
SpecFlow

 i

SpecFlow

 ii

About the Tutorial

SpecFlow is an open-source test automation tool based on BDD. It is commonly utilized to

create automation scripts for projects in .NET. This tutorial will give a comprehensive

understanding of SpecFlow.

Audience

This tutorial designed for professionals working in software who want to collaborate among

the developers, testers, business analysts, and other stakeholders of the project. The

tutorial will be helpful for both the developers and business analysts.

Prerequisites

Before reading this tutorial, you should have a fair knowledge on basics in testing. Also,

an expertise on the language C# would be an added advantage for understanding the

practical examples in SpecFlow discussed here.

Copyright & Disclaimer

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

SpecFlow

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. SpecFlow — Introduction .. 1

Components .. 1

Editing Features in Visual Studio Extension ... 1

2. SpecFlow — Test Driven Development ... 4

Benefits of TDD .. 4

Drawbacks of TDD ... 5

Myths around TDD .. 5

3. SpecFlow - Behaviour Driven Development .. 6

BDD Methodologies... 6

BDD Tool .. 6

4. SpecFlow — Visual Studio Installation .. 8

Installation ... 8

Project Configuration .. 13

5. SpecFlow - Visual Studio Extension Installation .. 17

Installation ... 17

6. SpecFlow — Project Set Up ... 19

Project Creation ... 19

Project Folder .. 21

7. SpecFlow — Other Project Dependencies ... 23

Add Project Dependencies .. 23

Building and Running Tests ... 24

SpecFlow

 iv

8. SpecFlow — Runner Activation ... 26

Activate Link .. 27

9. SpecFlow — HTML Reports ... 31

Test Run from Explorer .. 31

Report Generation ... 32

10. SpecFlow — Binding Test Steps ... 35

Test Steps in Feature File ... 35

Test Step Binding ... 35

11. SpecFlow - Creating First Test ... 37

12. SpecFlow — Configure Selenium Webdriver ... 40

Configure NUnit Framework ... 40

Configure Selenium WebDriver ... 42

13. SpecFlow — Gherkin ... 45

Rules in Gherkin ... 45

Gherkin Example ... 45

14. SpecFlow — Gherkin Keywords ... 46

Feature .. 46

Tags .. 47

Scenario ... 49

Given.. 49

When ... 50

Then ... 50

But, And ... 50

The * symbol ... 51

Background .. 51

Scenario Outline .. 52

Data Table.. 53

15. SpecFlow — Feature File ... 54

SpecFlow

 v

Feature File Creation ... 54

16. SpecFlow — Step Definition File ... 58

Rules for Regular expressions .. 58

Rules for Step Definition Methods .. 58

Step Definition File Creation.. 58

17. SpecFlow — Hooks .. 63

SpecFlow+ Runner Limitations .. 63

18. SpecFlow — Background Illustration ... 65

Background Rules .. 65

19. SpecFlow — Data Driven Testing with Examples ... 71

20. SpecFlow — Data Driven Testing without Examples ... 75

21. SpecFlow — Table conversion to Data Table ... 77

22. SpecFlow — Table conversion to Dictionary ... 84

23. SpecFlow — Table with CreateInstance .. 89

24. SpecFlow — Table with CreateSet ... 94

SpecFlow

 1

SpecFlow is an open-source test automation tool built on BDD model. It is mostly used to

build automation tests for projects built in .NET. This tutorial will provide knowledge on

SpecFlow and its features.

Spec-Flow is primarily developed to build, monitor, and run human-readable acceptance

test cases. It is created with Gherkin, which is a plain-text language. SpecFlow has the

Gherkin parser which can run over 70 languages. We can execute our tests via SpecFlow’

s in-built test runner and SpecFlow+ Runner.

Components

SpecFlow’ s primary task is to bind Feature files written in Gherkin. SpecFlow+ Runner is

the test runner which has the execution capabilities and reports generation. This also

comes without cost and we need to create a SpecFlow account for it.

SpecFlow+ LivingDoc is a group of tools that keeps the Gherkin Feature File in a

readable format. This can be shared with the stakeholders in the team who are not well

versed with tools like Visual Studio.

SpecFlow+ LivingDoc Generator is a group of plugins and tools for SpecFlow to produce

documentation from the Gherkin Feature File. This does not require an account to be

created and can be easily shared with others.

SpecFlow+ LivingDoc Azure DevOps allows output to be viewed in the Azure

DevOps/TFS. Any user who has the system access can see the specifications when

required. It is free but requires a SpecFlow account.

Editing Features in Visual Studio Extension

Besides, SpecFlow has the Visual Studio Extension that gives additional functionalities

as described below:

Intellisense (auto-completion) for Steps and Keywords

For easy usage of SpecFlow, intellisense provides the feature to find as we type to restrict

the suggestion list. Intellisense is available for Gherkin Files, its keywords and code files

as well.

In the Visual Studio, click on Edit, then select Intellisense to get the various options.

1. SpecFlow — Introduction

SpecFlow

 2

The below image shows Intellisense in the Gherkin File.

Gherkin syntax highlighting

To highlight the keywords, tags, comments, unbounded (purple colour) steps,

bounded(black) steps, bounded steps parameter(grey italics).

Feature Files outline and comments

In Visual Studio, most of the items in the Edit menu can add value to the Feature files in

SpecFlow. We can comment and uncomment specific lines with # character, or with in-

built shortcuts like the CTRL+K CTRL+V or CTRL+K + CTRL+V.

There are multiple options from the Edit menu to customize various sections of the Feature

file.

Click on Edit, then select the option Outlining.

We can define our own feature file template to open when creating a new test

case.

SpecFlow

 3

Formatting tables

We can modify the table size and format it automatically as we type the names of the

column and enter its values.

But SpecFlow is not confined to Visual Studio only, it can be used with Mono and VSCode

also.

SpecFlow

 4

A Test-Driven Development is also known as the TDD. It consists of the below steps to

be followed one-by-one:

Step 1: Create a Test.

Step 2: Verify if the test fails.

If the test passes, create the second test.

If the test fails, then move to Step 3.

Step 3: Fix the test to make it pass.

If the test passes, move to Step 4.

If the test fails, then jump to Step 3.

Step 4: Start code refractor and redo all the above steps till the development is done.

Benefits of TDD

The benefits of TDD are listed below:

 The developer is required to apprehend the requirements to know what the

outcome of a scenario should be and how to test it.

