory. Finally, start Tomcat server and try to access URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will give you following screen: 



 
Tutorials Point, Simply Easy Learning 

 

13 | P a g e  
 

 

Enter a value "Struts2" and submit the page. You should see the next page 

 

Note that you can define index as an action in struts.xml file and in that case you can call index 

page as http://localhost:8080/HelloWorldStruts2/index.action. Check below how you can define 
index as an action: 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 



 
Tutorials Point, Simply Easy Learning 

 

14 | P a g e  
 

   "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

   "http://struts.apache.org/dtds/struts-2.0.dtd"> 

<struts> 

<constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

 

      <action name="index"> 

            <result >/index.jsp</result> 

      </action> 

 

      <action name="hello"  

            class="com.tutorialspoint.struts2.HelloWorldAction"  

            method="execute"> 

            <result name="success">/HelloWorld.jsp</result> 

      </action> 

 

   </package> 

</struts> 

Struts 2 Configuration Files 

This chapter will take you through basic configuration required for a Struts 2 application. Here 
we will see what will be configured in few important configuration files : web.xml, struts.xml, 
struts-config.xml and struts.properties 

Honestly speaking you can survive using web.xml and struts.xml configuration files and you 
have seen in previous chapter that our example worked using these two files, but for your 
knowledge let me explain other files as well. 

The web.xml file: 

The web.xml configuration file is a J2EE configuration file that determines how elements of the 
HTTP request are processed by the servlet container. It is not strictly a Struts2 configuration 
file, but it is a file that needs to be configured for Struts2 to work. 

As discussed earlier, this file provides an entry point for any web application. The entry point of 
Struts2 application will be a filter defined in deployment descriptor (web.xml). Hence we will 
define an entry of FilterDispatcher class in web.xml. The web.xml file needs to be created under 
the folder WebContent/WEB-INF. 

This is the first configuration file you will need to configure if you are starting without the aid of 
a template or tool that generates it (such as Eclipse or Maven2). Following is the content of 
web.xml file which we used in our last example. 

<?xml version="1.0" encoding="UTF-8"?> 

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

   xmlns="http://java.sun.com/xml/ns/javaee"  

   xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" 

   xsi:schemaLocation="http://java.sun.com/xml/ns/javaee  

   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 

   id="WebApp_ID" version="3.0"> 

    

   <display-name>Struts 2</display-name> 

   <welcome-file-list> 

      <welcome-file>index.jsp</welcome-file> 

   </welcome-file-list> 

    

   <filter> 

      <filter-name>struts2</filter-name> 

      <filter-class> 



 
Tutorials Point, Simply Easy Learning 

 

15 | P a g e  
 

         org.apache.struts2.dispatcher.FilterDispatcher 

      </filter-class> 

   </filter> 

 

   <filter-mapping> 

      <filter-name>struts2</filter-name> 

      <url-pattern>/*</url-pattern> 

   </filter-mapping> 

 

</web-app> 

Note that we map the Struts 2 filter to /*, and not to /*.action which means that all urls will 

be parsed by the struts filter. We will cover this when we will go through the Annotations 
chapter. 

The sturts.xml file: 

The struts.xml file contains the configuration information that you will be modifying as actions 
are developed. This file can be used to override default settings for an application, for 
examplestruts.devMode = false and other settings which are defined in property file. This file 
can be created under the folder WEB-INF/classes. 

Let us have a look at the struts.xml file we created in the Hello World example explained in 
previous chapter. 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

   "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

   "http://struts.apache.org/dtds/struts-2.0.dtd"> 

<struts> 

   <constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

      

      <action name="hello"  

            class="com.tutorialspoint.struts2.HelloWorldAction"  

            method="execute"> 

            <result name="success">/HelloWorld.jsp</result> 

      </action> 

      <-- more actions can be listed here --> 

 

   </package> 

   <-- more packages can be listed here --> 

 

</struts> 

 

The first thing to note is the DOCTYPE. All struts configuration file need to have the correct 
doctype as shown in our little example. <struts> is the root tag element, under which we 
declare different packages using <package> tags. Here <package> allows separation and 
modularization of the configuration. This is very useful when you have a large project and 
project is divided into different modules. 

Say, if your project has three domains - business_applicaiton, customer_application and 
staff_application, you could create three packages and store associated actions in the 
appropriate package. The package tag has the following attributes: 

Attribute Description 



 
Tutorials Point, Simply Easy Learning 

 

16 | P a g e  
 

name (required) The unique identifier for the package 

extends Which package does this package extend from? By default, we use 

struts-default as the base package. 

abstract If marked true, the package is not available for end user consumption. 

namesapce Unique namespace for the actions 

The constant tag along with name and value attributes will be used to override any of the 

following properties defined in default.properties, like we just set sturts.devMode property. 
Setting struts.devMode property allows us to see more debug messages in the log file. 

We define action tags corresponds to every URL we want to access and we define a class with 
execute() method which will be accessed whenever we will access corresponding URL. 

Results determine what gets returned to the browser after an action is executed. The string 
returned from the action should be the name of a result. Results are configured per-action as 

above, or as a "global" result, available to every action in a package. Results have optional 
name and type attributes. The default name value is "success". 

Struts.xml file can grow big over time and so breaking it by packages is one way of 

modularizing it, but struts offers another way to modularize the struts.xml file. You could split 
the file into multiple xml files and import them in the following fashion. 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

    "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

    "http://struts.apache.org/dtds/struts-2.0.dtd"> 

<struts> 

     <include file="my-struts1.xml"/> 

     <include file="my-struts2.xml"/> 

</struts> 

The other configuration file that we haven't covered is the struts-default.xml. This file contains 

the standard configuration settings for Struts and you would not have to touch these settings for 
99.99% of your projects. For this reason, we are not going into too much detail on this file. If 
you are interested, take a look into the at the default.properties file available in struts2-core-
2.2.3.jar file. 

