
http://www.tutorialspoint.com/restful/restful_quick_guide.htm Copyright © tutorialspoint.com

RESTFUL WEB SERVICES - QUICK GUIDERESTFUL WEB SERVICES - QUICK GUIDE

RESTFUL WEB SERVICES - INTRODUCTIONRESTFUL WEB SERVICES - INTRODUCTION
What is REST Architecture?
REST stands for REpresentational State Transfer. REST is web standards based architecture and
uses HTTP Protocol. It revolves around resource where every component is a resource and a
resource is accessed by a common interface using HTTP standard methods. REST was first
introduced by Roy Fielding in 2000.

In REST architecture, a REST Server simply provides access to resources and REST client accesses
and modifies the resources. Here each resource is identified by URIs/ global IDs. REST uses various
representations to represent a resource like text, JSON, XML. JSON is the most popular one.

HTTP Methods
Following five HTTP methods are commonly used in REST based architecture.

GET - Provides a read only access to a resource.

PUT - Used to create a new resource.

DELETE - Used to remove a resource.

POST - Used to update a existing resource or create a new resource.

OPTIONS - Used to get the supported operations on a resource.

Introduction to RESTFul Web Services
A web service is a collection of open protocols and standards used for exchanging data between
applications or systems. Software applications written in various programming languages and
running on various platforms can use web services to exchange data over computer networks like
the Internet in a manner similar to inter-process communication on a single computer. This
interoperability e. g. , betweenJavaandPython, orWindowsandLinuxapplications is due to the use of open
standards.

Web services based on REST Architecture are known as RESTful web services. These web services
use HTTP methods to implement the concept of REST architecture. A RESTful web service usually
defines a URI, Uniform Resource Identifier a service, provides resource representation such as
JSON and set of HTTP Methods.

Creating RESTFul Web Service
In next chapters, we'll create a web service say user management with following functionalities:

Sr.
No.

HTTP
Method

URI Operation Operation
Type

1 GET /UserService/users Get list of users Read Only

2 GET /UserService/users/1 Get User of Id 1 Read Only

3 PUT /UserService/users/2 Insert User with Id 2 Idempotent

4 POST /UserService/users/2 Update User with Id 2 N/A

5 DELETE /UserService/users/1 Delete User with Id 1 Idempotent

6 OPTIONS /UserService/users List the supported operations in
web service

Read Only

RESTFUL WEB SERVICES RESTFUL WEB SERVICES - ENVIRONMENT SETUP- ENVIRONMENT SETUP
This tutorial will guide you on how to prepare a development environment to start your work with
Jersey Framework to create RESTful Web Services. Jersey framework implements JAX-RS 2.0 API
which is standard specification to create RESTful web services. This tutorial will also teach you how
to setup JDK, Tomcat and Eclipse on your machine before you setup Jersey Framework:

http://www.tutorialspoint.com/restful/restful_quick_guide.htm

to setup JDK, Tomcat and Eclipse on your machine before you setup Jersey Framework:

Step 1 - Setup Java Development Kit JDK:
You can download the latest version of SDK from Oracle's Java site: Java SE Downloads. You will
find instructions for installing JDK in downloaded files, follow the given instructions to install and
configure the setup. Finally set PATH and JAVA_HOME environment variables to refer to the
directory that contains java and javac, typically java_install_dir/bin and java_install_dir
respectively.

If you are running Windows and installed the JDK in C:\jdk1.7.0_75, you would have to put the
following line in your C:\autoexec.bat file.

set PATH=C:\jdk1.7.0_75\bin;%PATH%
set JAVA_HOME=C:\jdk1.7.0_75

Alternatively, on Windows NT/2000/XP, you could also right-click on My Computer, select
Properties, then Advanced, then Environment Variables. Then, you would update the PATH value
and press the OK button.

On Unix Solaris, Linux, etc. , if the SDK is installed in /usr/local/jdk1.7.0_75 and you use the C shell, you
would put the following into your .cshrc file.

setenv PATH /usr/local/jdk1.7.0_75/bin:$PATH
setenv JAVA_HOME /usr/local/jdk1.7.0_75

Alternatively, if you use an Integrated Development Environment IDE like Borland JBuilder, Eclipse,
IntelliJ IDEA, or Sun ONE Studio, compile and run a simple program to confirm that the IDE knows
where you installed Java, otherwise do proper setup as given document of the IDE.

Step 2 - Setup Eclipse IDE
All the examples in this tutorial have been written using Eclipse IDE. So I would suggest you should
have latest version of Eclipse installed on your machine.

