
Pygame

 1

Pygame

 2

About the Tutorial

Pygame is a popular Python library used for developing video games. It is free, open source

and cross-platform wrapper around Simple DirectMedia Library (SDL). Abstraction of SDL

functions provided by Pygame makes development of multi-media applications using

Python very easy.

Audience

This tutorial is designed for software programmers who want to develop video games using

Python Programming language.

Prerequisites

Before proceeding with this tutorial, you need a basic knowledge on Python Programming

language, and an understanding of the game that is to be developed is also essential.

Copyright & Disclaimer

 Copyright 2021 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Pygame

 3

Table of Contents

About the Tutorial ... 2

Audience .. 2

Prerequisites .. 2

Copyright & Disclaimer .. 2

Table of Contents .. 3

1. Pygame — Overview ... 5

Environment Setup .. 5

2. Pygame — Hello World ... 8

3. Pygame — Display modes ... 10

4. Pygame — Locals module ... 11

5. Pygame — Color object ... 12

6. Pygame — Event objects ... 14

7. Pygame — Keyboard events ... 15

8. Pygame — Mouse events .. 17

9. Pygame —Drawing shapes .. 19

10. Pygame — Loading image ... 22

11. Pygame — Displaying Text in Window .. 26

12. Pygame — Moving an image ... 31

13. Pygame — Moving with Numeric pad keys ... 34

14. Pygame — Moving with mouse ... 36

15. Pygame — Moving Rectangular objects .. 37

16. Pygame — Use Text as Buttons ... 45

17. Pygame — Transforming Images ... 49

18. Pygame — Sound objects .. 56

19. Pygame — Mixer channels .. 59

20. Pygame — Playing music .. 60

Pygame

 4

21. Pygame — Playing Movie .. 63

22. Pygame — Using Camera module ... 65

23. Pygame — Load cursor .. 67

24. Pygame — Access CDROM .. 69

25. Pygame — The Sprite Module ... 71

26. Pygame — PyOpenGL ... 74

27. Pygame — Errors and Exception ... 79

Pygame

 5

Pygame is a popular Python library used for developing video games. It is free, open source

and cross-platform wrapper around Simple DirectMedia Library (SDL). Abstraction of SDL

functions provided by Pygame makes development of multi-media applications using

Python very easy.

Originally developed by Peter Shinners, Lenard Lindstrom, René Dudfield and others in Oct

2000, latest version of Pygame is 2.0.1, released in Dec 2020. In addition to SDL

functionality, Pygame also provides other features such as vector maths, collision

detection, camera and MIDI support etc. Pygame applications can be used on Android

based mobile phones also.

Environment Setup

Easiest way to install Pygame on any machine is by using PIP installer that comes with

standard Python distribution. Ensure that you have latest version of pip. It is recommended

to install Pygame in a new virtual environment using following command:

pip3 install pygame

For Raspberri Pi, Pygame is pre-installed in raspbian Linus distribution. As far as

installation on MacOS is concerned, newer versions require Pygame 2.0. Prebuilt binary

packages are available for many flavours of Linux. They can be installed using respective

package manager utilities.

For Ubuntu, following is the command:

sudo apt-get install pygame

For Fedora, the following is the command:

sudo yum install pygame

It is also possible to compile Pygame’s source code (available at

https://github.com/pygame/pygame) and install on desired operating system with the

help of respective C/C++ compiler and Python’s setuptools library.

To verify if Pygame has been successfully installed, try and import pygame package and

check its version.

(pygmenv) C:\pygmenv>python

Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 20:34:20) [MSC v.1916 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> import pygame

pygame 2.0.1 (SDL 2.0.14, Python 3.7.4)

1. Pygame — Overview

https://github.com/pygame/pygame

Pygame

 6

Hello from the pygame community. https://www.pygame.org/contribute.html

Pygame library consists of following modules:

 pygame._sdl2.touch to work with touch input

 pygame.camera camera use

 pygame.cdrom audio cdrom control

 pygame.cursors cursor resources

 pygame.display to control the display window and screen

 pygame.draw drawing shapes

 pygame.event interacting with events and queues

 pygame.examples module of example programs

 pygame.fastevent interacting with events and queues from multiple

threads.

 pygame.font loading and rendering fonts

 pygame.freetype loading and rendering computer fonts

 pygame.gfxdraw drawing shapes

 pygame.image image transfer

 pygame.joystick interacting with joysticks, gamepads, and trackballs.

 pygame.key to work with the keyboard

 pygame.locals pygame constants

 pygame.mask image masks.

 pygame.math vector classes

 pygame.midi interacting with midi input and output.

 pygame.mixer loading and playing sounds

 pygame.mixer.music controlling streamed audio

 pygame.mouse to work with the mouse

 pygame.pixelcopy general pixel array copying

 pygame.scrap clipboard support.

 pygame.sndarray accessing sound sample data

 pygame.sprite basic game object classes

 pygame.surfarray accessing surface pixel data using array interfaces

 pygame.tests unit test suite package

https://www.pygame.org/contribute.html

Pygame

 7

 pygame.time monitoring time

 pygame.transform to transform surfaces

Pygame

 8

First step is to import and initialize pygame modules with the help of init() function.

import pygame

pygame.init()

We now set up Pygame display window of preferred size, and give it a caption.

screen = pygame.display.set_mode((640, 480))

pygame.display.set_caption("Hello World")

This will render a game window which needs to be put in an infinite event loop. All event

objects generated by user interactions such as mouse movement and click etc. are stored

in an event queue. We shall terminate the event loop when pygame.QUIT is intercepted.

This event is generated when user clicks the CLOSE button on the title bar.

while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

Complete code for displaying Pygame window with Hello World caption is as follows:

import pygame, sys

pygame.init()

screen = pygame.display.set_mode((640, 480))

pygame.display.set_caption("Hello World")

while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 sys.exit()

Save above script as hello.py and run to get following output:

2. Pygame — Hello World

Pygame

 9

This window will be closed only if the close (X) button is clicked.

Pygame

 10

As in the above example, a display surface is created by set_mode() function defined in

pygame.display module.

pygame.display.set_mode(size, flags, depth, display, vsync)

The size parameter is a tuple of width and height in pixels. If size is not set, the surface

will have the size of current resolution.