The struts-config.xml file: 

The struts-config.xml configuration file is a link between the View and Model components in the 

Web Client but you would not have to touch these settings for 99.99% of your projects. The 
configuration file basically contains following main elements: 

SN Interceptor & Description 

1 struts-config 

This is the root node of the configuration file. 

2 form-beans 



 
Tutorials Point, Simply Easy Learning 

 

17 | P a g e  
 

This is where you map your ActionForm subclass to a name. You use this name as an alias 

for your ActionForm throughout the rest of the struts-config.xml file, and even on your JSP 

pages. 

3 global forwards 

This section maps a page on your webapp to a name. You can use this name to refer to the 

actual page. This avoids hardcoding URLs on your web pages. 

4 action-mappings 

This is where you declare form handlers and they are also known as action mappings. 

5 controller 

This section configures Struts internals and rarely used in practical situations. 

6 plug-in 

This section tells Struts where to find your properties files, which contain prompts and error 

messages 

Following is the sample sturts-config.xml file: 

<?xml version="1.0" encoding="ISO-8859-1" ?> 

<!DOCTYPE struts-config PUBLIC 

"-//Apache Software Foundation//DTD Struts Configuration 1.0//EN" 

"http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd"> 

 

<struts-config> 

 

   <!-- ========== Form Bean Definitions ============ --> 

   <form-beans> 

      <form-bean name="login" type="test.struts.LoginForm" /> 

   </form-beans> 

 

   <!-- ========== Global Forward Definitions ========= --> 

   <global-forwards> 

   </global-forwards> 

 

   <!-- ========== Action Mapping Definitions ======== --> 

   <action-mappings> 

      <action 

         path="/login" 

         type="test.struts.LoginAction" > 

 

         <forward name="valid" path="/jsp/MainMenu.jsp" /> 

         <forward name="invalid" path="/jsp/LoginView.jsp" /> 

      </action> 

   </action-mappings> 

 

   <!-- ========== Controller Definitions ======== --> 

   <controller  

      contentType="text/html;charset=UTF-8" 

      debug="3" 

      maxFileSize="1.618M" 

      locale="true" 

      nocache="true"/> 

 

</struts-config> 



 
Tutorials Point, Simply Easy Learning 

 

18 | P a g e  
 

For more detail on struts-config.xml file, kindly check your struts documentation. 

The struts.properties file 

This configuration file provides a mechanism to change the default behavior of the framework. 
Actually all of the properties contained within the struts.properties configuration file can also 
be configured in the web.xml using the init-param, as well using the constant tag in 
thestruts.xml configuration file. But if you like to keep the things separate and more struts 
specific then you can create this file under the folder WEB-INF/classes. 

The values configured in this file will override the default values configured 
indefault.properties which is contained in the struts2-core-x.y.z.jar distribution. There are a 
couple of properties that you might consider changing using struts.properties file: 

### When set to true, Struts will act much more friendly for developers 

struts.devMode = true 

 

### Enables reloading of internationalization files 

struts.i18n.reload = true 

 

### Enables reloading of XML configuration files 

struts.configuration.xml.reload = true 

 

### Sets the port that the server is run on 

struts.url.http.port = 8080 

Here any line starting with hash (#) will be assumed as a comment and it will be ignored by 
Struts 2. 

Struts 2 Actions: 

Actions are the core of the Struts2 framework, as they are for any MVC (Model View Controller) 

framework. Each URL is mapped to a specific action, which provides the processing logic 
necessary to service the request from the user. 

But the action also serves in two other important capacities. First, the action plays an important 
role in the transfer of data from the request through to the view, whether its a JSP or other type 
of result. Second, the action must assist the framework in determining which result should 
render the view that will be returned in the response to the request. 

Create Action: 

The only requirement for actions in Struts2 is that there must be one no-argument method that 

returns either a String or Result object and must be a POJO. If the no-argument method is not 
specified, the default behavior is to use the execute() method. 

Optionally you can extend the ActionSupport class which implements six interfaces 
includingAction interface. The Action interface is as follows: 

public interface Action { 

   public static final String SUCCESS = "success"; 

   public static final String NONE = "none"; 

   public static final String ERROR = "error"; 

   public static final String INPUT = "input"; 

   public static final String LOGIN = "login"; 

   public String execute() throws Exception; 

} 



 
Tutorials Point, Simply Easy Learning 

 

19 | P a g e  
 

Let us take a look at the action method in the Hello World example: 

package com.tutorialspoint.struts2; 

 

public class HelloWorldAction{ 

   private String name; 

 

   public String execute() throws Exception { 

      return "success"; 

   } 

    

   public String getName() { 

      return name; 

   } 

 

   public void setName(String name) { 

      this.name = name; 

   } 

} 

To illustrate the point that the action method controls the view, let us make the following 
change to the execute method and extend the class ActionSupport as follows: 

package com.tutorialspoint.struts2; 

 

import com.opensymphony.xwork2.ActionSupport; 

 

public class HelloWorldAction extends ActionSupport{ 

   private String name; 

 

   public String execute() throws Exception { 

      if ("SECRET".equals(name)) 

      { 

         return SUCCESS; 

      }else{ 

         return ERROR;   

      } 

   } 

    

   public String getName() { 

      return name; 

   } 

 

   public void setName(String name) { 

      this.name = name; 