To install Eclipse IDE, download the latest Eclipse binaries from http://www.eclipse.org/downloads/.
Once you downloaded the installation, unpack the binary distribution into a convenient location.
For example in C:\eclipse on windows, or /usr/local/eclipse on Linux/Unix and finally set PATH
variable appropriately.

Eclipse can be started by executing the following commands on windows machine, or you can
simply double click on eclipse.exe

 %C:\eclipse\eclipse.exe

Eclipse can be started by executing the following commands on Unix Solaris, Linux, etc. machine:

$/usr/local/eclipse/eclipse

After a successful startup, if everything is fine then it should display following result:

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/

Step 4 - Setup Jersey Framework Libraries
Now if everything is fine, then you can proceed to setup your Jersey framework. Following are the
simple steps to download and install the framework on your machine.

Make a choice whether you want to install Jersey on Windows, or Unix and then proceed to
the next step to download .zip file for windows and .tz file for Unix.

Download the latest version of Jersey framework binaries from
https://jersey.java.net/download.html.

At the time of writing this tutorial, I downloaded jaxrs-ri-2.17.zip on my Windows machine
and when you unzip the downloaded file it will give you directory structure inside E:\jaxrs-ri-
2.17\jaxrs-ri as follows.

You will find all the Jersey libraries in the directories C:\jaxrs-ri-2.17\jaxrs-ri\lib and
dependencies in C:\jaxrs-ri-2.17\jaxrs-ri\ext. Make sure you set your CLASSPATH variable on
this directory properly otherwise you will face problem while running your application. If you are
using Eclipse then it is not required to set CLASSPATH because all the setting will be done through
Eclipse.

Step 5: Setup Apache Tomcat:
You can download the latest version of Tomcat from http://tomcat.apache.org/. Once you
downloaded the installation, unpack the binary distribution into a convenient location. For example
in C:\apache-tomcat-7.0.59 on windows, or /usr/local/apache-tomcat-7.0.59 on Linux/Unix and set
CATALINA_HOME environment variable pointing to the installation locations.

Tomcat can be started by executing the following commands on windows machine, or you can
simply double click on startup.bat

 %CATALINA_HOME%\bin\startup.bat

 or

 C:\apache-tomcat-7.0.59\bin\startup.bat

Tomcat can be started by executing the following commands on Unix Solaris, Linux, etc. machine:

$CATALINA_HOME/bin/startup.sh

or

/usr/local/apache-tomcat-7.0.59/bin/startup.sh

After a successful startup, the default web applications included with Tomcat will be available by
visiting http://localhost:8080/. If everything is fine then it should display following result:

https://jersey.java.net/download.html
http://tomcat.apache.org/

Further information about configuring and running Tomcat can be found in the documentation
included here, as well as on the Tomcat web site: http://tomcat.apache.org

Tomcat can be stopped by executing the following commands on windows machine:

%CATALINA_HOME%\bin\shutdown

or

C:\apache-tomcat-7.0.59\bin\shutdown

Tomcat can be stopped by executing the following commands on Unix Solaris, Linux, etc. machine:

$CATALINA_HOME/bin/shutdown.sh

or

/usr/local/apache-tomcat-7.0.59/bin/shutdown.sh

Once you are done with this last step, you are ready to proceed for your first Jersey Example which
you will see in the next chapter.

RESTFUL WEB SERVICES - FIRST APPLICATIONRESTFUL WEB SERVICES - FIRST APPLICATION
Let us start writing actual RESTful web services with Jersey Framework. Before you start writing
your first example using Jersey framework, you have to make sure that you have setup your Jersey
environment properly as explained in RESTful Web Services - Environment Setup tutorial. I also
assume that you have a little bit working knowledge with Eclipse IDE.

So let us proceed to write a simple Jersey Application which will expose a web service method to
display list of users.

Step 1 - Create Java Project:
The first step is to create a Dynamic Web Project using Eclipse IDE. Follow the option File -> New
-> Project and finally select Dynamic Web Project wizard from the wizard list. Now name your
project as UserManagement using the wizard window as follows:

/restful/restful_environment.htm

Once your project is created successfully, you will have following content in your Project
Explorer:

Step 2 - Add Required Libraries:
As a second step let us add Jersey Framework and its dependencies libraries in our project. Copy all
jars from following directories of download jersey zip folder in WEB-INF/lib directory of the project.