The flags parameter controls the type of display represented by following predefined

constants:

pygame.FULLSCREEN create a fullscreen display

pygame.DOUBLEBUF recommended for HWSURFACE or OPENGL

pygame.HWSURFACE hardware accelerated, only in FULLSCREEN

pygame.OPENGL create an OpenGL-renderable display

pygame.RESIZABLE display window should be sizeable

pygame.NOFRAME display window will have no border or controls

pygame.SCALED resolution depends on desktop size and scale graphics

pygame.SHOWN window is opened in visible mode (default)

pygame.HIDDEN window is opened in hidden mode

If the vsync parameter is set to 1, it is possible to get a display with vertical sync, but you

are not guaranteed to get one. The request only works at all for calls to set_mode() with

the pygame.OPENGL or pygame.SCALED flags set.

The display index 0 means the default display is used. Depth parameter will default to the

best and fastest color depth for the system. For given width and height, Pygame will

choose best mode available from list_modes().

>>> print (pygame.display.list_modes())

[(1366, 768), (1360, 768), (1280, 768), (1280, 720), (1024, 768), (800, 600),

(640, 480)]

pygame.display.mode_ok()

This function Pick the best color depth for a display mode. It is used to determine if a

requested display mode is available. It will return 0 if the display mode cannot be set.

Otherwise it will return a pixel depth that best matches the display asked for.

pygame.display.update()

This function will update the contents of the entire display.

3. Pygame — Display modes

Pygame

 11

This module contains definitions of various constants used frequently in a Pygame

application. Although, these constants are defined in respective modules, it becomes

easier to use them from locals module.

For example, Key or Mouse events (such as KEYDOWN or MOUSEBUTTONDOWN) are

defined as pygame.key.KEYDOWN or pygame.mouse.MOUSEBUTTON respectively, these

constants can be used without qualifying the module name by importing from locals

module.

Here, we are using QUIT event from locals module.

import pygame,sys

from pygame.locals import *

pygame.init()

canvas=pygame.display.set_mode((400,300))

pygame.display.set_caption("Hello")

canvas.fill((0,0,0))

while True:

 for event in pygame.event.get():

 if(event.type == QUIT):

 pygame.quit()

 sys.exit(1)

4. Pygame — Locals module

Pygame

 12

The Color class in Pygame is used to represent color of screen background, text, shapes

and all other Pygame objects. It constructed by passing color values for Red, Green, Blue

colors and optionally alpha value that represents opaque value. Each of these values range

between 0 to 255.

color = pygame.Color(r, g, b, a=255)

Default value of alpha is 255, meaning fully opaque. Individual attributes are accessible

and can be set.

pygame.Color.r Gets or sets the red value of the Color.

pygame.Color.g Gets or sets the green value of the Color.

pygame.Color.b Gets or sets the blue value of the Color.

pygame.Color.a Gets or sets the alpha value of the Color.

Alternative color models like CMY, HSVA, HSLA and i1i2i3 can also be used.

pygame.Color.cmy Gets or sets the CMY representation of the Color. Cyan,

Magenta, Yellow

pygame.Color.hsva Gets or sets the HSVA representation of the Color. Hue,

Saturation, Value

pygame.Color.hsla Gets or sets the HSLA representation of the Color. Hue,

Saturation, Lightness

pygame.Color.i1i2i3 Gets or sets the I1I2I3 representation of the Color.

We can use predefined string constants to represent RGBA color combinations. Some of

the predefined colors are listed below:

 'black': (0, 0, 0, 255)

 'blue': (0, 0, 255, 255),

 'cyan': (0, 255, 255, 255),

 'gold': (255, 215, 0, 255),

 'gray': (190, 190, 190, 255),

 'green': (0, 255, 0, 255),

 'orange': (255, 165, 0, 255),

 'purple': (160, 32, 240, 255),

 'red': (255, 0, 0, 255),

 'violet': (238, 130, 238, 255)

 'yellow': (255, 255, 0, 255),

5. Pygame — Color object

Pygame

 13

 'white': (255, 255, 255, 255)

To enlist all predefined colors run following for loop:

for k, v in THECOLORS.items():

 THECOLORS[unicode_(k)] = v

Pygame

 14

All events are instances of pygame.event.EventType class. Pygame identifies following

event types:

Event Type attributes

QUIT None

ACTIVEEVENT gain, state

KEYDOWN unicode, key, mod

KEYUP key, mod

MOUSEMOTION pos, rel, buttons

MOUSEBUTTONUP pos, button

MOUSEBUTTONDOWN pos, button

JOYAXISMOTION joy, axis, value

JOYBALLMOTION joy, ball, rel

JOYHATMOTION joy, hat, value

JOYBUTTONUP joy, button

JOYBUTTONDOWN joy, button

VIDEORESIZE size, w, h

VIDEOEXPOSE None

USEREVENT Code

6. Pygame — Event objects

Pygame

 15

Pygame recognizes KEYUP and KEYDOWN events. The pygame.key module defines

functions useful for handling keyboard interaction. pygame.KEYDOWN and pygame.KEYUP

events are inserted in event queue when the keys are pressed and released. key attribute

is an integer ID representing every key on the keyboard.

import pygame, sys

pygame.init()

screen = pygame.display.set_mode((640, 480))

pygame.display.set_caption("Hello World")

while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 sys.exit()

 if event.type == pygame.KEYDOWN:

 key=pygame.key.name(event.key)

 print (key, "Key is pressed")

 if event.type == pygame.KEYUP:

 key=pygame.key.name(event.key)

 print (key, "Key is released")

Run the above code and press various keys while the Pygame window is active. Following

is a sample output on Python console.

q Key is pressed

q Key is released

right shift Key is released

1 Key is pressed

1 Key is released

enter Key is pressed

enter Key is released

backspace Key is pressed

backspace Key is released

x Key is pressed

x Key is released

7. Pygame — Keyboard events

Pygame

 16

home Key is pressed

home Key is released

f1 Key is pressed

f1 Key is released

left Key is pressed

left Key is released

right Key is pressed

right Key is released

up Key is pressed

up Key is released

down Key is pressed

down Key is released

As we see, event.key attribute returns a unique identifier associated with each key. The

arrow keys left, right, up and down are used very often in a game situation. We can right

appropriate logic if a particular key press is detected.