 The implementation for a module is done only if all the test cases pass and code

refactoring is complete. Thus, verification and refactoring should be done prior to

moving it to the next test.

 After refactoring is done, the unit test suite is to run.

 The unit tests can be used as a live documentation.

 If a bug is found, a test is created to get the details of the bug. The script is updated,

to pass the tests. Simultaneously, the other tests are also executed to ensure that

existing features are not broken by the fix.

 A developer can participate in design decisions and improve it anytime during the

test execution stage to ensure the application is working correctly. This is done to

increase the maintainability of the product.

 A developer is sure of making any modifications. This is because if that affects any

existing feature, it shall be reflected by executing the tests. This way bugs can be

addressed quickly.

 On running the tests in succession¸ all the prior bug fixes are also verified, and the

similar bugs can be avoided.

2. SpecFlow — Test Driven Development

SpecFlow

 5

 Since major testing is conducted during the development phase, the test duration

required prior to delivery is short.

Drawbacks of TDD

The drawbacks of TDD are listed below:

 The developers find it difficult to decide when to start testing.

 The developers get confused on what to test.

 The developers do not know if all the requirement specifications are being covered.

 The developers are unsure if their code is adding business values.

Myths around TDD

The myths around TDD are listed below:

Myths Facts

TDD is only concerned with testing with

automation.

TDD is a development technique following

the Test First method.

TDD does not consist of design.

TDD has a thorough research and design

depending on the requirements. The

design is completed during the

development phase.

TDD is done only for unit testing. TDD is done for system and integration

testing as well.

TDD cannot be adopted for orthodox test

projects.

TDD is used for Agile development. But it

can be adopted for conventional test

projects as well.

TDD is considered a tool. TDD is a development technique and post

every new unit test pass, it is clubbed with

the automation suite which is run

whenever there is a modification in the

code and post refactoring activity.

SpecFlow

 6

Behaviour Driven Development also known as BDD has the features listed below:

 Gives a shared method and tools which help to establish interaction with the

developers, business analyst, and other stakeholders to work together for the

product development.

 Ensures that the delivered product adds the necessary business value.

 Finds out the capabilities of the system and how it should be developed.

 Ensures that the product is presentable and has a good structure.

 Checks the functionalities of the software and ensures that the end user

expectations are met.

BDD Methodologies

The primary methodologies adopted by BDD are listed below:

Specification By Example

It utilizes examples in interactions to describe the software characteristics and its business

scenarios. This methodology helps to remove any knowledge gap on the business

requirements among the developers, testers, product owners, business analysts and all

other stakeholders in the team.

Test Driven Development

In the reference to BDD, Test Driven Development converts examples to plain text and

executable specifications. The developers refer to this as a document while implementing

the new features. It helps to develop a proper code base along with a regression suite.

Thus, the overall maintenance cost lowers throughout the complete product lifecycle.

BDD Tool

SpecFlow is one of the BDD tools that is open source. It contains a Feature file which

follows the Gherkin syntax. The source code of SpecFlow is hosted on GitHub. It is mostly

used to build automation tests for projects built in .NET. It is similar to Cucumber in its

functionalities.

Structure of a Feature file in SpecFlow:

3. SpecFlow - Behaviour Driven Development

SpecFlow

 7

It consists of the Feature, Background scenario, and two Scenarios. The Feature File

consists of the acceptance standard for a Feature in the application.

SpecFlow

 8

In this chapter, we shall see the process of installation of Visual Studio and project

configuration.

Installation

Navigate to the link: https://www.visualstudio.com/en-us/downloads/download-visual-

studio-vs.aspx.zz

For the Community version of Visual Studio, click on Free download under the

Community section.

An .exe file gets downloaded to our system. Double-click on it.

Visual Studio Installer pop-up comes up. Click on Continue. Download and installation

process begins.

4. SpecFlow — Visual Studio Installation

https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx.zz
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx.zz

SpecFlow

 9

Once installation is done, select the option .NET desktop development. Then click on

Install.

Download and installation of packages get started.

Once done, click on Restart.

From the start menu, type Visual Studio.

SpecFlow

 10

Click on Visual Studio, the welcome screen appears.

SpecFlow

 11

Along with it, Visual Studio pop-up appears. If you do not have an existing

account, click on Not now, may be later link and proceed.

SpecFlow

 12

Select a colour for theme and click on Start Visual Studio.

SpecFlow

 13

Project Configuration

Once the Visual Studio landing page gets opened, click on Create a new project.

SpecFlow

 14

We shall create a new C# class library. Enter class library core in the search box. Choose

the option Class Library (.NET Core) and click Next.

Give a project name and location and then click on Create.

SpecFlow

 15

Code Implementation for Project

using System;

namespace ClassLibrary2

{

 public class Class1

 {

 public int Number1 { get; set; }

 public int Number2 { get; set; }

 public int Subtraction()

 {

 throw new NotImplementedException();

 }

 }

}

To build this solution, go to the Build menu, then select Build Solution.

SpecFlow

 16

Build success message gets displayed and we have successfully created a project in Visual

Studio.

SpecFlow

 17

As mentioned earlier, Visual Studio extension allows a lot of added features required

for test automation. This extension is available for Visual Studio 2017 and 2019.

Installation

Open Visual Studio and navigate to Extensions menu, then click on Manage Extensions

option.

Manage Extensions pop-up comes up. Type SpecFlow in the search box. Once the

search results get populated. Click on Download.

Once the download is completed, we need to restart Visual Studio. As the installation is

done, if we again go to the Manage Extensions pop-up, we can find this extension within

the Installed tab.

Also, we can find the options to Disable and Uninstall now for the SpecFlow. Click on

Close to exit.

5. SpecFlow - Visual Studio Extension Installation

SpecFlow

 18

SpecFlow

 19

Now, we shall create a SpecFlow project within the same project we have built earlier.

Project Creation

Right-click on the Solution Explorer section. Click on the Add option. Then choose New

Project.

Type SpecFlow within the search box, SpecFlow Project gets displayed because of search

results. Click on Next to proceed.

6. SpecFlow — Project Set Up

SpecFlow

 20

Enter the project name and location and then click on Create.

Select SpecFlow+ Runner option under the Test Framework dropdown from the

Create a new SpecFlow project pop-up. Then click on Create.