   } 

} 

In this example, we have some logic in the execute method to look at the name attribute. If the 

attribute equals to the string "SECRET", we return SUCCESS as the result otherwise we return 
ERROR as the result. Because we have extended ActionSupport, so we can use String constants 
SUCCESS and ERROR. Now, let us modify our struts.xml file as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

   "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

   "http://struts.apache.org/dtds/struts-2.0.dtd"> 

   <struts> 

      <constant name="struts.devMode" value="true" /> 

      <package name="helloworld" extends="struts-default"> 

         <action name="hello"  



 
Tutorials Point, Simply Easy Learning 

 

20 | P a g e  
 

            class="com.tutorialspoint.struts2.HelloWorldAction" 

            method="execute"> 

            <result name="success">/HelloWorld.jsp</result> 

            <result name="error">/AccessDenied.jsp</result> 

         </action> 

      </package> 

</struts> 

Create a View 

Let us create the below jsp file HelloWorld.jsp in the WebContent folder in your eclipse 
project. To do this, right click on the WebContent folder in the project explorer and select New 
>JSP File. This file will be called in case return result is SUCCESS which is a String constant 
"success" as defined in Action interface: 

<%@ page contentType="text/html; charset=UTF-8" %> 

<%@ taglib prefix="s" uri="/struts-tags" %> 

<html> 

<head> 

<title>Hello World</title> 

</head> 

<body> 

   Hello World, <s:property value="name"/> 

</body> 

</html> 

Following is the file which will be invoked by the framework in case action result is ERROR which 
is equal to String constant "error". Following is the content of AccessDenied.jsp 

<%@ page contentType="text/html; charset=UTF-8" %> 

<%@ taglib prefix="s" uri="/struts-tags" %> 

<html> 

<head> 

<title>Access Denied</title> 

</head> 

<body> 

   You are not authorized to view this page. 

</body> 

</html> 

We also need to create index.jsp in the WebContent folder. This file will serve as the initial 

action URL where the user can click to tell the Struts 2 framework to call the execute method 
of the HelloWorldAction class and render the HelloWorld.jsp view. 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

   pageEncoding="ISO-8859-1"%> 

<%@ taglib prefix="s" uri="/struts-tags"%> 

   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<title>Hello World</title> 

</head> 

<body> 

   <h1>Hello World From Struts2</h1> 

   <form action="hello"> 

      <label for="name">Please enter your name</label><br/> 

      <input type="text" name="name"/> 

      <input type="submit" value="Say Hello"/> 

   </form> 



 
Tutorials Point, Simply Easy Learning 

 

21 | P a g e  
 

</body> 

</html> 

That's it, there is no change required web.xml file, so let us use same web.xml which we had 

created in Examples chapter. Now we are ready to run our Hello World application using Struts 
2 framework. 

Execute the Application 

Right click on the project name and click Export > WAR File to create a War file. Then deploy 

this WAR in the Tomcat's webapps directory. Finally, start Tomcat server and try to access URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will give you following screen: 

 

Let us enter a word as "SECRET" and you should see the following page: 



 
Tutorials Point, Simply Easy Learning 

 

22 | P a g e  
 

 

Now enter any word other than "SECRET" and you should see the following page: 

 



 
Tutorials Point, Simply Easy Learning 

 

23 | P a g e  
 

Create Multiple Actions: 

You will frequently define more than one actions to handle different requests and to provide 
different URLs to the users, accordingly you will define different classes as defined below: 

package com.tutorialspoint.struts2; 

import com.opensymphony.xwork2.ActionSupport; 

 

   class MyAction extends ActionSupport{ 

      public static String GOOD = SUCCESS; 

      public static String BAD = ERROR; 

   } 

 

   public class HelloWorld extends ActionSupport{ 

      ... 

      public String execute() 

      { 

         if ("SECRET".equals(name)) return MyAction.GOOD; 

         return MyAction.BAD; 

      } 

      ... 

   } 

 

   public class SomeOtherClass extends ActionSupport{ 

      ... 

      public String execute() 

      { 

         return MyAction.GOOD; 

      } 

      ... 

   } 

You will configure these actions in struts.xml file as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

    "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

    "http://struts.apache.org/dtds/struts-2.0.dtd"> 

struts> 

 <constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

      <action name="hello"  

         class="com.tutorialspoint.struts2.HelloWorld"  

         method="execute"> 

         <result name="success">/HelloWorld.jsp</result> 

         <result name="error">/AccessDenied.jsp</result> 

      </action> 

      <action name="something"  

         class="com.tutorialspoint.struts2.SomeOtherClass"  

         method="execute"> 

         <result name="success">/Something.jsp</result> 

         <result name="error">/AccessDenied.jsp</result> 

      </action> 

   </package> 

</struts> 

As you can see in the above hypothetical example, the action results SUCCESS and ERROR are 

duplicated. To get around this issue, it is suggested that you create a class that contain the 
result outcomes. 

Struts 2 Interceptors: 



 
Tutorials Point, Simply Easy Learning 

 

24 | P a g e  
 

Interceptors are conceptually the same as servlet filters or the JDKs Proxy class. Interceptors 
allow for crosscutting functionality to be implemented separately from the action as well as the 
framework. You can achieve the following using interceptors: 

 Providing preprocessing logic before the action is called. 

 Providing postprocessing logic after the action is called. 

 Catching exceptions so that alternate processing can be performed. 

Many of the features provided in the Struts2 framework are implemented using interceptors; 
examples include exception handling, file uploading, lifecycle callbacks and validation etc. In 
fact, as Struts2 bases much of its functionality on interceptors, it is not unlikely to have 7 or 8 
interceptors assigned per action. 