Other useful attributes in pygame.key module are listed below:

pygame.key.get_pressed get the state of all keyboard buttons

pygame.key.get_mods determine which modifier keys are being held

pygame.key.set_repeat control how held keys are repeated

pygame.key.get_repeat see how held keys are repeated

pygame.key.name get the name of a key identifier

pygame.key.key_code get the key identifier from a key name

pygame.key.start_text_input start handling Unicode text input events

pygame.key.stop_text_input stop handling Unicode text input events

Pygame

 17

Pygame recongnizes three mouse events, namely, MOUSEMOTION, MOUSEBUTTONUP,

and MOUSEBUTTONDOWN. The corresponding event object returns the coordinates of

position at which mouse is pressed/released and the button number.

For example, a MOUSEBUTTONDOWN event object will display following result:

<Event(1025-MouseButtonDown {'pos': (398, 328), 'button': 1, 'window': None})>

To obtain the coordinates of position of button down, we can use get_pos() function

associated with event object.

import pygame, sys

pygame.init()

screen = pygame.display.set_mode((640, 480))

pygame.display.set_caption("Hello World")

while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 sys.exit()

 if event.type == pygame.MOUSEBUTTONDOWN:

 pos=pygame.mouse.get_pos()

 btn=pygame.mouse

 print ("x = {}, y = {}".format(pos[0], pos[1]))

Run above code and press the mouse button at random positions on the game window.

x = 192, y = 160

x = 419, y = 245

x = 204, y = 405

x = 449, y = 17

x = 12, y = 15

The MOUSEMOTION event object captures instantaneous position of moving mouse

location.

if event.type == pygame.MOUSEMOTION:

 pos=event.pos

8. Pygame — Mouse events

Pygame

 18

 print ("x = {}, y = {}".format(pos[0], pos[1]))

Other important functions and attributes in pygame.mouse module are as follows:

pygame.mouse.get_pressed get the state of the mouse buttons

pygame.mouse.get_pos get the mouse cursor position

pygame.mouse.get_rel get the amount of mouse movement

pygame.mouse.set_pos set the mouse cursor position

pygame.mouse.set_visible hide or show the mouse cursor

pygame.mouse.get_visible get the current visibility state of the mouse cursor

pygame.mouse.get_focused check if the display is receiving mouse input

pygame.mouse.set_cursor set the image for the mouse cursor

pygame.mouse.set_system_cursor set the mouse cursor to a system variant

Pygame defines following system cursors:

pygame.SYSTEM_CURSOR_ARROW arrow

pygame.SYSTEM_CURSOR_IBEAM i-beam

pygame.SYSTEM_CURSOR_WAIT wait

pygame.SYSTEM_CURSOR_CROSSHAIR crosshair

pygame.SYSTEM_CURSOR_SIZENWSE double arrow pointing northwest and

southeast

pygame.SYSTEM_CURSOR_SIZENESW double arrow pointing northeast and

southwest

pygame.SYSTEM_CURSOR_SIZEWE double arrow pointing west and east

pygame.SYSTEM_CURSOR_SIZENS double arrow pointing north and south

pygame.SYSTEM_CURSOR_SIZEALL four pointed arrow

pygame.SYSTEM_CURSOR_NO slashed circle or crossbones

pygame.SYSTEM_CURSOR_HAND hand

Following statement will set the game window cursor to crosshair.

pygame.mouse.set_system_cursor(pygame.SYSTEM_CURSOR_CROSSHAIR)

Pygame

 19

Different shapes such as rectangle, circle, ellipse, polygon and line can be drawn on the

game window by using functions in pygame.draw module:

 draw a rectangle rect(surface, color, rect)

 draw a polygon polygon(surface, color, points)

 draw a circle circle(surface, color, center, radius)

 draw an ellipse ellipse(surface, color, rect)

 draw an elliptical arc arc(surface, color, rect, start_angle, stop_angle)

 draw a straight line line(surface, color, start_pos, end_pos, width)

Following example uses these functions to draw different shapes:

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

done = False

red = (255,0,0)

green = (0,255,0)

blue = (0,0,255)

white = (255,255,255)

while not done:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 pygame.draw.rect(screen, red, pygame.Rect(100, 30, 60, 60))

 pygame.draw.polygon(screen, blue,

((25,75),(76,125),(275,200),(350,25),(60,280)))

 pygame.draw.circle(screen, white, (180,180), 60)

 pygame.draw.line(screen, red, (10,200), (300,10), 4)

 pygame.draw.ellipse(screen, green, (250, 200, 130, 80))

9. Pygame —Drawing shapes

Pygame

 20

 pygame.display.update()

Output

If an optional integer parameter is added to the functions, the shape will be drawn with

specified color as outline color. Number corresponds to thickness of the outline and

background color inside the shape.

pygame.draw.rect(screen, red, pygame.Rect(100, 30, 60, 60),1)

pygame.draw.circle(screen, white, (180,180), 60,2)

pygame.draw.ellipse(screen, green, (250, 200, 130, 80),5)

Result

Pygame

 21

Pygame

 22

The pygame.image module contains functions for loading and saving images from file or

file like object. An image is loaded as a Surface object which eventually is rendered on

Pygame display window.

First we obtain a Surface object by load() function.

img = pygame.image.load('pygame.png')

Next we obtain a rect object out of this Surface and then use Surface.blit() function to

render the image:

rect = img.get_rect()

rect.center = 200, 150

screen.blit(img, rect)

The complete program for displaying Pygame logo on the display window is as follows:

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

img = pygame.image.load('pygame.png')

done = False

bg = (127,127,127)

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

 rect = img.get_rect()

 rect.center = 200, 150

 screen.blit(img, rect)

 if event.type == pygame.QUIT:

 done = True

 pygame.display.update()

Output

The output for the above code is as follows:

10. Pygame — Loading image

Pygame

 23

The blit() function can take an optional special-flags parameter with one of the following

values:

BLEND_RGBA_ADD

BLEND_RGBA_SUB

BLEND_RGBA_MULT

BLEND_RGBA_MIN

BLEND_RGBA_MAX

BLEND_RGB_ADD

BLEND_RGB_SUB

BLEND_RGB_MULT

BLEND_RGB_MIN

BLEND_RGB_MAX

The pygame.Surface module also has a convert() function which optimizes the image

format and makes drawing faster.