SpecFlow

 21

The Solution Explorer shall now have a new project called the SpecFlowProject1 created.

Project Folder

As the SpecFlow project is created, we shall also find a well-defined folder structure

created for the project consisting of the Drivers, Dependencies, Features, Hooks, and so

on.

SpecFlow

 22

SpecFlow

 23

We need to have a project reference to the class library we have created for the SpecFlow

project. This is important for testing the class within the class library in the project.

Add Project Dependencies

Click on the project SpecFlowProject1 within Solution Explorer. Then right-click the

folder Dependencies. Choose the option Add Project Reference.

The Reference Manager pop-up opens. Select the checkbox for the class library and then

click on OK.

7. SpecFlow — Other Project Dependencies

SpecFlow

 24

Building and Running Tests

Next, go to the Build menu and select Build Solution. We should get Build succeeded

message as output.

Navigate to the Tests menu and choose the Test Explorer option.

SpecFlow

 25

We should be able to find the Features added to the SpecFlow project. Execute them via

the Run All Tests in View option. The status of the execution shows as Not Run as the

tests have still not been executed.

The exclamation symbol before a Feature suggests, test execution is pending for that

Feature.

SpecFlow

 26

We have to perform the activation of SpecFlow + Runner. Navigate to View menu, then

select the option Output.

Then choose Tests in the Show output from: dropdown.

We should obtain the test output along with the activation link of the runner. We should

have this link available only if we have chosen SpecFlow+ Runner at the time of project

set up.

8. SpecFlow — Runner Activation

SpecFlow

 27

Activate Link

Open the activation link on a browser. We should get navigated to the SpecFlow landing

page. Click on Sign in with Microsoft.

Click on Yes for letting Microsoft to access our SpecFlow account.

SpecFlow

 28

For setting up the account, provide the information needed. Then click on Create

Account.

SpecFlow

 29

We shall now have the SpecFlow account successfully activated.

SpecFlow

 30

Now, if we again execute the test from the Text Explorer, it will display the proper results.

SpecFlow

 31

SpecFlow generates reports when all your tests completed executing and which includes

breakdown of the test results.

Test Run from Explorer

To build a solution, navigate to the Build menu, then click on Build Solution.

We should get a build success message.

Navigate to the Tests menu and choose the Test Explorer option.

9. SpecFlow — HTML Reports

SpecFlow

 32

We should be able to find the Features added to the SpecFlow project. Execute that via

the Run All Tests in View option.

The result is displayed as highlighted in the image below.

Report Generation

Go to the Output menu and select Tests from the Show output from: dropdown.

SpecFlow

 33

The total execution results get displayed in the Output Console. It contains information

about the count of the test cases, total succeeded, ignored, skipped, failed, and so on. The

user and machine names where the execution happened are also captured.

Also, the execution duration is displayed along with the link to the HTML report and the

log file path.

Copy the Report file path and open it on the browser. We shall get a detailed HTML report

with the project name, configuration, execution start time, duration, number of threads,

and so on.

It shall describe the Results, Test Timeline Summary and the complete Feature Summary.

SpecFlow

 34

The report also consists of the Error Summary and Scenario Summary as well. It contains

the Success Rate for each test. To know the details of a particular Feature, we can click

on the Scenario Name(provided as a link).

Next, the Execution Details are captured for every step. Each step details are displayed

with Trace and Result.

SpecFlow

 35

Test Steps in Feature File

To access the steps in the Feature File, go to the SpecFlow project within the Solution

Explorer. Then click on the Features folder. The Feature File shall be displayed.

A Feature File is useful for documenting the expected characteristics of an application in a

format which is in plain text and can also be used for automation. The keywords Given,

Then, When, and so on are used in SpecFlow to describe scenarios in Gherkin language.

Test Step Binding

The above Feature file has been added by default by the SpecFlow project. It also produces

test methods that shall run scenarios defined within the feature file. Right-click on any line

on the after the Scenario keyword. Then click on the Go To Definition option.

Visual Studio identifies the corresponding step definition to this step. In this example, it

opens the class CalculatorStepDefinitions and moves to the GivenTheFirstNumberIs

method.

10. SpecFlow — Binding Test Steps

SpecFlow

 36

SpecFlow

 37

We shall now create a file in the class library which performs subtraction of two numbers.

using System;

namespace ClassLibrary2

{

 public class Class1

 {

 public int Number1 { get; set; }

 public int Number2 { get; set; }

 public int Subtraction()

 {

 return Number1 - Number2;

 }

 }

 }

Feature File Implementation

Step Definition File Implementation

The corresponding Step Definition file of the above Feature file, along with usage of Class1

to perform subtraction.

using ClassLibrary2;

using FluentAssertions;

using TechTalk.SpecFlow;

namespace SpecFlowCalculator.Specs.Steps

{

11. SpecFlow - Creating First Test

SpecFlow

 38

 [Binding]

 public sealed class CalculatorStepDefinitions

 {

 private readonly ScenarioContext _scenarioContext;

 //instantiating Class1

 private readonly Class1 _calculator = new Class1();

 private int _result;

 public CalculatorStepDefinitions(ScenarioContext scenarioContext)

 {

 _scenarioContext = scenarioContext;

 }

 [Given("the first number is (.*)")]

 public void GivenTheFirstNumberIs(int number)

 {

 _calculator.Number1 = number;

 }

 [Given("the second number is (.*)")]

 public void GivenTheSecondNumberIs(int number)

 {

 _calculator.Number2 = number;

 }

 [When("the two numbers are subtracted")]

 public void WhenTheTwoNumbersAreSubtracted()

 {

 _result = _calculator.Subtraction();

 }

 [Then("the result should be (.*)")]

 public void ThenTheResultShouldBe(int result)

 {

 _result.Should().Be(result);

 }

 }

}

Executing the Test

Build the above solution, then execute the test after we obtain the build succeed message

from Test -> Test Explorer.

SpecFlow

 39

Select the SpecFlowProject1 feature and click on Run All tests in View.

The result shows as 1 Passed along with execution duration. Click on the option Open

additional output for this result to get result details.

The execution result for each test step is displayed.

All the steps in the Feature File get executed along with status as done. Also, the

corresponding methods in the Step Definition File get displayed with the execution

duration.

SpecFlow

 40

To configure Selenium Webdriver in Visual Studio, we shall take the help of NUnit

framework. This framework allows to run Selenium tests in C#.