Struts2 Framework Interceptors: 

Struts 2 framework provides a good list of out-of-the-box interceptors that come preconfigured 
and ready to use. Few of the important interceptors are listed below: 

SN Interceptor & Description 

1 alias 

Allows parameters to have different name aliases across requests. 

2 checkbox 

Assists in managing check boxes by adding a parameter value of false for check boxes that 

are not checked. 

3 conversionError 

Places error information from converting strings to parameter types into the action's field 

errors. 

4 createSession 

Automatically creates an HTTP session if one does not already exist. 

5 debugging 

Provides several different debugging screens to the developer. 

6 execAndWait 

Sends the user to an intermediary waiting page while the action executes in the 

background. 

7 exception 

Maps exceptions that are thrown from an action to a result, allowing automatic exception 

handling via redirection. 

8 fileUpload 

Facilitates easy file uploading. 

9 i18n 

Keeps track of the selected locale during a user's session. 



 
Tutorials Point, Simply Easy Learning 

 

25 | P a g e  
 

10 logger 

Provides simple logging by outputting the name of the action being executed. 

11 params 

Sets the request parameters on the action. 

12 prepare 

This is typically used to do pre-processing work, such as setup database connections. 

13 profile 

Allows simple profiling information to be logged for actions. 

14 scope 

Stores and retrieves the action's state in the session or application scope. 

15 ServletConfig 

Provides the action with access to various servlet-based information. 

16 timer 

Provides simple profiling information in the form of how long the action takes to execute. 

17 token 

Checks the action for a valid token to prevent duplicate formsubmission. 

18 validation 

Provides validation support for actions 

Please loook into Struts 2 documentation for complete detail on above mentioned interceptors. 
But I will show you how to use an interceptor in general in your Struts application. 

How to use Interceptors? 

Let us see how to use an already existing interceptor to our "Hello World" program. We will use 

the timer interceptor whose purpose is to measure how long it took to execute an action 
method. Same time I'm using params interceptor whose purpose is to send the request 
parameters to the action. You can try your example without using this interceptor and you will 
find that name property is not being set because parameter is not able to reach to the action. 

We will keep HelloWorldAction.java, web.xml, HelloWorld.jsp and index.jsp files as they have 
been created in Examples chapter but let us modify the struts.xml file to add an interceptor as 
follows 

  

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

   "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

   "http://struts.apache.org/dtds/struts-2.0.dtd"> 

<struts> 

   <constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

      <action name="hello"  



 
Tutorials Point, Simply Easy Learning 

 

26 | P a g e  
 

         class="com.tutorialspoint.struts2.HelloWorldAction" 

         method="execute"> 

         <interceptor-ref name="params"/> 

         <interceptor-ref name="timer" /> 

         <result name="success">/HelloWorld.jsp</result> 

      </action> 

   </package> 

</struts> 

Right click on the project name and click Export > WAR File to create a War file. Then deploy 

this WAR in the Tomcat's webapps directory. Finally, start Tomcat server and try to access URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will give you following screen: 

 

Now enter any word in the given text box and click Say Hello button to execute the defined 
action. Now if you will check the log generated, you will find following text: 

  

INFO: Server startup in 3539 ms 

27/08/2011 8:40:53 PM  

com.opensymphony.xwork2.util.logging.commons.CommonsLogger info 

INFO: Executed action [//hello!execute] took 109 ms. 

Here bottom line is being generated because of timer interceptor which is telling that action 
took total 109ms to be executed. 

Create Custom Interceptors 

Using custom interceptors in your application is an elegant way to provide cross-cutting 

application features. Creating a custom interceptor is easy; the interface that needs to be 
extended is the following Interceptor interface: 

  

public interface Interceptor extends Serializable{ 

   void destroy(); 

   void init(); 

   String intercept(ActionInvocation invocation) 



 
Tutorials Point, Simply Easy Learning 

 

27 | P a g e  
 

   throws Exception; 

} 

As the names suggest, the init() method provides a way to initialize the interceptor, and the 

destroy() method provides a facility for interceptor cleanup. Unlike actions, interceptors are 
reused across requests and need to be thread-safe, especially the intercept() method. 

The ActionInvocation object provides access to the runtime environment. It allows access to 
the action itself and methods to invoke the action and determine whether the action has already 
been invoked. 

If you have no need for initialization or cleanup code, the AbstractInterceptor class can be 
extended. This provides a default no-operation implementation of the init() and destroy() 
methods. 

Create Interceptor Class: 

Let us create following MyInterceptor.java in Java Resources > src folder: 

  

package com.tutorialspoint.struts2; 

 

import java.util.*; 

import com.opensymphony.xwork2.ActionInvocation; 

import com.opensymphony.xwork2.interceptor.AbstractInterceptor; 

 

public class MyInterceptor extends AbstractInterceptor { 

 

   public String intercept(ActionInvocation invocation)throws Exception{ 

 

      /* let us do some pre-processing */ 

      String output = "Pre-Processing";  

      System.out.println(output); 

 

      /* let us call action or next interceptor */ 

      String result = invocation.invoke(); 

 

      /* let us do some post-processing */ 

      output = "Post-Processing";  

      System.out.println(output); 

 

      return result; 

 

   } 

} 

As you notice, actual action will be executed using the interceptor by invocation.invoke() call. 
So you can do some pre-processing and some post-processing based on your requirement. 