\jaxrs-ri-2.17\jaxrs-ri\api

\jaxrs-ri-2.17\jaxrs-ri\ext

\jaxrs-ri-2.17\jaxrs-ri\lib

Now, right click on your project name UserManagement and then follow the following option
available in context menu: Build Path -> Configure Build Path to display the Java Build Path
window.

Now use Add JARs button available under Libraries tab to add the JARs present in WEB-INF/lib
directory.

Step 3 - Create Source Files:
Now let us create actual source files under the UserManagement project. First we need to create
a package called com.tutorialspoint. To do this, right click on src in package explorer section
and follow the option: New -> Package.

Next we will create UserService.java, User.java,UserDao.java files under the com.tutorialspoint
package.

User.java

package com.tutorialspoint;

import java.io.Serializable;

import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
@XmlRootElement(name = "user")
public class User implements Serializable {

 private static final long serialVersionUID = 1L;
 private int id;
 private String name;
 private String profession;

 public User(){}

 public User(int id, String name, String profession){
 this.id = id;
 this.name = name;
 this.profession = profession;
 }

 public int getId() {
 return id;
 }

 @XmlElement
 public void setId(int id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 @XmlElement
 public void setName(String name) {
 this.name = name;
 }
 public String getProfession() {
 return profession;
 }
 @XmlElement
 public void setProfession(String profession) {
 this.profession = profession;
 }
}

UserDao.java

package com.tutorialspoint;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.List;

public class UserDao {
 public List<User> getAllUsers(){
 List<User> userList = null;
 try {
 File file = new File("Users.dat");
 if (!file.exists()) {
 User user = new User(1, "Mahesh", "Teacher");
 userList = new ArrayList<User>();
 userList.add(user);
 saveUserList(userList);
 }
 else{

 FileInputStream fis = new FileInputStream(file);
 ObjectInputStream ois = new ObjectInputStream(fis);
 userList = (List<User>) ois.readObject();
 ois.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 return userList;
 }
}

UserService.java

package com.tutorialspoint;

import java.util.List;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/UserService")
public class UserService {

 UserDao userDao = new UserDao();

 @GET
 @Path("/users")
 @Produces(MediaType.APPLICATION_XML)
 public List<User> getUsers(){
 return userDao.getAllUsers();
 }
}

There are following two important points to note about the main program, UserService.java:

1. First step is to specify a path for the web service using @Path annotation to UserService.

2. Second step is to specify a path for the particular web service method using @Path
annotation to method of UserService.

Step 4 - Create Web.xml configuration File:
You need to create a Web xml Configuration file which is an XML file and is used to specify Jersey
framework servlet for our application.

web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" >
 <display-name>User Management</display-name>
 <servlet>
 <servlet-name>Jersey RESTful Application</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>jersey.config.server.provider.packages</param-name>
 <param-value>com.tutorialspoint</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>Jersey RESTful Application</servlet-name>
 <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>
</web-app>

Step 5 - Deploying the Program
Once you are done with creating source and web configuration files, you are ready for this step
which is compiling and running your program. To do this, using Eclipse, export your application as

a war file and deploy the same in tomcat. To create WAR file using eclipse, follow the option File -
> export -> Web > War File and finally select project UserManagement and destination folder.
To deploy war file in Tomcat, place the UserManagement.war in Tomcat Installation Directory
> webapps directory and start the Tomcat.

Step 6 - Running the Program
We are using Postman, a Chrome extension, to test our webservices.

Make a request to UserManagement to get list of all the users. Put
http://localhost:8080/UserManagement/rest/UserService/users in POSTMAN with GET request and
see the below result.

Congratulations, you have created your first Spring Application successfully. You can see the
flexibility of above Spring application by changing the value of "message" property and keeping
both the source files unchanged. Further, let us start doing something more interesting in next few
chapters.

RESTFUL WEB SERVICES - RESOURCESRESTFUL WEB SERVICES - RESOURCES
What is a Resource?
In REST architecture, everything is a resource. These resources can be text files, html pages,
images, videos or dynamic business data. REST Server simply provides access to resources and
REST client accesses and modifies the resources. Here each resource is identified by URIs/ global
IDs. REST uses various representations to represent a resource like text, JSON, XML. XML and JSON
are the most popular representations of resources.

Representation of Resources
A resource in REST is similar Object in Object Oriented Programming or similar to Entity in a
Database. Once a resource is identified then its representation is to be decided using a standard
format so that server can send the resource in above said format and client can understand the
same format.