Configure NUnit Framework

We shall first create a NUnit project.

Once the Visual Studio landing page gets opened, click on Create a new project.

Type NUnit in the search box appearing in Create a new project pop-up. Select NUnit

Test Project(.NET Core) from the search results. Click on Next.

12. SpecFlow — Configure Selenium Webdriver

SpecFlow

 41

Enter project name and location. Then click on Create to proceed.

As the project is set up on NUnit(.Net Core), the Setup and Test methods shall be defined

by default. Also, the statement using NUnit.Framework should reflect at the top. This

shall prove that NUnit Framework has been successfully configured.

SpecFlow

 42

Configure Selenium WebDriver

Once the NUnit framework is set, navigate to the Tools menu, select NuGet Package

Manager, and then click on Package Manager Console.

We must execute the required Package Manager commands for installation of Selenium

Webdriver and NUnit.

SpecFlow

 43

For Selenium installation, run the below commands in Package Manager Console:

Install-Package Selenium.WebDriver

Install-Package Selenium.Firefox.WebDriver

For NUnit installation, run the below commands in Package Manager Console:

Install-Package NUnit

Install-Package UUnit3TestAdapter

To check the installation status, run the command in Package Manager Console:

Get-Package

Implementation with Selenium WebDriver in C#

using NUnit.Framework;

using OpenQA.Selenium;

using OpenQA.Selenium.Firefox;

using System;

namespace NUnitTestProject1

{

 public class Tests

 {

 String u = "https://www.tutorialspoint.com/index.htm";

 IWebDriver d;

 [SetUp]

 public void Setup()

 {

 //creating object of FirefoxDriver

 d = new FirefoxDriver();

 }

 [Test]

SpecFlow

 44

 public void Test1()

 {

 //launching URL

 d.Navigate().GoToUrl(u);

 Console.WriteLine("Url launched");

 }

 [TearDown]

 public void close_Browser()

 {

 d.Quit();

 }

 }

}

Execution & Output

Run the above code from Test->Test Explorer. The output in Test Explorer is:

Click on Open additional output for this result link, we should get the Test Outcome

and Standard Output.

Url launched is obtained as an output as implemented with Console.WriteLine method

in the code.

SpecFlow

 45

A Gherkin is a group of important keywords to build a meaningful architecture for

specifications. Every keyword is converted to plain spoken languages like English.

Rules in Gherkin

Some of the rules in Gherkin are listed below:

 A document in Gherkin begins with keywords.

 Comments can be added at the beginning of the new line in the Feature File. They

start with or without spaces followed by # symbol and text. However, block

comments cannot be added till now in SpecFlow.

 To indent the code, spaces or tabs can be used. It is recommended to have two

spaces for indentation.

 The content after the keyword for each step has a corresponding block of code.

This is known as the Step Definition.

Gherkin Example

Following is the Gherkin example:

Feature: Payment Functionality

 # Example 1

 Scenario: Member Payment Method

 When a member is on Payment screen

 Then the payment amount is displayed.

Example 2

 Scenario: Member Payment Dues

 When a member is on Payment Due screen

 Then the payable amount is displayed.

In the above example, Feature, Scenario, Given, When, and Then are known as the

Gherkin keywords.

13. SpecFlow — Gherkin

SpecFlow

 46

The main Gherkin keywords are:

 Feature

 Scenario

 Rule(till Gherkin 6)

 Example or Scenario

 Background

 Scenario Outline

 Examples

 | for Data table

 """ for Document Strings

 @ for Tags

 # for Comments

 Given

 When

 Then

 But

 And

Gherkin uses localization for multiple languages and each of the above keywords has its

equivalent terms in respective languages.

Let us explore some of the important Gherkin keywords:

Feature

A Feature is added to have an overall description of the features of the applications

and to club connected scenarios. This is the most important keyword in a Gherkin

document.

A Feature is followed by a colon: symbol and then a small description on the feature. We

can add multiple lines for more description. These are not considered by SpecFlow at

execution but are added in the html reports.

14. SpecFlow — Gherkin Keywords

SpecFlow

 47

Once the description of a Feature is completed, we should begin a new line with keywords

Background, Example, and so on. We can add tags above Feature to club similar features,

irrespective of the structure of file or directory.

Tags

Tags are markers added to Scenarios or Features. Giving a tag to a Feature is like marking

that tag to every Scenario within that Feature file. A tag name is mentioned after the @

symbol.

We can filter and club tests to be run with the tags. For instance, we can tag an urgent

test with @important and run it quite often. SpecFlow considers the @ignore tag as an

important one and produces an ignored unit test method out of the Scenarios with this

tag.

SpecFlow

 48

Here, the Feature File contains two scenarios with @Calculator tag. The same shall also

be reflected in the Test Explorer, to pick and choose the test to be run.

SpecFlow

 49

Scenario

Scenario is a complete instance that describes a business logic. It has multiple steps. It is

often considered a synonym of keyword Example. A Scenario does not have a fixed

number of steps. But it is recommended to have 3 to 5 steps per Scenario.

If there are too many steps, it may lose its value to be used as specification and

documentation. A Scenario is like a test in a development lifecycle. Also, it can be divided

into a precondition, test step and verification.

Given

Given are steps used for describing the pre-existing condition of the system. It typically

deals with the events that have occurred in the past. As a Given step is executed, it shall

set the objects, test data in the database and put the system in a proper state.

Thus, the Given step helps to define the system in a known condition prior to the

interaction of the user with the system. We can have multiple Given steps. Two or more

Given steps can be used with And keyword. In short, it is used to have the preconditions

defined.

SpecFlow

 50

When

When is a step used for describing an action or an incident. This can either be an

interaction of the person with the system or an incident caused by another system. It is a

good practise to have a single When step in a Scenario.

If we are forced to have multiple When steps, we should ideally break the Scenario into

smaller ones.

Then

Then is a step used for describing an expected result. The corresponding step definition of

a Then step should have an assertion to verify actual result against the expected result.

Thus, it basically deals with the output obtained from the tests (message, report, and so

on) and not on the internal characteristics of the system, for instance a database record.

In other words, it is used for an outcome that is noticeable from the end user perspective.

But, And

If we have repeated Given, When and Then steps, then we can make the Scenarios more

organized by replacing the consecutive Given, When, Then steps with And, But steps.

SpecFlow

 51

The above example shows the usage of And and But.