The pygame.image module has a save() function that saves contents of Surface object to

an image file. Pygame supports the following image formats:

Loading image formats Saving image formats

JPG

PNG

GIF (non-animated)

BMP

BMP

TGA

PNG

JPEG

Pygame

 24

PCX

TGA (uncompressed)

TIF

LBM (and PBM)

PBM (and PGM, PPM)

XPM

Following program draws three circles on the display surface and save it as a circles.png

file using image.save() function.

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

done = False

white=(255,255,255)

red = (255,0,0)

green = (0,255,0)

blue = (0,0,255)

bg = (127,127,127)

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

 if event.type == pygame.QUIT:

 done = True

 pygame.draw.circle(screen, red, (200,150), 60,2)

 pygame.draw.circle(screen, green, (200,150), 80,2)

 pygame.draw.circle(screen, blue, (200,150), 100,2)

 pygame.display.update()

 pygame.image.save(screen, "circles.png")

Output

Pygame

 25

The circles.png should be created in the current working folder.

Pygame

 26

To display text on the Pygame window, we need to obtain a font object first, with the help

of SysFont() function defined in pygame.font module.

Fnt= SysFont(name, size, bold=False, italic=False)

List of fonts installed in current machine can be obtained by get_fonts() function.

fonts = pygame.font.get_fonts()

for f in fonts:

 print(f)

Let us define a font object representing Arial font of 36 point size.

font = pygame.font.SysFont("Arial", 36)

Next we obtain a new Surface object for rendering Hello World text in the newly created

font with render() method of Font object.

txtsurf = font.render("Hello, World", True, white)

First argument is a one-line string, second argument represents antialias. If it is set to

False, the rendered image is an 8-bit image, and 24-bit if true. An optional background

color argument can also be used.

We now need to blit the text Surface at the center of screen window.

screen.blit(txtsurf,(200 - txtsurf.get_width() // 2, 150 - txtsurf.get_height()

// 2))

Following is the complete code:

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

done = False

white=(255,255,255)

red = (255,0,0)

green = (0,255,0)

blue = (0,0,255)

bg = (127,127,127)

11. Pygame — Displaying Text in Window

Pygame

 27

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

 if event.type == pygame.QUIT:

 done = True

 font = pygame.font.SysFont("Arial", 36)

 txtsurf = font.render("Hello, World", True, white)

 screen.blit(txtsurf,(200 - txtsurf.get_width() // 2, 150 -

txtsurf.get_height() // 2))

 pygame.display.update()

Output

In addition to SysFont() method, a Font object can also be obtained from a font file (having

.ttf extension) or a Python file object pointing towards the ttf file. It is also possible to

construct a font object with .ttc file. The font class defines following methods:

 bold() Gets or sets whether the font should be rendered in bold.

 italic() Gets or sets whether the font should be rendered in italics.

 underline() Gets or sets whether the font should be rendered with an

underline.

 render() draw text on a new Surface

 size() calculate size needed to render text

Pygame

 28

 set_underline() control if text is rendered with an underline

 get_underline() check if text will be rendered with an underline

 set_bold() enable fake rendering of bold text

 get_bold() check if text will be rendered bold

 set_italic() enable fake rendering of italic text

 metrics() gets the metrics for each character

 get_italic() check if the text will be rendered italic

 get_linesize() get the line space of the font text

 get_height() get the height of the font

 get_ascent() get the ascent of the font

 get_descent() get the descent of the font

Given below is example to use ttf and ttc files to render text

font1 = pygame.font.SysFont('chalkduster.ttf', 72)

img1 = font1.render('Hello World', True, BLUE)

font2 = pygame.font.SysFont('didot.ttc', 72)

img2 = font2.render('Hello Pygame', True, GREEN)

screen.blit(img1, (20, 50))

screen.blit(img2, (20, 120))

pygame.display.update()

In the above example, a predefined string has been rendered as a surface object. However,

it is possible to read key value of KEYDOWN event to interactively enter a string and

display it.

To begin with, we render an empty string. Next, we define the bounding rectangle and

then a cursor rectangle which is placed to overlap the text bounding rectangle. Each

keystroke identified in KEYDOWN event is appended to original empty string and

repeatedly rendered.

Following code initially displays a blank window. Each letter pressed will be displayed

alongside each other.

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

done = False

white=(255,255,255)

Pygame

 29

red = (255,0,0)

green = (0,255,0)

blue = (0,0,255)

bg = (127,127,127)

text=""

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

 if event.type == pygame.QUIT:

 done = True

 if event.type == pygame.KEYDOWN:

 text=text+event.unicode

 font = pygame.font.SysFont("Arial", 36)

 img = font.render(text, True, white)

 rect = img.get_rect()

 cursor = pygame.Rect(rect.topright, (3, rect.height))

 img = font.render(text, True, white)

 rect.size=img.get_size()

 cursor.topleft = rect.topright

 screen.blit(img,(200 - img.get_width() // 2, 150 - img.get_height() //

2))

 pygame.display.update()

Run the above code and enter some text. Sample output is as follows:

Pygame

 30

Pygame

 31

Movement of an object is an important aspect of any computer game. A computer game

creates illusion of movement by drawing and erasing an object at incremental position.

Following code draws an image by incrementing x coordinate position in an event loop and

erasing it with the background color.

image_filename = 'pygame.png'

import pygame

from pygame.locals import *

from sys import exit

pygame.init()

screen = pygame.display.set_mode((400,300), 0, 32)

pygame.display.set_caption("Moving Image")

img = pygame.image.load(image_filename)

x = 0

while True:

 screen.fill((255,255,255))

 for event in pygame.event.get():

 if event.type == QUIT:

 exit()

 screen.blit(img, (x, 100))

 x= x+0.5

 if x > 400:

 x = x-400

 pygame.display.update()

The Pygame logo image starts displaying at left border and repeatedly shifts towards right.

If it reaches right border, its position is reset to left.