For example, in RESTful Web Services - First Application tutorial, User is a resource which is
represented using following XML format:

<user>
 <id>1</id>
 <name>Mahesh</name>
 <profession>Teacher</profession>
</user>

Same resource can be represented in JSON format:

{
 "id":1,
 "name":"Mahesh",
 "profession":"Teacher"
}

Characteristics of a Good Representation
In REST, there is no restriction on the format of a resource representation. A client can ask for

http://www.getpostman.com/
/restful/restful_first_application.htm

JSON representation where as another client may ask for XML representation of same resource to
the server and so on. It is responsibility of the REST server to pass the client the resource in the
format that client understands. Following are important points to be considered while designing a
representation format of a resource in a RESTful web services.

Understandability: Both Server and Client should be able to understand and utilize the
representation format of the resource.

Completeness: Format should be able to represent a resource completely. For example, a
resource can contain another resource. Format should be able to represent simple as well as
complex structures of resources.

Linkablity: A resource can have a linkage to another resource, a format should be able to
handles such situations.

RESTFUL WEB SERVICES - MESSAGESRESTFUL WEB SERVICES - MESSAGES
RESTful web services make use of HTTP protocol as a medium of communication between client
and server. A client sends a message in form of a HTTP Request and server responds in form of a
HTTP Response. This technique is terms as Messaging. These messages contain message data and
metadata that is information about message itself. Let's have a look on HTTP Request and HTTP
Response messages for HTTP 1.1.

HTTP Request

A HTTP Request has five major parts:

Verb- Indicate HTTP methods such as GET, POST etc.

URI- Contains the URI, Uniform Resource Identifier to identify the resource on server

HTTP Version- Indicate HTTP version, for example HTTP v1.1 .

Request Header- Contains metadata for the HTTP Request message as key-value pairs. For
example, client orbrowser type, format supported by client, format of message body, cache
settings etc.

Request Body- Message content or Resource representation.

HTTP Response

A HTTP Response has four major parts:

Status/Response Code- Indicate Server status for the requested resource. For example 404
means resource not found and 200 means response is ok.

HTTP Version- Indicate HTTP version, for example HTTP v1.1 .

Response Header- Contains metadata for the HTTP Response message as key-value pairs.
For example, content length, content type, response date, server type etc.

Response Body- Response message content or Resource representation.

Example
Put http://localhost:8080/UserManagement/rest/UserService/users in POSTMAN with GET request. If
you click on Preview button residing near send button of Postman and then click on Send button,
you may see the following output.

Here you can see, the browser sent a GET request and received a response body as XML.

RESTFUL WEB SERVICES - ADDRESSINGRESTFUL WEB SERVICES - ADDRESSING
Addressing refers to locating a resource or multiple resources lying on the server. It is analogous
to locate a postal address of a person.

Each resource in REST architecture is identified by its URI, Uniform Resource Identifier. A URI is of
following format:

<protocol>://<service-name>/<ResourceType>/<ResourceID>

Purpose of an URI is to locate a resources on the server hosting the web service. Another important
attribute of a request is VERB which identifies the operation to be performed on the resource. For
example, in RESTful Web Services - First Application tutorial, URI is
http://localhost:8080/UserManagement/rest/UserService/users and VERB is GET.

Constructing a standard URI
Following are important points to be considered while designing a URI:

Use Plural Noun - Use plural noun to define resources. For example, we've used users to
identify users as a resource.

Avoid using spaces - Use underscore _ or hyphen − when using a long resource name, for
example, use authorized_users instead of authorized%20users.

Use lowercase letters - Although URI is case-insensitive, it is good practice to keep url in
lower case letters only.

Maintain Backward Compatibility - As Web Service is a public service, a URI once made
public should always be available. In case, URI gets updated, redirect the older URI to new
URI using HTTP Status code, 300.

Use HTTP Verb - Always use HTTP Verb like GET, PUT, and DELETE to do the operations on
the resource. It is not good to use operations names in URI. For example, following is a poor
URI to fetch a user.

/restful/restful_first_application.htm

http://localhost:8080/UserManagement/rest/UserService/getUser/1

Following is an example of good URI to fetch a user.

http://localhost:8080/UserManagement/rest/UserService/users/1

Let Server decide the operation based on HTTP verb.

RESTFUL WEB SERVICES - METHODSRESTFUL WEB SERVICES - METHODS
As we have discussed so far that RESTful web service makes heavy uses of HTTP verbs to
determine the operation to be carried out on the specified resources. Following table states the
examples of common use of HTTP Verbs.

Sr.
No.