The * symbol

The * symbol is used in place of another step keyword. This can be used for steps that

represent a list of items. It is more like a bullet point. For the below example, two And

steps have appeared one after the other.

The consecutive And steps should be represented like this:

Background

Sometimes, we may require repeating the same steps for all Scenarios within the Feature

file. We may shift these steps to the backdrop by clubbing them under the Background

segment.

SpecFlow

 52

It helps to add context to a scenario. It can have more than one Given step. Thus, it shall

execute prior to execution of each Scenario, but post any Before hooks.

A Background is kept prior to the first Example or Scenario, at the similar indentation

level. In short, Background is used for declaring the common steps to all the tests.

In the above example, having two Scenarios, the Background steps shall run once before

execution of each of these scenarios.

Scenario Outline

Scenario Outline is used to replicate the same Scenario with a different data set. Writing

the same tests with different values is cumbersome and time taking. For instance,

We can club the above two scenarios with the Scenario Outline.

SpecFlow

 53

Thus, we see that a Scenario Outline should be accompanied with keyword Examples. A

Scenario Outline is executed once for each of the rows appearing below the Examples

segment.

Also, we have seen that the Given step has the <> delimiter. It points to the header of

the Examples table. SpecFlow shall put the values within this table prior to the task of

matching a step with a Step Definition.

Data Table

Data Table is used to send a group of values in the form of a list to the Step Definition

file. It is useful to deal with large data sets. SpecFlow has a rich API for table manipulation

in the Step Definition File.

SpecFlow Assist Helpers packages are used to work on tables. Also, we have to add

namespace TechTalk.SpecFlow.Assist to our code.

SpecFlow

 54

The SpecFlow test execution begins from the Feature File. Here all the Features and their

corresponding Scenarios are explained in plain text. It has a dual role of serving as an

automation element as well as for documentation. A Feature File consists of one or more

Scenarios in form of a list. The extension for a Feature File should always be .feature.

A Feature is added to have an overall description of the features of the applications

and to club connected scenarios. This is the most important keyword in a Gherkin

document.

A Feature is followed by a colon: symbol and then a small description on the feature. We

can add multiple lines for more description. These are not considered by SpecFlow at

execution but are added in the html reports.

Once the description of a Feature is completed, we should begin a new line with keywords

Background, Example, and so on. We can add tags above Feature to club similar features,

irrespective of the structure of file or directory.

Feature File Creation

Once a SpecFlow project is created, go to the Solution Explorer, and expand it.

15. SpecFlow — Feature File

SpecFlow

 55

Right-click on Features folder. Click on Add, then select the option New Item.

Add New Item pop-up comes up. Type SpecFlow Feature in the search box. Select the

option SpecFlow Feature File from the search results. Click on Add and proceed.

SpecFlow

 56

The Feature File gets generated with few steps created by SpecFlow by default.

Project Folder after Feature File Creation

Following is the project folder after the feature file is created.

SpecFlow

 57

A Feature File is mainly composed of the Gherkin Keywords to take a form of a Feature

having one or multiple Scenarios.

SpecFlow

 58

To execute the Feature file, we must add the implementation logic for each of the steps.

To add the definition of the step in SpecFlow, the C# language is used. Thus, a Step

Definition File contains methods developed in C# within a Class.

The methods have annotations along with a pattern to connect the Step Definition to every

matching step. The SpecFlow shall run the code to execute the keywords in Gherkin.

A Step Definition file is a link between the application interfaces and Feature File. For

providing readability features, the Step Definition File can have parameters. This signifies

that it is not required to have a step definition for each step that has a minor difference.

For instance, Given Login to admin application and Given Login to payment

application steps can be automated with one step definition by passing admin and

payment as parameters. The regular expression (.*) is used to declare parameters for a

method.

Rules for Regular expressions

The rules for regular expressions are listed below:

 It is matched with the complete step, even though we are not using the markers

^ and $.

 The capturing groups in the regular expression describe the parameters for the

method in order.

Rules for Step Definition Methods

The rules to be followed for Step Definition methods are listed below:

 It should have a [Binding] attribute and reside within a public class.

 It should be public.

 It can either have a static or non-static method. If it is a non-static method, an

object should be instantiated once for every scenario of the class where it resides.

 It should not have ref or out parameters.

 It cannot have a return type.

Step Definition File Creation

Right-click on any step of the Feature File, then click on Generate Step Definitions

option.

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

16. SpecFlow — Step Definition File

SpecFlow

 59

In the Generate Step Definition Skeleton pop-up, check the steps for which we want

to generate the implementation. Add a Class Name, then click on the Generate button.

Give the location of saving the Step Definition File and then click on Save.

SpecFlow

 60

The Step Definition File gets opened with for all the matching steps in the Feature File. It

also contains regular expression attributes.

SpecFlow

 61

Project Folder after Step Definition File Creation

Following is the project folder after the step definition file is created:

SpecFlow

 62

SpecFlow

 63

Hooks are event bindings to add more automation logic at certain steps. For example, for

any step which is needed to be run prior to a specific Scenario. To introduce, hooks in the

code we have to add the [Binding] attribute.

Hooks have global access. But it can be made available to a Features and Scenarios by

declaring a scoped binding. The scoped binding can be filtered with the tags.

SpecFlow+ Runner Limitations

If we are executing tests from more than one thread with SpecFlow+ Runner, the After

and Before hooks like the BeforeTestRun and AfterTestRun are run only once for each

thread.

Hook Attributes

The Hook attributes are listed below:

BeforeTestRun/AfterTestRun: This is used to run an automation logic prior/post to the

complete test execution. The method it is applicable to should be static.

BeforeFeature/AfterFeature: This is used to run an automation logic prior/post to

individual Feature execution. The method it is applicable to should be static.

BeforeScenario or Before/AfterScenario or After: This is used to run an automation

logic prior/post to individual Scenario or Scenario Outline execution.

BeforeScenarioBlock/AfterScenarioBlock: This is used to run an automation logic

prior/post to individual Scenario block execution. (in between the When and Given steps).

BeforeStep/AfterStep: This is used to run an automation logic prior/post to individual

Scenario step execution.

Hook Execution Sequence

The hooks of similar type, for example two AfterScenario hooks, are run in a random

sequence. To make execution in a specific sequence, we have to add the Order property

in the hook attribute.

Example

[AfterScenario(Order = 1)]

public void CloseBrowser()

{

 // we require this method to execute first...