12. Pygame — Moving an image

Pygame

 32

In the following program, the image is displayed at (0,150) position to begin with. When

user presses arrow keys (left, right, up, down), the image changes its location by 5 pixels.

If a KEYDOWN event occurs, the program checks if the key value is K_LEFT, K_RIGHT,

K_UP or K_DOWN. The x coordinate changes by +5 or -5 if it is K_LEFT or K_RIGHT. Value

of y coordinate changes by -5 or +5 if key value is K_UP or K_DOWN.

image_filename = 'pygame.png'

import pygame

from pygame.locals import *

from sys import exit

pygame.init()

screen = pygame.display.set_mode((400,300))

pygame.display.set_caption("Moving with arrows")

img = pygame.image.load(image_filename)

x = 0

y= 150

while True:

 screen.fill((255,255,255))

 screen.blit(img, (x, y))

 for event in pygame.event.get():

 if event.type == QUIT:

 exit()

 if event.type == KEYDOWN:

 if event.key == K_RIGHT:

Pygame

 33

 x= x+5

 if event.key == K_LEFT:

 x=x-5

 if event.key == K_UP:

 y=y-5

 if event.key == K_DOWN:

 y=y+5

 pygame.display.update()

Pygame

 34

If we want to effect diagonal movement of an object on game window, we need to use

numeric key pad keys. While keys 4,6,8 and 2 correspond to left, right, up and down

arrows, num keys 7, 9, 3 and 1 can be used to move the object in up-left, up-right, down-

right and down-left diagonal movements. These keys are identified by Pygame with

following values:

K_KP1 keypad 1

K_KP2 keypad 2

K_KP3 keypad 3

K_KP4 keypad 4

K_KP5 keypad 5

K_KP6 keypad 6

K_KP7 keypad 7

K_KP8 keypad 8

K_KP9 keypad 9

For left, right, up and down arrow press, x and y coordinates are

incremented/decremented as before. For diagonal movement, both coordinates are

changed as per direction. For instance, for K_KP7 key-press, both x and y are decremented

by 5, for K_KP9 x is incremented and y is decremented.

image_filename = 'pygame.png'

import pygame

from pygame.locals import *

from sys import exit

pygame.init()

screen = pygame.display.set_mode((400,300))

pygame.display.set_caption("Moving with arrows")

img = pygame.image.load(image_filename)

x = 0

y= 150

while True:

 screen.fill((255,255,255))

 screen.blit(img, (x, y))

 for event in pygame.event.get():

 if event.type == QUIT:

 exit()

13. Pygame — Moving with Numeric pad keys

Pygame

 35

 if event.type == KEYDOWN:

 if event.key == K_KP6:

 x= x+5

 if event.key == K_KP4:

 x=x-5

 if event.key == K_KP8:

 y=y-5

 if event.key == K_KP2:

 y=y+5

 if event.key == K_KP7:

 x=x-5

 y=y-5

 if event.key == K_KP9:

 x=x+5

 y=y-5

 if event.key == K_KP3:

 x=x+5

 y=y+5

 if event.key == K_KP1:

 x=x-5

 y=y+5

 pygame.display.update()

Pygame

 36

Moving an object according to movement of mouse pointer is easy. The pygame.mouse

module defines get_pos() method. It returns a two-item tuple corresponding to x and y

coordinates of current position of mouse.

(mx,my) = pygame.mouse.get_pos()

After capturing mx and my positions, the image is rendered with the help of bilt() function

on the Surface object at these coordinates.

Following program continuously renders the given image at moving mouse cursor position.

filename = 'pygame.png'

import pygame

from pygame.locals import *

from sys import exit

pygame.init()

screen = pygame.display.set_mode((400,300))

pygame.display.set_caption("Moving with mouse")

img = pygame.image.load(filename)

x = 0

y= 150

while True:

 mx,my=pygame.mouse.get_pos()

 screen.fill((255,255,255))

 screen.blit(img, (mx, my))

 for event in pygame.event.get():

 if event.type == QUIT:

 exit()

 pygame.display.update()

14. Pygame — Moving with mouse

Pygame

 37

The Pygame.Rect class has functionality to store and manipulate rectangular areas. A Rect

object can be constructed from left, top, width and height values. Functions in Rect class

enable copying, moving nd resizing the Rect object.

A Rect object has following virtual attributes:

In addition to movement, Rect class has methods to test collision between rectangles.

copy() Returns a new rectangle having the same position and size as the

original.

move() Returns a new rectangle that is moved by the given offset. The x

and y arguments can be any integer value, positive or negative.

move_ip() Same as the Rect.move() method, but operates in place.

inflate(x,y) Returns a new rectangle with the size changed by the given offset.

Negative values will shrink the rectangle.

inflate_ip(x, y) Same as the Rect.inflate() method, but operates in place.

clamp(Rect) Returns a new rectangle that is moved to be completely inside the

argument Rect.

clip(Rect) Returns a new rectangle that is cropped to be completely inside

the argument Rect.

union(Rect) Returns a new rectangle that completely covers the area of the

two provided rectangles.

union_ip(Rect) Same as the Rect.union() method, but operates in place.

contains(Rect) Returns true when the argument is completely inside the Rect.

collidepoint((x,y)) Returns true if the given point is inside the rectangle.

colliderect(Rect) Returns true if any portion of either rectangle overlap

15. Pygame — Moving Rectangular objects

Pygame

 38

In the following program, a Rect object is drawn with red outline. Using copy() method,

its clone is created for movement. The movement is effected by move_ip() method. The

arrow keys move the position of copied rectangle by incrementing/decrementing x/y

coordinate by + or -5 pixels.

import pygame

from pygame.locals import *

from sys import exit

pygame.init()

screen = pygame.display.set_mode((400,300))

rect1 = Rect(50, 60, 200, 80)

rect2=rect1.copy()

running = True

x=0

y=0

while running:

 for event in pygame.event.get():

 if event.type == QUIT:

 running = False

 if event.type == KEYDOWN:

 if event.key==K_LEFT:

 x= -5

 y=0

 if event.key == K_RIGHT:

 x=5

 y=0

 if event.key == K_UP:

 x = 0

 y = -5

 if event.key == K_DOWN:

 x = 0

 y = 5

 rect2.move_ip(x,y)