HTTP
Method

URI Operation Operation
Type

1 GET http://localhost:8080/UserManagement/rest/UserService/users Get list of
users

Read Only

2 GET http://localhost:8080/UserManagement/rest/UserService/users/1 Get User of
Id 1

Read Only

3 PUT http://localhost:8080/UserManagement/rest/UserService/users/2 Insert User
with Id 2

Idempotent

4 POST http://localhost:8080/UserManagement/rest/UserService/users/2 Update
User with
Id 2

N/A

5 DELETE http://localhost:8080/UserManagement/rest/UserService/users/1 Delete
User with
Id 1

Idempotent

6 OPTIONS http://localhost:8080/UserManagement/rest/UserService/users List the
supported
operations
in web
service

Read Only

7 HEAD http://localhost:8080/UserManagement/rest/UserService/users Returns
only HTTP
Header, no
Body.

Read Only

Here are important points to be considered:

GET operations are read only and are safe.

PUT and DELETE operations are idempotent means their result will always same no matter
how many times these operations are invoked.

PUT and POST operation are nearly same with the difference lying only in the result where
PUT operation is idempotent and POST operation can cause different result.

Example
Let's update Example created in RESTful Web Services - First Application tutorial to create a Web
service which can perform CRUD Create, Read, Update, Delete operations. For simplicity, we've used a
file I/O to replace Database operations.

Update UserService.java, User.java,UserDao.java files under the com.tutorialspoint package.

User.java

package com.tutorialspoint;

import java.io.Serializable;

import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
@XmlRootElement(name = "user")

/restful/restful_first_application.htm

public class User implements Serializable {

 private static final long serialVersionUID = 1L;
 private int id;
 private String name;
 private String profession;

 public User(){}

 public User(int id, String name, String profession){
 this.id = id;
 this.name = name;
 this.profession = profession;
 }

 public int getId() {
 return id;
 }
 @XmlElement
 public void setId(int id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 @XmlElement
 public void setName(String name) {
 this.name = name;
 }
 public String getProfession() {
 return profession;
 }
 @XmlElement
 public void setProfession(String profession) {
 this.profession = profession;
 }

 @Override
 public boolean equals(Object object){
 if(object == null){
 return false;
 }else if(!(object instanceof User)){
 return false;
 }else {
 User user = (User)object;
 if(id == user.getId()
 && name.equals(user.getName())
 && profession.equals(user.getProfession())
){
 return true;
 }
 }
 return false;
 }
}

UserDao.java

package com.tutorialspoint;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.List;

public class UserDao {
 public List<User> getAllUsers(){
 List<User> userList = null;
 try {
 File file = new File("Users.dat");
 if (!file.exists()) {
 User user = new User(1, "Mahesh", "Teacher");
 userList = new ArrayList<User>();

 userList.add(user);
 saveUserList(userList);
 }
 else{
 FileInputStream fis = new FileInputStream(file);
 ObjectInputStream ois = new ObjectInputStream(fis);
 userList = (List<User>) ois.readObject();
 ois.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 } catch (ClassNotFoundException e) {
 e.printStackTrace();
 }
 return userList;
 }

 public User getUser(int id){
 List<User> users = getAllUsers();

 for(User user: users){
 if(user.getId() == id){
 return user;
 }
 }
 return null;
 }

 public int addUser(User pUser){
 List<User> userList = getAllUsers();
 boolean userExists = false;
 for(User user: userList){
 if(user.getId() == pUser.getId()){
 userExists = true;
 break;
 }
 }
 if(!userExists){
 userList.add(pUser);
 saveUserList(userList);
 return 1;
 }
 return 0;
 }

 public int updateUser(User pUser){
 List<User> userList = getAllUsers();

 for(User user: userList){
 if(user.getId() == pUser.getId()){
 int index = userList.indexOf(user);
 userList.set(index, pUser);
 saveUserList(userList);
 return 1;
 }
 }
 return 0;
 }

 public int deleteUser(int id){
 List<User> userList = getAllUsers();

 for(User user: userList){
 if(user.getId() == id){
 int index = userList.indexOf(user);
 userList.remove(index);
 saveUserList(userList);
 return 1;
 }
 }
 return 0;
 }

 private void saveUserList(List<User> userList){
 try {
 File file = new File("Users.dat");
 FileOutputStream fos;

 fos = new FileOutputStream(file);

 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(userList);
 oos.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

UserService.java

package com.tutorialspoint;

import java.io.IOException;
import java.util.List;

import javax.servlet.http.HttpServletResponse;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.FormParam;
import javax.ws.rs.GET;
import javax.ws.rs.OPTIONS;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.MediaType;