The framework itself starts the process by making the first call to the ActionInvocation object's 
invoke(). Each time invoke() is called, ActionInvocation consults its state and executes 
whichever interceptor comes next. When all of the configured interceptors have been invoked, 
the invoke() method will cause the action itself to be executed. Following digram shows the 
same concept through a request flow: 



 
Tutorials Point, Simply Easy Learning 

 

28 | P a g e  
 

 

Create Action Class: 

Let us create a java file HelloWorldAction.java under Java Resources > src with a package 
name com.tutorialspoint.struts2 with the contents given below. 

package com.tutorialspoint.struts2; 

 

import com.opensymphony.xwork2.ActionSupport; 

 

public class HelloWorldAction extends ActionSupport{ 

   private String name; 

 

   public String execute() throws Exception { 

      System.out.println("Inside action...."); 

      return "success"; 

   }   

 

   public String getName() { 

      return name; 

   } 

 

   public void setName(String name) { 

      this.name = name; 

   } 

} 

This is a same class which we have seen in previous examples. We have standard getters and 

setter methods for the "name" property and an execute method that returns the string 
"success". 

Create a View 

Let us create the below jsp file HelloWorld.jsp in the WebContent folder in your eclipse 
project. 

<%@ page contentType="text/html; charset=UTF-8" %> 

<%@ taglib prefix="s" uri="/struts-tags" %> 

<html> 

<head> 



 
Tutorials Point, Simply Easy Learning 

 

29 | P a g e  
 

<title>Hello World</title> 

</head> 

<body> 

   Hello World, <s:property value="name"/> 

</body> 

</html> 

Create main page: 

We also need to create index.jsp in the WebContent folder. This file will serve as the initial 
action URL where a user can click to tell the Struts 2 framework to call the a defined method of 
the HelloWorldAction class and render the HelloWorld.jsp view. 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

   pageEncoding="ISO-8859-1"%> 

<%@ taglib prefix="s" uri="/struts-tags"%> 

   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<title>Hello World</title> 

</head> 

<body> 

   <h1>Hello World From Struts2</h1> 

   <form action="hello"> 

      <label for="name">Please enter your name</label><br/> 

      <input type="text" name="name"/> 

      <input type="submit" value="Say Hello"/> 

   </form> 

</body> 

</html> 

The hello action defined in the above view file will be mapped to the HelloWorldAction class and 
its execute method using struts.xml file. 

Configuration Files 

Now we need to register our interceptor and then call it as we had called default interceptor in 
previous example. To register a newly defined interceptor, the <interceptors>...</interceptors> 
tags are placed directly under the <package> tag ins struts.xml file. You can skip this step for 
a default interceptors as we did in our previous example. But here let us register and use it as 
follows: 

  

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

    "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

    "http://struts.apache.org/dtds/struts-2.0.dtd"> 

 

<struts> 

   <constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

 

      <interceptors> 

         <interceptor name="myinterceptor" 

            class="com.tutorialspoint.struts2.MyInterceptor" /> 

      </interceptors> 

 

      <action name="hello"  

         class="com.tutorialspoint.struts2.HelloWorldAction"  



 
Tutorials Point, Simply Easy Learning 

 

30 | P a g e  
 

         method="execute"> 

         <interceptor-ref name="params"/> 

         <interceptor-ref name="myinterceptor" /> 

         <result name="success">/HelloWorld.jsp</result> 

      </action> 

 

   </package> 

</struts> 

It should be noted that you can register more than one interceptors inside <package> tag and 

same time you can call more than one interceptors inside the <action> tag. You can call same 
interceptor with the different actions. 

The web.xml file needs to be created under the WEB-INF folder under WebContent as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

   xmlns="http://java.sun.com/xml/ns/javaee"  

   xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" 

   xsi:schemaLocation="http://java.sun.com/xml/ns/javaee  

   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 

   id="WebApp_ID" version="3.0"> 

    

   <display-name>Struts 2</display-name> 

   <welcome-file-list> 

      <welcome-file>index.jsp</welcome-file> 

   </welcome-file-list> 

   <filter> 

      <filter-name>struts2</filter-name> 

      <filter-class> 

         org.apache.struts2.dispatcher.FilterDispatcher 

      </filter-class> 

   </filter> 

 

   <filter-mapping> 

      <filter-name>struts2</filter-name> 

      <url-pattern>/*</url-pattern> 

   </filter-mapping> 

</web-app> 

Right click on the project name and click Export > WAR File to create a War file. Then deploy 

this WAR in the Tomcat's webapps directory. Finally, start Tomcat server and try to access URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will give you following screen: 



 
Tutorials Point, Simply Easy Learning 

 

31 | P a g e  
 

 

Now enter any word in the given text box and click Say Hello button to execute the defined 
action. Now if you will check the log generated, you will find following text at the bottom: 

  

Pre-Processing 

Inside action.... 

Post-Processing 

Stacking multiple Interceptors: 

As you can imagine, having to configure multiple interceptor for each action would quickly 
become extremely unmanageable. For this reason, interceptors are managed with interceptor 
stacks. Here is an example, directly from the struts-default.xml file: 

  

<interceptor-stack name="basicStack"> 

   <interceptor-ref name="exception"/> 

   <interceptor-ref name="servlet-config"/> 

   <interceptor-ref name="prepare"/> 

   <interceptor-ref name="checkbox"/> 

   <interceptor-ref name="params"/> 

   <interceptor-ref name="conversionError"/> 

</interceptor-stack> 

The above stake is called basicStack and can be used in your configuration as shown below. 

This configuration node is placed under the <package .../> node. Each <interceptor-ref .../> 
tag references either an interceptor or an interceptor stack that has been configured before the 
current interceptor stack. It is therefore very important to ensure that the name is unique 
across all interceptor and interceptor stack configurations when configuring the initial 
interceptors and interceptor stacks. 