Pygame

 39

 screen.fill((127,127,127))

 pygame.draw.rect(screen, (255,0,0), rect1, 1)

 pygame.draw.rect(screen, (0,0,255), rect2, 5)

 pygame.display.update()

pygame.quit()

The following output shows rectangle with red outline is the original rectangle. Its copy

keeps moving responding to arrow keys and has blue outline

Changing the move_ip() method to inflate_ip() method to grow/shrink the rectangle

depending upon the arrow pressed.

while running:

 for event in pygame.event.get():

 if event.type == QUIT:

 running = False

 if event.type == KEYDOWN:

 if event.key==K_LEFT:

 x= -5

 y=0

 if event.key == K_RIGHT:

 x=5

Pygame

 40

 y=0

 if event.key == K_UP:

 x = 0

 y = -5

 if event.key == K_DOWN:

 x = 0

 y = 5

 rect2.inflate_ip(x,y)

 screen.fill((127,127,127))

 pygame.draw.rect(screen, (255,0,0), rect1, 1)

 pygame.draw.rect(screen, (0,0,255), rect2, 5)

 pygame.display.update()

The following is the screenshot of the arrow key-press activity:

To make the rectangle move by detecting MOUSEMOTION event, we need to first press

the mouse inside the original rectangle. To verify whether mouse position is inside the

rectangle, we use collidepoint() method of the Rect object. While the mouse is in motion,

the rectangle object is moved in place by move_ip() method. Movement shall stop when

mouse is released.

import pygame

from pygame.locals import *

Pygame

 41

from sys import exit

pygame.init()

screen = pygame.display.set_mode((400,300))

rect = Rect(50, 60, 200, 80)

moving = False

running = True

while running:

 for event in pygame.event.get():

 if event.type == QUIT:

 running = False

 elif event.type == MOUSEBUTTONDOWN:

 if rect.collidepoint(event.pos):

 moving = True

 elif event.type == MOUSEBUTTONUP:

 moving = False

 elif event.type == MOUSEMOTION and moving:

 rect.move_ip(event.rel)

 screen.fill((127,127,127))

 pygame.draw.rect(screen, (255,0,0), rect)

 if moving:

 pygame.draw.rect(screen, (0,0,255), rect, 4)

 pygame.display.flip()

pygame.quit()

Pygame

 42

To draw rectangle by mouse, capture the mouse pointer coordinates in

MOUSEBUTTONDOWN and MOUSEBUTTONUP events, calculate the topleft coordinates,

width and height and call rect() function.

import pygame

from pygame.locals import *

from sys import exit

pygame.init()

screen = pygame.display.set_mode((400,300))

pygame.display.set_caption("Draw Rectangle with Mouse")

Pygame

 43

screen.fill((127,127,127))

x=0

y=0

w=0

h=0

drawmode=True

running = True

while running:

 for event in pygame.event.get():

 if event.type == QUIT:

 running = False

 if event.type == MOUSEBUTTONDOWN:

 x,y = pygame.mouse.get_pos()

 drawmode = True

 if event.type == MOUSEBUTTONUP:

 x1,y1 = pygame.mouse.get_pos()

 w=x1-x

 h=y1-y

 drawmode= False

 rect = pygame.Rect(x,y,w,h)

 if drawmode == False:

 pygame.draw.rect(screen, (255,0,0), rect)

 pygame.display.flip()

pygame.quit()

Output

Pygame

 44

Pygame

 45

Button is an important element in a typical game window. We can use a text or image

surface object as button, so that when clicked it can fire a certain action.

Let us try to display three buttons with text captions.

text1=font.render(" START ", True, white)

text2=font.render(" PLAY ", True, white)

text3=font.render(" STOP ", True, white)

In order to draw a border around these buttons obtain their Rect object.

rect1 = text1.get_rect(topleft=(10,10))

rect2 = text2.get_rect(topleft= (100,10))

rect3 = text3.get_rect(topleft= (200,10))

Inside the event loop, blit the text buttons with red border around them.

screen.blit(text1, rect1)

pygame.draw.rect(screen, (255,0,0),rect1,2)

screen.blit(text2, rect2)

pygame.draw.rect(screen, (255,0,0),rect2,2)

pygame.draw.rect(screen, (255,0,0),rect3,2)

screen.blit(text3, rect3)

Use collidepoint() function of Rect object to identify which button has been clicked.

if event.type == pygame.MOUSEBUTTONDOWN:

 if rect1.collidepoint(event.pos):

 msg = "START Button was pressed"

 if rect2.collidepoint(event.pos):

 msg = "PLAY Button was pressed"

 if rect3.collidepoint(event.pos):

 msg = "STOP Button was pressed"

Display appropriate message as a text surface:

img=font.render(msg, True, (0,0,255))

imgrect=img.get_rect()

imgrect.center = (200 , 150)

16. Pygame — Use Text as Buttons

Pygame

 46

pygame.draw.rect(screen, bg, imgrect)

screen.blit(img, imgrect)

Following is the complete code:

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

done = False

font = pygame.font.SysFont("Arial", 14)

text1=font.render(" START ", True, white)

text2=font.render(" PLAY ", True, white)

text3=font.render(" STOP ", True, white)

rect1 = text1.get_rect(topleft=(10,10))

rect2 = text2.get_rect(topleft= (100,10))

rect3 = text3.get_rect(topleft= (200,10))

bg = (127,127,127)

msg=" "

screen = pygame.display.set_mode((400,300))

screen.fill(bg)

while not done:

 for event in pygame.event.get():

 screen.blit(text1, rect1)

 pygame.draw.rect(screen, (255,0,0),rect1,2)

 screen.blit(text2, rect2)

 pygame.draw.rect(screen, (255,0,0),rect2,2)

 pygame.draw.rect(screen, (255,0,0),rect3,2)

 screen.blit(text3, rect3)

 if event.type == pygame.QUIT:

 done = True

 if event.type == pygame.MOUSEBUTTONDOWN:

 if rect1.collidepoint(event.pos):

 msg = "START Button was pressed"

 if rect2.collidepoint(event.pos):

Pygame

 47

 msg = "PLAY Button was pressed"

 if rect3.collidepoint(event.pos):

 msg = "STOP Button was pressed"

 img=font.render(msg, True, (0,0,255))

 imgrect=img.get_rect()

 imgrect.center = (200 , 150)

 pygame.draw.rect(screen, bg, imgrect)

 screen.blit(img, imgrect)

 pygame.display.update()

When each button is clicked, display window shows the following output:

Pygame

 48

Pygame

 49

The pygame.ransform module contains definitions of a number of functions for

manipulation of Surface objects obtained out of image or text blocks. Manipulation of a

surface include flipping, rotation, scaling, resizing and zooming the object.