@Path("/UserService")
public class UserService {

 UserDao userDao = new UserDao();
 private static final String SUCCESS_RESULT="<result>success</result>";
 private static final String FAILURE_RESULT="<result>failure</result>";

 @GET
 @Path("/users")
 @Produces(MediaType.APPLICATION_XML)
 public List<User> getUsers(){
 return userDao.getAllUsers();
 }

 @GET
 @Path("/users/{userid}")
 @Produces(MediaType.APPLICATION_XML)
 public User getUser(@PathParam("userid") int userid){
 return userDao.getUser(userid);
 }

 @PUT
 @Path("/users")
 @Produces(MediaType.APPLICATION_XML)
 @Consumes(MediaType.APPLICATION_FORM_URLENCODED)
 public String createUser(@FormParam("id") int id,
 @FormParam("name") String name,
 @FormParam("profession") String profession,
 @Context HttpServletResponse servletResponse) throws IOException{
 User user = new User(id, name, profession);
 int result = userDao.addUser(user);
 if(result == 1){
 return SUCCESS_RESULT;
 }
 return FAILURE_RESULT;
 }

 @POST
 @Path("/users")
 @Produces(MediaType.APPLICATION_XML)
 @Consumes(MediaType.APPLICATION_FORM_URLENCODED)
 public String updateUser(@FormParam("id") int id,
 @FormParam("name") String name,
 @FormParam("profession") String profession,

 @Context HttpServletResponse servletResponse) throws IOException{
 User user = new User(id, name, profession);
 int result = userDao.updateUser(user);
 if(result == 1){
 return SUCCESS_RESULT;
 }
 return FAILURE_RESULT;
 }

 @DELETE
 @Path("/users/{userid}")
 @Produces(MediaType.APPLICATION_XML)
 public String deleteUser(@PathParam("userid") int userid){
 int result = userDao.deleteUser(userid);
 if(result == 1){
 return SUCCESS_RESULT;
 }
 return FAILURE_RESULT;
 }

 @OPTIONS
 @Path("/users")
 @Produces(MediaType.APPLICATION_XML)
 public String getSupportedOperations(){
 return "<operations>GET, PUT, POST, DELETE</operations>";
 }
}

Now using Eclipse, export your application as a war file and deploy the same in tomcat. To create
WAR file using eclipse, follow the option File -> export -> Web > War File and finally select
project UserManagement and destination folder. To deploy war file in Tomcat, place the
UserManagement.war in Tomcat Installation Directory > webapps directory and start the
Tomcat.

Testing the Web Service
Jersey provides APIs to create a Web Service Client to test web services. We've created a sample
test class WebServiceTester.java under the com.tutorialspoint package in the same project.

WebServiceTester.java

package com.tutorialspoint;

import java.util.List;

import javax.ws.rs.client.Client;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Entity;
import javax.ws.rs.core.Form;
import javax.ws.rs.core.GenericType;
import javax.ws.rs.core.MediaType;

public class WebServiceTester {

 private Client client;
 private String REST_SERVICE_URL =
"http://localhost:8080/UserManagement/rest/UserService/users";
 private static final String SUCCESS_RESULT="<result>success</result>";
 private static final String PASS = "pass";
 private static final String FAIL = "fail";

 private void init(){
 this.client = ClientBuilder.newClient();
 }

 public static void main(String[] args){
 WebServiceTester tester = new WebServiceTester();
 //initialize the tester
 tester.init();
 //test get all users Web Service Method
 tester.testGetAllUsers();
 //test get user Web Service Method
 tester.testGetUser();
 //test update user Web Service Method
 tester.testUpdateUser();
 //test add user Web Service Method
 tester.testAddUser();
 //test delete user Web Service Method

 tester.testDeleteUser();
 }
 //Test: Get list of all users
 //Test: Check if list is not empty
 private void testGetAllUsers(){
 GenericType<List<User>> list = new GenericType<List<User>>() {};
 List<User> users = client
 .target(REST_SERVICE_URL)
 .request(MediaType.APPLICATION_XML)
 .get(list);
 String result = PASS;
 if(users.isEmpty()){
 result = FAIL;
 }
 System.out.println("Test case name: testGetAllUsers, Result: " + result);
 }
 //Test: Get User of id 1
 //Test: Check if user is same as sample user
 private void testGetUser(){
 User sampleUser = new User();
 sampleUser.setId(1);