We have already seen how to apply interceptor to the action, applying interceptor stacks is no 
different. In fact, we use exactly the same tag: 

  

<action name="hello" class="com.tutorialspoint.struts2.MyAction"> 



 
Tutorials Point, Simply Easy Learning 

 

32 | P a g e  
 

   <interceptor-ref name="basicStack"/> 

   <result>view.jsp</result> 

</action 

The above registration of "basicStack" will register complete stake of all the six interceptors with 

hello action. This should be noted that interceptors are executed in the order, in which they 
have been configured. For example, in above case, exception will be executed first, second 
would be servlet-config and so on. 

Struts 2 Results and Result Types 

As mentioned previously, the <results> tag plays the role of a view in the Struts2 MVC 

framework. The action is responsible for executing the business logic. The next step after 
executing the business logic is to display the view using the <results> tag. 

Often there is some navigation rules attached with the results. For example, if the action 
method is to authenticate a user, there are three possible outcomes. (a) Successful Login (b) 
Unsuccessful Login - Incorrect username or password (c) Account Locked. 

In this scenario, the action method will be configured with the three possible outcome strings 
and three different views to render the outcome. We have already seen this in the previous 
examples. 

But, Struts2 does not tie you up with using JSP as the view technology. Afterall the whole 
purpose of the MVC paradigm is to keep the layers separate and highly configurable. For 
example, for a Web2.0 client, you may want to return XML or JSON as the output. In this case, 
you could create a new result type for XML or JSON and achieve this. 

Struts comes with a number of predefined result types and whatever we've already seen that 
was the default result type dispatcher, which is used to dispatch to JSP pages. Struts allow you 
to use other markup languages for the view technology to present the results and popular 
choices include Velocity, Freemaker, XSLT and Tiles. 

The dispatcher result type: 

The dispatcher result type is the default type, and is used if no other result type is specified. 

It's used to forward to a servlet, JSP, HTML page, and so on, on the server. It uses 
theRequestDispatcher.forward() method. 

We saw the "shorthand" version in our earlier examples, where we provided a JSP path as the 
body of the result tag. 

<result name="success"> 

   /HelloWorld.jsp 

</result> 

We can also specify the JSP file using a <param name="location"> tag within the <result...> 
element as follows: 

<result name="success" type="dispatcher"> 

   <param name="location"> 

      /HelloWorld.jsp 

   </param > 

</result> 

We can also supply a parse parameter, which is true by default. The parse parameter 
determines whether or not the location parameter will be parsed for OGNL expressions. 



 
Tutorials Point, Simply Easy Learning 

 

33 | P a g e  
 

The FreeMaker result type: 

In this example we are going to see how we can use FreeMaker as the view technology. 
Freemaker is a popular templating engine that is used to generate output using predefined 
templates. Let us create a Freemaker template file called hello.fm with the following contents: 

Hello World ${name} 

Here above file is a template where name is a paramter which will be passed from outside using 

the defined action. You will keep this file in your CLASSPATH. Next, let us modify 
the struts.xmlto specify the result as follows: 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

"http://struts.apache.org/dtds/struts-2.0.dtd"> 

 

<struts> 

   <constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

 

      <action name="hello"  

         class="com.tutorialspoint.struts2.HelloWorldAction" 

         method="execute"> 

         <result name="success" type="freemarker"> 

            <param name="location">/hello.fm</param> 

         </result> 

      </action> 

       

   </package> 

 

</struts> 

Let us keep our HelloWorldAction.java, HelloWorldAction.jsp and index.jsp files as we have 

created them in examples chapter. Now Right click on the project name and click Export > 
WAR File to create a War file. Then deploy this WAR in the Tomcat's webapps directory. Finally, 
start Tomcat server and try to access URL http://localhost:8080/HelloWorldStruts2/index.jsp. 
This will give you following screen: 



 
Tutorials Point, Simply Easy Learning 

 

34 | P a g e  
 

 

Enter a value "Struts2" and submit the page. You should see the next page 

 

As you can see, this is exactly same as the JSP view except that we are not tied to using JSP as 
the view technology. We have used Freemaker in this example. 

The redirect result type: 



 
Tutorials Point, Simply Easy Learning 

 

35 | P a g e  
 

The redirect result type calls the standard response.sendRedirect() method, causing the 
browser to create a new request to the given location. 

We can provide the location either in the body of the <result...> element or as a <param 
name="location"> element. Redirect also supports the parse parameter. Here's an example 
configured using XML: 

<action name="hello"  

   class="com.tutorialspoint.struts2.HelloWorldAction" 

   method="execute"> 

   <result name="success" type="redirect"> 

       <param name="location"> 

         /NewWorld.jsp 

      </param > 

   </result> 

</action> 

So just modify your struts.xml file to define redirect type as mentioned above and create a new 
file NewWorld.jpg where you will be redirected whenever hello action will return success. 

Struts2 Value Stack/OGNL 

The Value Stack: 

The value stack is a set of several objects which keeps the following objects in the provided 
order: 

SN Objects & Description 

1 Temporary Objects 

There are various temporary objects which are created during execution of a page. For 

example the current iteration value for a collection being looped over in a JSP tag. 

2 The Model Object 

If you are using model objects in your struts application, the current model object is placed 

before the action on the value stack 

3 The Action Object 

This will be the current action object which is being executed. 