}

[AfterScenario(Order = 2)]

17. SpecFlow — Hooks

SpecFlow

 64

public void VerifySessionIdAfterBrowserClose()

{

 // ...so we require this method to execute after the CloseBrowser //method

is run

}

The number signifies order which means that the hook with the lowest number is run first.

If the number is omitted, the default value is 10000. It is not a good practise to depend

on it and rather mention the order for individual hooks.

Also, if an unhandled exception is thrown, all the following hooks of similar type will be

skipped. In order to prevent that, we should handle all the exceptions.

SpecFlow

 65

Background keyword is applied to replicate the same steps before all Scenarios within a

Feature File. We may shift these steps to the backdrop by clubbing them under the

Background segment.

It helps to add context to a scenario. It can have more than one Given step. Thus, it shall

execute prior to execution of each Scenario, but post any Before hooks.

A Background is kept prior to the first Example or Scenario, at the similar indentation

level. In short, it is used for declaring the common steps to all the tests.

In the above example, having two Scenarios, the Background steps shall run once before

execution of each of these scenarios.

Background Rules

Let us describe some of the rules while applying Background:

 It should be used for defining simple steps unless we are forced to bring the

application to a state which requires complicated steps to be carried out. As

requested by the stakeholders of the project.

 It should be brief and realistic.

 All the Scenarios should also be short and to the point.

Background Example

18. SpecFlow — Background Illustration

SpecFlow

 66

Let us see an example where we have used Background steps to be executed before all

the tests in the Feature File. For instance, to add a normal and admin user for an

application, we require the below steps to be run before the execution of the Scenario

Normal user addition:

 Launch the application URL.

 Submit the username and password.

Step 1: Create a Feature File

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

Feature: Member addition

 Background:

 Given launch URL

 Then enter name and password

 Scenario: Normal user addition

 Given user is on normal user additon screeen

 When enters normal user details

 Then user should be added as normal user

 Scenario: Admin user addition

 Given user is on admin user addition screen

 When enters admin user details

 Then user should be added as admin user

Step 2: Create a Step Definition File

The details of how to create a Step Definition File is discussed in detail in the Chapter –

Step Definition File.

using System;

using TechTalk.SpecFlow;

namespace SpecFlowProject1.Features

{

 [Binding]

 public class MemberAdditionSteps

 {

 [Given(@"launch URL")]

 public void GivenLaunchURL()

SpecFlow

 67

 {

 Console.WriteLine("Url launched");

 }

 [Given(@"user is on normal user additon screeen")]

 public void GivenUserIsOnNormalUserAdditonScreeen()

 {

 Console.WriteLine("User is on normal user addition screen");

 }

 [Given(@"user is on admin user addition screen")]

 public void GivenUserIsOnAdminUserAdditionScreen()

 {

 Console.WriteLine("User is on admin user addition screen");

 }

 [When(@"enters normal user details")]

 public void WhenEntersNormalUserDetails()

 {

 Console.WriteLine("User enters normal user details");

 }

 [When(@"enters admin user details")]

 public void WhenEntersAdminUserDetails()

 {

 Console.WriteLine("User enters admin user details");

 }

 [Then(@"enter name and password")]

 public void ThenEnterNameAndPassword()

 {

 Console.WriteLine("User enters name and password");

 }

 [Then(@"user should be added as normal user")]

 public void ThenUserShouldBeAddedAsNormalUser()

 {

 Console.WriteLine("User should be added as normal user");

 }

 [Then(@"user should be added as admin user")]

 public void ThenUserShouldBeAddedAsAdminUser()

 {

 Console.WriteLine("User should be added as admin user");

SpecFlow

 68

 }

 }

}

Step 3: Execution & Results

Select SpecFlowProject(2), then click on Run All Tests in View.

Select Normal user addition Scenario, then click on Open additional output for this

result link.

SpecFlow

 69

In the above output, the Background steps - Given Url launched and Then enter name

and password got executed prior to the actual normal user Scenario.

Select Admin user addition Feature, then click on Open additional output for this

result link.

SpecFlow

 70

In the above output as well, the Background steps - Given Url launched and Then enter

name and password got executed prior to the actual admin user Scenario.

SpecFlow

 71

We can perform data driven testing with the help of keyword Examples. We shall also

take the help of keyword Scenario Outline to execute the same Scenario over multiple

values.

The data sets to be taken into consideration shall be passed below the Examples section

one after another separated by | symbol. So, if there are three rows, we shall have three

test cases executed from a Single scenario.

Scenario Outline is used to replicate the same Scenario with a different data set. Writing

the same tests with different values is cumbersome and time taking. For instance,

We can club the above two scenarios with the Scenario Outline.

Thus, we see that a Scenario Outline should be accompanied with keyword Examples. A

Scenario Outline is executed once for each of the rows appearing below the Examples

segment.

Also, we have seen that the Given step has the <> delimiter. It points to the header of

the Examples table. SpecFlow shall put the values within this table prior to the task of

matching a step with a Step Definition.

19. SpecFlow — Data Driven Testing with
Examples

SpecFlow

 72

To verify a Login module, we require the below steps to be executed:

 User types the username and password.

 Verify users should be able to login.

We shall incorporate the above steps to the Feature File.

Step 1: Create a Feature File

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

Feature: User credential

Scenario Outline: Login module

 Given user types <username> and <password>

 Then user should be able to login

 Examples:

 | username | password |

 | tutorialspoint1| pwd |

 | tutorialspoint2| pwd1 |

Step 2: Step Definition File

The details of how to create a Step Definition File is discussed in detail in the Chapter –

Step Definition File.

using System;

using TechTalk.SpecFlow;

namespace SpecFlowProject1.Features

{

 [Binding]

 public class UserCredentialSteps

 {

 //regular expression used to point to data

 [Given(@"user types (.*) and (.*)")]

public void GivenUserTypesUserAndPwds(string username, string password)

 {

 Console.WriteLine(username);

 Console.WriteLine(password);

 }

 [Then(@"user should be able to login")]

 public void ThenUserShouldBeAbleToLogin()

SpecFlow

 73

 {

 Console.WriteLine("User should be able to login");

 }

 }

}

Step 3: Execution & Results

Select User credential(2), then click on Run All Tests in View.

Select Login module, tutorialspoint1 Scenario, then click on Open additional output for this

result link.