 User user = client
 .target(REST_SERVICE_URL)
 .path("/{userid}")
 .resolveTemplate("userid", 1)
 .request(MediaType.APPLICATION_XML)
 .get(User.class);
 String result = FAIL;
 if(sampleUser != null && sampleUser.getId() == user.getId()){
 result = PASS;
 }
 System.out.println("Test case name: testGetUser, Result: " + result);
 }
 //Test: Update User of id 1
 //Test: Check if result is success XML.
 private void testUpdateUser(){
 Form form = new Form();
 form.param("id", "1");
 form.param("name", "suresh");
 form.param("profession", "clerk");

 String callResult = client
 .target(REST_SERVICE_URL)
 .request(MediaType.APPLICATION_XML)
 .post(Entity.entity(form,
 MediaType.APPLICATION_FORM_URLENCODED_TYPE),
 String.class);
 String result = PASS;
 if(!SUCCESS_RESULT.equals(callResult)){
 result = FAIL;
 }

 System.out.println("Test case name: testUpdateUser, Result: " + result);
 }
 //Test: Add User of id 2
 //Test: Check if result is success XML.
 private void testAddUser(){
 Form form = new Form();
 form.param("id", "2");
 form.param("name", "naresh");
 form.param("profession", "clerk");

 String callResult = client
 .target(REST_SERVICE_URL)
 .request(MediaType.APPLICATION_XML)
 .put(Entity.entity(form,
 MediaType.APPLICATION_FORM_URLENCODED_TYPE),
 String.class);

 String result = PASS;
 if(!SUCCESS_RESULT.equals(callResult)){
 result = FAIL;
 }

 System.out.println("Test case name: testAddUser, Result: " + result);
 }
 //Test: Delete User of id 2
 //Test: Check if result is success XML.

 private void testDeleteUser(){
 String callResult = client
 .target(REST_SERVICE_URL)
 .path("/{userid}")
 .resolveTemplate("userid", 2)
 .request(MediaType.APPLICATION_XML)
 .delete(String.class);

 String result = PASS;
 if(!SUCCESS_RESULT.equals(callResult)){
 result = FAIL;
 }

 System.out.println("Test case name: testDeleteUser, Result: " + result);
 }
}

Now run the tester using Eclipse. Right click on the file, and follow the option Run as -> Java
Application. You'll see the following result in Eclipse console:

Test case name: testGetAllUsers, Result: pass
Test case name: testGetUser, Result: pass
Test case name: testUpdateUser, Result: pass
Test case name: testAddUser, Result: pass
Test case name: testDeleteUser, Result: pass

RESTFUL WEB SERVICES - STATELESSNESSRESTFUL WEB SERVICES - STATELESSNESS
As per REST architecture, a RESTful web service should not keep a client state on server. This
restriction is called statelessness. It is responsibility of the client to pass its context to server and
then server can store this context to process client's further request. For example, session
maintained by server is identified by session identifier passed by the client.

RESTful Web services should adhere to this restriction. We've seen in RESTful Web Services -
Methods tutorial, that Web service methods are not storing any information from the client they
are invoked from.

Consider the following URL:

http://localhost:8080/UserManagement/rest/UserService/users/1

If you hit the above url using browser, using java based client or using postman, result will always
be the User XML whose Id is 1 because server is not stored any information about the client.

<user>
<id>1</id>
<name>mahesh</name>
<profession>1</profession>
</user>

Advantages of Statelessness
Following are the benefits of statelessness in RESTful web services

Web services can treat each method request independently.

Web services need not to maintain client's previous interactions. It simplifies application
design.

As HTTP is itself a statelessness protocol, RESTful Web services work seamlessly with HTTP
protocol.

Disadvantages of Statelessness
Following are the disadvantages of statelessness in RESTful web services

Web services need to get extra information in each request and then interpret to get the
client's state in case client interactions are to be taken care of.

RESTFUL WEB SERVICES - CACHINGRESTFUL WEB SERVICES - CACHING
Caching refers to storing server response in client itself so that a client needs not to make server
request for same resource again and again. A server response should have information about how
a caching is to be done so that a client caches response for a period of time or never caches the

/restful/restful_methods.htm

server response.

Following are the headers which a server response can have in order to configure a client's
caching:

Sr.
No.

Header Description

1 Date Date and Time of the resource when it was created.

2 Last Modified Date and Time of the resource when it was last modified.

3 Cache-
Control

Primary header to control caching.

4 Expires Expiration date and time of caching

5 Age Duration in seconds from when resource was fetched from the
server.

Cache-Control Header
Following are the details of Cache-Control header

Sr.
No.