4 Named Objects 

These objects include #application, #session, #request, #attr and #parameters and refer 

to the corresponding servlet scopes 

The value stack can be accessed via the tags provided for JSP, Velocity or Freemarker. There 

are various tags which we will study in separate chapters, are used to get and set struts 2.0 
value stack. You can get valueStack object inside your action as follows: 

ActionContext.getContext().getValueStack() 

Once you have a ValueStack object, you can use following methods to manipulate that object: 



 
Tutorials Point, Simply Easy Learning 

 

36 | P a g e  
 

SN ValueStack Methods & Description 

1 Object findValue(String expr) 

Find a value by evaluating the given expression against the stack in the default search 

order. 

2 CompoundRoot getRoot() 

Get the CompoundRoot which holds the objects pushed onto the stack. 

3 Object peek() 

Get the object on the top of the stack without changing the stack. 

4 Object pop() 

Get the object on the top of the stack and remove it from the stack. 

5 void push(Object o) 

Put this object onto the top of the stack. 

6 void set(String key, Object o) 

Sets an object on the stack with the given key so it is retrievable by findValue(key,...) 

7 void setDefaultType(Class defaultType) 

Sets the default type to convert to if no type is provided when getting a value. 

8 void setValue(String expr, Object value) 

Attempts to set a property on a bean in the stack with the given expression using the 

default search order. 

9 int size() 

Get the number of objects in the stack. 

The OGNL: 

The Object-Graph Navigation Language (OGNL) is a powerful expression language that is 

used to reference and manipulate data on the ValueStack. OGNL also helps in data transfer and 
type conversion. 

The OGNL is very similar to the JSP Expression Language. OGNL is based on the idea of having 
a root or default object within the context. The properties of the default or root object can be 
referenced using the markup notation, which is the pound symbol. 

As mentioned earlier, OGNL is based on a context and Struts builds an ActionContext map for 
use with OGNL. The ActionContext map consists of the following: 

1. application - application scoped variables 
2. session - session scoped variables 
3. root / value stack - all your action variables are stored here 

4. request - request scoped variables 
5. parameters - request parameters 
6. atributes - the attributes stored in page, request, session and application scope 



 
Tutorials Point, Simply Easy Learning 

 

37 | P a g e  
 

It is important to undestand that the Action object is always available in the value stack. So, 
therefore if your Action object has properties x and y there are readily available for you to use. 

Objects in the ActionContext are referred using the pound symbol, however, the objects in the 
value stack can be directly refere



 
Tutorials Point, Simply Easy Learning 

 

38 | P a g e  
 

      return "success"; 

   }   

 

   public String getName() { 

      return name; 

   } 

 

   public void setName(String name) { 

      this.name = name; 

   } 

} 

Actually, Struts 2 adds your action to the top of the valueStack when executed. So, the usual 

way to put stuff on the Value Stack is to add getters/setters for the values to your Action class 
and then use <s:property> tag to access the values. But I'm showing you how exactly 
ActionContext and ValueStack work in struts. 

Create Views 

Let us create the below jsp file HelloWorld.jsp in the WebContent folder in your eclipse 
project. This view will be displayed in case action returns success: 

<%@ page contentType="text/html; charset=UTF-8" %> 

<%@ taglib prefix="s" uri="/struts-tags" %> 

<html> 

<head> 

<title>Hello World</title> 

</head> 

<body> 

   Entered value : <s:property value="name"/><br/> 

   Value of key 1 : <s:property value="key1" /><br/> 

   Value of key 2 : <s:property value="key2" /> <br/> 

</body> 

</html> 

We also need to create index.jsp in the WebContent folder whose content is as follows: 

<%@ page language="java" contentType="text/html; charset=ISO-8859-1" 

   pageEncoding="ISO-8859-1"%> 

<%@ taglib prefix="s" uri="/struts-tags"%> 

   <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"  

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 

<head> 

<title>Hello World</title> 

</head> 

<body> 

   <h1>Hello World From Struts2</h1> 

   <form action="hello"> 

      <label for="name">Please enter your name</label><br/> 

      <input type="text" name="name"/> 

      <input type="submit" value="Say Hello"/> 

   </form> 

</body> 

</html> 

Configuration Files 

Following is the content of struts.xml file: 



 
Tutorials Point, Simply Easy Learning 

 

39 | P a g e  
 

  

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE struts PUBLIC 

    "-//Apache Software Foundation//DTD Struts Configuration 2.0//EN" 

    "http://struts.apache.org/dtds/struts-2.0.dtd"> 

 

<struts> 

   <constant name="struts.devMode" value="true" /> 

   <package name="helloworld" extends="struts-default"> 

 

      <action name="hello"  

         class="com.tutorialspoint.struts2.HelloWorldAction"  

         method="execute"> 

         <result name="success">/HelloWorld.jsp</result> 

      </action> 

 

   </package> 

</struts> 

Following is the content of web.xml file: 

<?xml version="1.0" encoding="UTF-8"?> 

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

   xmlns="http://java.sun.com/xml/ns/javaee"  

   xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" 

   xsi:schemaLocation="http://java.sun.com/xml/ns/javaee  

   http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" 

   id="WebApp_ID" version="3.0"> 

    

   <display-name>Struts 2</display-name> 

   <welcome-file-list> 

      <welcome-file>index.jsp</welcome-file> 

   </welcome-file-list> 

   <filter> 

      <filter-name>struts2</filter-name> 

      <filter-class> 

         org.apache.struts2.dispatcher.FilterDispatcher 

      </filter-class> 

   </filter> 

 

   <filter-mapping> 

      <filter-name>struts2</filter-name> 

      <url-pattern>/*</url-pattern> 

   </filter-mapping> 

</web-app> 

Right click on the project name and click Export > WAR File to create a War file. Then deploy 

this WAR in the Tomcat's webapps directory. Finally, start Tomcat server and try to access URL 
http://localhost:8080/HelloWorldStruts2/index.jsp. This will give you following screen: 



 
Tutorials Point, Simply Easy Learning 

 

40 | P a g e  
 

 

Now enter any word in the given text box and click "Say Hello" button to excecute the defined 
action. Now if you will check the log generated, you will find following text at the bottom: 

  

Size of the valueStack: 3 

and this will display following screen, which will display whatever value you will enter and value 
of key1 and key2 which we had put on ValueStack. 