Following functions are found in pygame.transform module:

flip() flip vertically and horizontally

scale() resize to new resolution

rotate() rotate an image

rotozoom() filtered scale and rotation

scale2x() specialized image doubler

smoothscale() scale a surface to an arbitrary size smoothly

get_smoothscale_backend() return smoothscale filter version in use - 'GENERIC',

'MMX', or 'SSE'

set_smoothscale_backend() set smoothscale filter version to one of - 'GENERIC',

'MMX', or 'SSE'

chop() gets a copy of an image with an interior area removed

laplacian() find edges in a surface

average_surfaces() find the average surface from many surfaces.

average_color() finds the average color of a surface

threshold() finds which, and how many pixels in a surface are

within a threshold of a 'search_color' or a 'search_surf'.

Let us first use the flip() function whose syntax is as follows:

flip(Surface, xbool, ybool)

This function can flip the surface object either horizontally, vertically or both. The

orientation is decied by two bool parameters.

To flip the image horizontally, use the following command:

pygame.transform.flip(img2,True, False)

To flip vertically, use the following command:

pygame.transform.flip(img2,False, True)

17. Pygame — Transforming Images

Pygame

 50

In the following example, pygame logo image is displayed normally and flipping in both

directions. First obtained flipped surface from original image object, fetch its Rect object

and then blit it. To render horizontally fliiped image,

img1 = pygame.image.load('pygame.png')

img2=img1

img2=pygame.transform.flip(img2,True, False)

#inside event loop

rect2 = img2.get_rect()

 rect2.center = 200, 150

 screen.blit(img2, rect2)

The complete code for rendering original Pygame logo and its flipped images is as follows:

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

pygame.display.set_caption("Flip image")

img1 = pygame.image.load('pygame.png')

img2=img1

img3=img1

img2=pygame.transform.flip(img2,True, False)

img3=pygame.transform.flip(img3, False, True)

done = False

bg = (127,127,127)

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

 rect1 = img1.get_rect()

 rect1.center = 200, 50

 screen.blit(img1, rect1)

 rect2 = img2.get_rect()

 rect2.center = 200, 150

 screen.blit(img2, rect2)

 rect3 = img3.get_rect()

 rect3.center = 200, 250

 screen.blit(img3, rect3)

Pygame

 51

 if event.type == pygame.QUIT:

 done = True

 pygame.display.update()

The rotate() function takes following arguments:

rotate(Surface, angle)

Negative value of angle rotates the surface in clockwise direction.

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

pygame.display.set_caption("rotate image")

img1 = pygame.image.load('pygame.png')

img2=img1

img3=img1

img2=pygame.transform.rotate(img2,90)

img3=pygame.transform.rotate(img3, -90)

done = False

bg = (127,127,127)

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

Pygame

 52

 rect1 = img1.get_rect()

 rect1.center = 200, 50

 screen.blit(img1, rect1)

 rect2 = img2.get_rect()

 rect2.center = 100, 200

 screen.blit(img2, rect2)

 rect3 = img3.get_rect()

 rect3.center = 300,200

 screen.blit(img3, rect3)

 if event.type == pygame.QUIT:

 done = True

 pygame.display.update()

The laplacian() function extracts outline of the surface object. The function just takes one

argument, the image object itself.

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

pygame.display.set_caption("Laplacian of image")

img1 = pygame.image.load('pygame.png')

Pygame

 53

img2=img1

img2=pygame.transform.laplacian(img2)

done = False

bg = (127,127,127)

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

 rect1 = img1.get_rect()

 rect1.center = 200, 50

 screen.blit(img1, rect1)

 rect2 = img2.get_rect()

 rect2.center = 200, 200

 screen.blit(img2, rect2)

 if event.type == pygame.QUIT:

 done = True

 pygame.display.update()

To make the Surface object move along with mouse movement, calculate the x, y

coordinates from the center of the image. We also calculate the center-mouse distance d.

The atan2(y, x) math function allows to find the rotation angle. We need to transform

radians in degrees. From the distance mouse-center we calculate the scale argument.

mouse = event.pos

Pygame

 54

x = mouse[0] - 200

y = mouse[1] - 150

d = math.sqrt(x ** 2 + y ** 2)

angle = math.degrees(-math.atan2(y, x))

scale = abs(5 * d / 400)

Finally, we use rotzoom() function which performs combined rotation and scaling

transform.

rotozoom(Surface, angle, scale)

Following code renders Pygame logo image that can be rotated in accordance with mouse

movement.

import pygame , math

from pygame.locals import *

pygame.init()

screen = pygame.display.set_mode((400, 300))

pygame.display.set_caption("Move image with mouse")

img1 = pygame.image.load('pygame.png')

done = False

bg = (127,127,127)

while not done:

 for event in pygame.event.get():

 screen.fill(bg)

 if event.type == pygame.QUIT:

 done = True

 if event.type == MOUSEMOTION:

 mouse = event.pos

 x = mouse[0] - 200

 y = mouse[1] - 150

 d = math.sqrt(x ** 2 + y ** 2)

 angle = math.degrees(-math.atan2(y, x))

 scale = abs(5 * d / 400)

 img2 = pygame.transform.rotozoom(img1, angle, scale)

 rect = img2.get_rect()

 rect.center = (200,150)

 screen.blit(img2, rect)

Pygame

 55

 pygame.display.update()

Run above code, try and move mouse cursor along display window. The image shall rotate

and either shrink or grow accordingly.

Pygame

 56

Use of music and sounds make any computer game more engaging. Pygame library

supports this feature through pygame.mixer module. This module contains Sound class

for loading Sound objects and controlling playback. All sound playback is mixed in

background threads. For less laggy sound use a smaller buffer size.