Directive Description

1 Public Indicates that resource is cacheable by any component.

2 Private Indicates that resource is cacheable by only client and server, no
intermediary can cache the resource.

3 no-
cache/no-
store

Indicates that resource is not cacheable

4 max-age Indicates the caching is valid up to max-age in seconds. After this, client
has to make another request.

5 must-
revalidate

Indication to server to revalidate resource if max-age has passed.

Best Practices
Always keep static contents like images, css, JavaScript cacheable, with expiration date of 2
to 3 days.

Never keep expiry date too high.

Dynamic contents should be cached for few hours only.

RESTFUL WEB SERVICES - SECURITYRESTFUL WEB SERVICES - SECURITY
As RESTful web services work with HTTP URLs Paths so it is very important to safeguard a RESTful
web service in the same manner as a website is be secured. Following are the best practices to be
followed while designing a RESTful web service.

Validation - Validate all inputs on the server. Protect your server against SQL or NoSQL
injection attacks.

Session based authentication - Use session based authentication to authenticate a user
whenever a request is made to a Web Service method.

No sensitive data in URL - Never use username, password or session token in URL , these
values should be passed to Web Service via POST method.

Restriction on Method execution - Allow restricted use of methods like GET, POST,
DELETE. GET method should not be able to delete data.

Validate Malformed XML/JSON - Check for well formed input passed to a web service
method.

Throw generic Error Messages - A web service method should use HTTP error messages
like 403 to show access forbidden etc.

HTTP Status Codes
Always use standard HTTP codes while returning HTTP response to the client. Following are the
status codes.

Sr.
No.

HTTP
Code

Description

1 200 OK, shows success.

2 201 CREATED, when a resource is successful created using POST or PUT request.
Return link to newly created resource using location header.

3 204 NO CONTENT, when response body is empty for example, a DELETE request.

4 304 NOT MODIFIED, used to reduce network bandwidth usage in case of conditional
GET requests. Response body should be empty. Headers should have date,
location etc.

5 400 BAD REQUEST, states that invalid input is provided e.g. validation error, missing
data.

6 401 UNAUTHORIZED, states that user is using invalid or wrong authentication token.

7 403 FORBIDDEN, states that user is not having access to method being used for
example, delete access without admin rights.

8 404 NOT FOUND, states that method is not available.

9 409 CONFLICT, states conflict situation while executing the method for example,
adding duplicate entry.

10 500 INTERNAL SERVER ERROR, states that server has thrown some exception
while executing the method.

RESTFUL WEB SERVICES - JAVA RESTFUL WEB SERVICES - JAVA JJAAXX −− RRSS

JAX-RS stands for JAVA API for RESTful Web Services. JAX-RS is a JAVA based programming
language API and specification to provide support for created RESTful Webservices. Its 2.0 version
was released in 24 May 2013. JAX-RS makes heavy use of annotations available from Java SE 5 to
simplify development of JAVA based web services creation and deployment. It also provides

supports for creating clients for RESTful web services.

Specification
Following are the commonly used annotations to map a resource as a web service resource.

Sr.
No.

Annotation Description

1 @Path Relative path of the resource class/method.

2 @GET HTTP Get request, used to fetch resource.

3 @PUT HTTP PUT request, used to create resource.

4 @POST HTTP POST request, used to create/update resource.

5 @DELETE HTTP DELETE request, used to delete resource.

6 @HEAD HTTP HEAD request, used to get status of method availability.

7 @Produces States the HTTP Response generated by web service, for example
APPLICATION/XML, TEXT/HTML, APPLICATION/JSON etc.

8 @Consumes States the HTTP Request type, for example application/x-www-form-
urlencoded to accept form data in HTTP body during POST request.

9 @PathParam Binds the parameter passed to method to a value in path.

10 @QueryParam Binds the parameter passed to method to a query parameter in path.

11 @MatrixParam Binds the parameter passed to method to a HTTP matrix parameter in
path.

12 @HeaderParam Binds the parameter passed to method to a HTTP header.

13 @CookieParam Binds the parameter passed to method to a Cookie.

14 @FormParam Binds the parameter passed to method to a form value.

15 @DefaultValue Assigns a default value to a parameter passed to method.

16 @Context Context of the resource for example HTTPRequest as a context.

We've used Jersey, a reference implementation of JAX-RS 2.0 by Oracle, in RESTful Web Services -
First Application and RESTful Web Services - Methods tutorial pages.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

/restful/restful_first_application.htm
/restful/restful_methods.htm