 

Conclusion: 



 
Tutorials Point, Simply Easy Learning 

 

41 | P a g e  
 

Hope you have good grip on Struts 2 concepts. If you are willing to know more detail and 
further examples like file upload, sending email, form validations etc. then you can go through 
the complete tutorial. 

Further Detail: 

Refer to the link http://www.tutorialspoint.com/struts_2 

 

List of Tutorials from TutorialsPoint.com 
 Learn JSP 

 Learn Servlets  

 Learn log4j  

 Learn iBATIS  

 Learn Java  

 Learn JDBC  

 Java Examples  

 Learn Best Practices 

 Learn Python 

 Learn Ruby 

 Learn Ruby on Rails 

 Learn SQL  

 Learn MySQL 

 Learn AJAX  

 Learn C Programming  

 Learn C++ Programming  

 Learn CGI with PERL  

 Learn DLL  

 Learn ebXML  

 Learn Euphoria  

 Learn GDB Debugger  

 Learn Makefile  

 Learn Parrot  

 Learn Perl Script  

 Learn PHP Script 

 Learn Six Sigma  

 Learn SEI CMMI 

 Learn WiMAX  

 Learn Telecom Billing 

 Learn ASP.Net  

 Learn HTML  

 Learn HTML5  

 Learn XHTML  

 Learn CSS  

 Learn HTTP  

 Learn JavaScript  

 Learn jQuery  

 Learn Prototype  

 Learn script.aculo.us  

 Web Developer's Guide 

 Learn RADIUS  

 Learn RSS  

 Learn SEO Techniques  

 Learn SOAP  

 Learn UDDI  

 Learn Unix Sockets  

 Learn Web Services  

 Learn XML-RPC  

 Learn UML  

 Learn UNIX  

 Learn WSDL 

 Learn i-Mode  

 Learn GPRS  

 Learn GSM  

 Learn WAP  

 Learn WML  

 Learn Wi-Fi  

 Learn Apache ANT 

 

webmaster@TutorialsPoint.com 
 

 

http://www.tutorialspoint.com/struts_2
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/servlets/index.htm
http://www.tutorialspoint.com/log4j/index.htm
http://www.tutorialspoint.com/ibatis/index.htm
http://www.tutorialspoint.com/java/index.htm
http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/javaexamples/index.htm
http://www.tutorialspoint.com/developers_best_practices/index.htm
http://www.tutorialspoint.com/python/index.htm
http://www.tutorialspoint.com/ruby/index.htm
http://www.tutorialspoint.com/ruby-on-rails-2.1/index.htm
http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/mysql/index.htm
http://www.tutorialspoint.com/ajax/index.htm
http://www.tutorialspoint.com/ansi_c/index.htm
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.tutorialspoint.com/perl/perl_cgi.htm
http://www.tutorialspoint.com/dll/index.htm
http://www.tutorialspoint.com/ebxml/index.htm
http://www.tutorialspoint.com/euphoria/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/makefile/index.htm
http://www.tutorialspoint.com/parrot/index.htm
http://www.tutorialspoint.com/perl/index.htm
http://www.tutorialspoint.com/php/index.htm
http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/cmmi/index.htm
http://www.tutorialspoint.com/wimax/index.htm
http://www.tutorialspoint.com/telecom-billing/index.htm
http://www.tutorialspoint.com/asp.net/index.htm
http://www.tutorialspoint.com/html/index.htm
http://www.tutorialspoint.com/html5/index.htm
http://www.tutorialspoint.com/xhtml/index.htm
http://www.tutorialspoint.com/css/index.htm
http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/javascript/index.htm
http://www.tutorialspoint.com/jquery/index.htm
http://www.tutorialspoint.com/prototype/index.htm
http://www.tutorialspoint.com/script.aculo.us/index.htm
http://www.tutorialspoint.com/web_developers_guide/index.htm
http://www.tutorialspoint.com/radius/index.htm
http://www.tutorialspoint.com/rss/index.htm
http://www.tutorialspoint.com/seo/index.htm
http://www.tutorialspoint.com/soap/index.htm
http://www.tutorialspoint.com/uddi/index.htm
http://www.tutorialspoint.com/unix_sockets/index.htm
http://www.tutorialspoint.com/webservices/index.htm
http://www.tutorialspoint.com/xml-rpc/index.htm
http://www.tutorialspoint.com/uml/index.htm
http://www.tutorialspoint.com/unix/index.htm
http://www.tutorialspoint.com/wsdl/index.htm
http://www.tutorialspoint.com/i-mode/index.htm
http://www.tutorialspoint.com/gprs/index.htm
http://www.tutorialspoint.com/gsm/index.htm
http://www.tutorialspoint.com/wap/index.htm
http://www.tutorialspoint.com/wml/index.htm
http://www.tutorialspoint.com/wi-fi/index.htm
http://www.tutorialspoint.com/ant
http://www.tutorialspoint.com/


 
Tutorials Point, Simply Easy Learning 

 

42 | P a g e  
 

 

 

 

 