The Scenario got executed with username – tutorialspoint1 and password – pwd as

specified in Examples(1st row).

Select Login module, tutorialspoint2 scenario, then click on Open additional output for this

result link.

SpecFlow

 74

The test got executed with username – tutorialspoint2 and password – pwd1 as

specified in Examples(2nd row).

SpecFlow

 75

We can perform data driven testing without the help of keyword Examples. This can be

done by passing the data directly to the steps within the Feature File enclosed in (''). It

will then be provided as an input to the Step Definition File.

Let us verify a module, for which the below steps need to be executed:

 User launches URL

 URL should open

Step 1: Create a Feature File

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

Feature: Launching application

Scenario: Launch URL

 Given User hits URL 'https://www.tutorialspoint.com/index.htm'

 Then URL should be launched

Step 2: Create a Step Definition File

The details of how to create a Step Definition File is discussed in detail in the Chapter –

Step Definition File.

using System;

using TechTalk.SpecFlow;

namespace SpecFlowProject1.Features

{

 [Binding]

 public class LaunchingApplicationSteps

 {

 [Given(@"User hits URL '(.*)'")]

 public void GivenUserHitsURL(string url)

 {

 Console.WriteLine(url);

 }

 [Then(@"URL should be launched")]

 public void ThenURLShouldBeLaunched()

20. SpecFlow — Data Driven Testing without
Examples

SpecFlow

 76

 {

 Console.WriteLine("URL should be launched");

 }

 }

}

Step 3: Execution & Results

Select Launching Application Feature, then click on Run All Tests in View.

Select Launch URL Scenario, then click on Open additional output for this result link.

In the above output, the url (https://www.tutorialspoint.com/index.htm) is obtained which

is passed directly from the Feature File within the Given step.

https://www.tutorialspoint.com/index.htm

SpecFlow

 77

A Table is often confused with a Scenario Outline. While a Scenario Outline is applicable

for the complete test, a Table is only for a single step under which it is defined.

However, a programming logic needs to be built to comprehend the data and then it can

be incorporated in our test. An Examples keyword is used for a Scenario Outline, but no

keywords are required for Data Table.

There are multiple methods available in Table in SpecFlow, let us see how to convert a

Table to Table via Table headers.

Table is used to send a group of values in the form of a list to the Step Definition file. It

is useful to deal with large data sets. SpecFlow has a rich API for table manipulation in the

Step Definition File.

SpecFlow Assist Helpers packages are used to work on tables. Also, we have to add

namespace TechTalk.SpecFlow.Assist to our code.

Step 1: Create a Feature File

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

Feature: User credential

Scenario: Login module

 When User types details

 | Name | Password |

 | t1 | pwd |

 | t2 | pwd1 |

 Then user should be able to login.

21. SpecFlow — Table conversion to Data Table

SpecFlow

 78

Step 2: Create C# File to access Table Data
We must convert a Table to a Data Table via System.Data package. We shall create a

new folder within the project and have a C# file in it. Right-click on the SpecFlow Project,

then click on Add.

Select the option New Folder.

Give the name Utils to the folder.

Right-click on the new Folder created, then select the option Add. Click on Class.

SpecFlow

 79

Type C# Class in the search box and search. Select the option Class from the search

result and then click on Add to proceed.

Project Folder Structure

SpecFlow

 80

C# Class Implementation

using System;

using System.Collections.Generic;

using System.Text;

using System.Data;

using TechTalk.SpecFlow;

namespace SpecFlowProject1.Utils

{

 class Class1

 {

 public static DataTable DT(Table t)

 {

 var dT = new DataTable();

 foreach (var h in t.Header)

 {

 dT.Columns.Add(h, typeof(string));

 }

 // iterating rows

 foreach (var row in t.Rows)

 {

 var n = dT.NewRow();

 foreach (var h in t.Header)

 {

SpecFlow

 81

 n.SetField(h, row[h]);

 }

 dT.Rows.Add(n);

 }

 return dT;

 }

 }

}

Step 3: Create a Step Definition File

The details of how to create a Step Definition File is discussed in detail in the Chapter –

Step Definition File.

using System;

using System.Data;

using TechTalk.SpecFlow.Assist;

using TechTalk.SpecFlow;

namespace SpecFlowProject1.Features

{

 [Binding]

 public class UserCredentialSteps

 {

 [When(@"User types details")]

 public void WhenUserTypesDetails(Table t)

 {

 //Accessing C# class method from Step Definition

 var dTable = Utils.Class1.DT(t);

 //iterating rows

 foreach (DataRow r in dTable.Rows)

 {

 Console.WriteLine(r.ItemArray[0].ToString());

 Console.WriteLine(r.ItemArray[1].ToString());

 }

 }

 [Then(@"user should be able to login")]

 public void ThenUserShouldBeAbleToLogin()

 {

 Console.WriteLine("User should be able to login");

SpecFlow

 82

 }

 }

}

Step 4: Execution & Results

Select User credential(1) Feature, then click on Run All Tests in View.

Select Login Module Scenario, then click on Open additional output for this result

link.

SpecFlow

 83

The Scenario got executed with data passed from a Table (converted to a Data Table) in

the Feature File within the When step.

SpecFlow

 84

Tables can hold data in a horizontal and vertical direction in the Feature File. With a

Dictionary object, we shall see how to access data in the Feature File vertically in a key-

value pair.

Step 1: Create a Feature File

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

Feature: User credential

Scenario: Login module

 When User types details

 | KY | Val |

 | username | tutorialspoint |

 | password | pwd1 |

 Then user should be able to login

Step 2: Create C# File to access Table Data

We must convert a Table to a Dictionary via System.Collections.Generic package. We

shall create a new folder within the project and have a C# file in it. Right-click on the

SpecFlow Project, then click on Add.

Select the option New Folder.

22. SpecFlow — Table conversion to Dictionary

SpecFlow

 85

Give the name Utils to the folder.

Right-click on the new Folder created, then select the option Add. Click on Class.

Project Folder Structure

SpecFlow

 86

C# Class Implementation

using System;

using System.Collections.Generic;

using System.Text;

using System.Data;

using TechTalk.SpecFlow;

namespace SpecFlowProject1.Utils

{

 class Class1

 {

 public static Dictionary<string, string> ToDT(Table t)

 {

 var dT = new Dictionary<string, string>();

 // iterating through rows

 foreach (var r in t.Rows)

 {

 dT.Add(r[0], r[1]);

 }

 return dT;

 }

 }

}

Step 3: Create a Step Definition File

The details of how to create a Step Definition File is discussed in detail in the Chapter –

Step Definition File.

SpecFlow

 87

using System;

using TechTalk.SpecFlow;

namespace SpecFlowProject1.Features

{

 [Binding]

 public class UserCredentialSteps

 {

 [When(@"User types details")]

 public void WhenUserTypesDetails(Table t)

 {

 //Accessing C# class method from Step Definition

 var dict = Utils.Class1.ToDT(t);

 Console.WriteLine(dict["username"]);

 Console.WriteLine(dict["password"]);

 }

 [Then(@"user should be able to login")]

 public void ThenUserShouldBeAbleToLogin()

 {

 Console.WriteLine("User should be able to login");

 }

 }

}

Step 4: Execution & Results

Select User credential(1) Feature, then click on Run All Tests in View.

Select Login Module Scenario, then click on Open additional output for this result

link.

SpecFlow

 88

The Scenario got executed with data passed from a Table (converted to a Dictionary) in

the Feature File within the When step.

SpecFlow

 89

CreateInstance<T> is an extension of the Table method. It transforms the data in the

Table to an object. It is one of the popular techniques to have parameterization of data in

a vertical alignment.

The SpecFlow Assist Helpers package is used to work on tables. Also, we have to add

namespace TechTalk.SpecFlow.Assist to our code.

The Table headers in the Feature File can be of any name, for example: KEY, VALUE.

However, the first column should point to the name of the property and the second column

should point to its corresponding value.

Step 1: Create a Feature File

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

Feature: User credential

Scenario: Login module

 When User types details

 | KEY | VALUE |

 | username | tutorialspoint |

 | password | pwd1 |

 Then user should be able to login

Step 2: Create C# File to access String Objects

We shall create a new folder within the project and have a C# file in it. Right-click on the

SpecFlow Project, then click on Add.

Select the option New Folder.

23. SpecFlow — Table with CreateInstance

SpecFlow

 90

Give the name Utils to the folder.

Right-click on the new Folder created, then select the option Add. Click on Class.

Type C# Class in the search box and search. Select the option Class from the search

result and then click on Add to proceed.

SpecFlow

 91

Project Folder Structure

C# Class Implementation

using System;

using System.Collections.Generic;

using System.Text;

namespace SpecFlowProject1.Utils

{

 class Class1

 {

 public class Input

 {

 //Declaring string objects

 public string Input1 { get; set; }

 public string Input2 { get; set; }

 }

 }

}

SpecFlow

 92

Step 3: Create a Step Definition File

The details of how to create a Step Definition File is discussed in detail in the Chapter –

Step Definition File.

using System;

using TechTalk.SpecFlow;

using TechTalk.SpecFlow.Assist;

namespace SpecFlowProject1.Features

{

 [Binding]

 public class UserCredentialSteps

 {

 [When(@"User types details")]

 public void WhenUserTypesDetails(Table t)

 {

 //access data with CreateInstance method using C# class

method

 var i = t.CreateInstance<Utils.Class1.Input>();

 Console.WriteLine(i.Input1);

 Console.WriteLine(i.Input2);

 }

 [Then(@"user should be able to login")]

 public void ThenUserShouldBeAbleToLogin()

 {

 Console.WriteLine("User should be able to login");

 }

 }

}

Step 4: Execution & Results

Select User credential(1) Feature, then click on Run All Tests in View.

SpecFlow

 93

Select Login Module Scenario, then click on Open additional output for this result

link.

The Scenario got executed with data passed from a Table in the feature file within the

When step using CreateInstance method.

SpecFlow

 94

CreateSet<T> is an extension of the Table method. It transforms the data in the Table

to a group of objects. It is one of the popular techniques to have parameterization of data

in a horizontal alignment.

We can handle one or many rows of data with this method. The SpecFlow Assist Helpers

package is used to work on tables. Also, we have to add namespace

TechTalk.SpecFlow.Assist to our code.

The CreateSet<T> method obtains an IEnumerable<T> depending on the matched

data in the Table. It has values for all the objects. It makes sure to have the correct type

conversions from string to a linked property.

Step 1: Create a Feature File

The details of how to create a Feature File is discussed in detail in the Chapter – Feature

File.

Feature: User credential

Scenario: Login module

 When User types details

 | Name | Password |

 | t1 | pwd |

 | t2 | pwd1 |

 Then user should be able to login

Step 2: Create C# File to access String Objects

We shall create a new folder within the project and have a C# file in it. Right-click on the

SpecFlow Project, then click on Add.

Select the option New Folder.

24. SpecFlow — Table with CreateSet

SpecFlow

 95

Give the name Utils to the folder.

Right-click on the new Folder created, then select the option Add. Click on Class.

Type C# Class in the search box and search. Select the option Class from the search

result and then click on Add to proceed.

SpecFlow

 96

Project Folder Structure

C# Class Implementation

using System;

using System.Collections.Generic;

using System.Text;

namespace SpecFlowProject1.Utils

{

 class Class1

 {

 public class Input

 {

 //two string objects declared

 public string Input1 { get; set; }

 public string Input2 { get; set; }

 }

 }

}

Step 3: Create a Step Definition File

SpecFlow

 97

The details of how to create a Step Definition File is discussed in detail in the Chapter –

Step Definition File.

using System;

using TechTalk.SpecFlow;

using TechTalk.SpecFlow.Assist;

namespace SpecFlowProject1.Features

{

 [Binding]

 public class UserCredentialSteps

 {

 [When(@"User types details")]

 public void WhenUserTypesDetails(Table t)

 {

 //access Table data with CreateSet method

 var i = t.CreateSet<Utils.Class1.Input>();

 //iterate over rows

 foreach (var r in i)

 {

 Console.WriteLine(r.Input1);

 Console.WriteLine(r.Input2);

 }

 }

 [Then(@"user should be able to login")]

 public void ThenUserShouldBeAbleToLogin()

 {

 Console.WriteLine("User should be able to login");

 }

 }

}

Step 4: Execution & Results

Select User credential(1) Feature, then click on Run All Tests in View.

SpecFlow

 98

Select Login Module Scenario, then click on Open additional output for this result

link.

The scenario got executed with data passed from a Table in the feature file within the

When step using CreateSet method.