To obtain Sound object from a sound file or file object, use following constructor:

pygame.mixer.Sound(filename or file object)

The Sound class defines following methods for controlling playback:

play(loops=0,

maxtime=0, fade_ms=0)

 Begin playback of the Sound (i.e., on the computer's

speakers) on an available Channel. Loops parameter is for

repeated play.

stop() This will stop the playback of this Sound on any active

Channels.

fadeout(time) This will stop playback of the sound after fading it out over

the time argument in milliseconds.

set_volume(value) This will set the playback volume for this

Sound,immediately affecting the Sound if it is playing and

any future playback of this Sound. volume in the range of

0.0 to 1.0

get_length() Return the length of this Sound in seconds.

In following example, a text button is rendered at the bottom of display window. A space

key fires an arrow upwards accompanied by a sound playing.

font = pygame.font.SysFont("Arial", 14)

text1=font.render(" SHOOT ", True, bg)

rect1 = text1.get_rect(midbottom=(200,300))

img=pygame.image.load("arrow.png")

rect2=img.get_rect(midtop=(200, 270))

Inside the game event loop, for a space key detected, an arrow object is place above the

SHOOT button and repeatedly rendered with decrementing y coordinate. The shooting

sound is also played at the same time.

sound=pygame.mixer.Sound("sound.wav")img=pygame.image.load("arrow.png")

rect2=img.get_rect(midtop=(200, 270))

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_SPACE:

18. Pygame — Sound objects

Pygame

 57

 print ("space")

 if kup==0:

 screen.blit(img, (190,y))

 kup=1

 if kup==1:

 y=y-1

 screen.blit(img, (190,y))

 sound.play()

 if y<=0:

 kup=0

 y=265

Following listing demonstrates use of Sound object.

import pygame

from pygame.locals import *

pygame.init()

screen = pygame.display.set_mode((400, 300))

done = False

white = (255,255,255)

bg = (127,127,127)

sound=pygame.mixer.Sound("sound.wav")

font = pygame.font.SysFont("Arial", 14)

text1=font.render(" SHOOT ", True, bg)

rect1 = text1.get_rect(midbottom=(200,300))

img=pygame.image.load("arrow.png")

rect2=img.get_rect(midtop=(200, 270))

kup=0

psmode=True

screen = pygame.display.set_mode((400,300))

screen.fill(white)

y=265

while not done:

 for event in pygame.event.get():

 screen.blit(text1, rect1)

 pygame.draw.rect(screen, (255,0,0),rect1,2)

Pygame

 58

 if event.type == pygame.QUIT:

 sound.stop()

 done = True

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_SPACE:

 print ("space")

 if kup==0:

 screen.blit(img, (190,y))

 kup=1

 if kup==1:

 y=y-1

 screen.blit(img, (190,y))

 sound.play()

 if y<=0:

 kup=0

 y=265

 pygame.display.update()

Pygame

 59

The Sound object can be played on a specific channel instead of the default channel

automatically chosen. First create a channel object using the following command:

pygame.mixer.Channel(id)

Following functions are defined in the mixer.channel class:

play(Sound, loops=0,

maxtime=0, fade_ms=0)

 This will begin playback of a Sound on a specific Channel.

stop() Stop sound playback on a channel. After playback is

stopped the channel becomes available for new Sounds to

play on it

pause() Temporarily stop the playback of sound on a channel.

unpause() Resume the playback on a paused channel.

set_volume(value) Set the volume (loudness) of a playing sound. The value

argument is between 0.0 and 1.0.

queue(Sound) When a Sound is queued on a Channel, it will begin playing

immediately after the current Sound is finished.

19. Pygame — Mixer channels

Pygame

 60

The mixer also has a special streaming channel for music playback and is accessed through

the pygame.mixer.musicpygame module for controlling streamed audio module. The

difference between the music playback and regular Sound playback is that the music is

streamed, and never actually loaded all at once. The mixer system only supports a single

music stream at once.

First of all, we need to load the music from a music file. Pygame can load WAV, MP3, or

OGG files.

pygame.mixer.music.load(filename or object)

This will load a music filename/file object and prepare it for playback. If a music stream is

already playing it will be stopped. This does not start the music playing. The playback is

controlled by following functions:

play(loops=0, start=0.0, fade_ms = 0)

This will play the loaded music stream. If the music is already playing it will be restarted.

loops argument tells how many times to repeat the music. The music repeats indefinitely

if this argument is set to -1. start denotes the music starts playing from. The position as

time in seconds. fade_ms argument makes the music start playing at 0 volume and fade

up to full volume over the given time.

Other useful functions are given below:

rewind() Resets playback of the current music to the beginning.

stop() Stops the music playback if it is currently playing. It Won't

Unload the music.

pause() Temporarily stop playback of the music stream.

unpause() This will resume the playback of a music stream after it has been

paused.

fadeout(time) Fade out and stop the currently playing music.

set_volume(volume) Set the volume of the music playback.

set_pos(pos) This sets the position in the music file where playback will start.

In the following program, a music file starts playing on clicking PLAY button. The PAUSE

button acts as a toggle to pause/unpause play. Click on STOP stops the playback.

import pygame

pygame.init()

screen = pygame.display.set_mode((400, 300))

20. Pygame — Playing music

Pygame

 61

done = False

white = (255,255,255)

pygame.mixer.music.load("mario_theme.wav")

font = pygame.font.SysFont("Arial", 14)

text1=font.render(" PLAY ", True, white)

text2=font.render(" PAUSE ", True, white)

text3=font.render(" STOP ", True, white)

rect1 = text1.get_rect(topleft=(10,10))

rect2 = text2.get_rect(topleft= (100,10))

rect3 = text3.get_rect(topleft= (200,10))

bg = (127,127,127)

psmode=True

screen = pygame.display.set_mode((400,300))

screen.fill(bg)

while not done:

 for event in pygame.event.get():

 screen.blit(text1, rect1)

 pygame.draw.rect(screen, (255,0,0),rect1,2)

 screen.blit(text2, rect2)

 pygame.draw.rect(screen, (255,0,0),rect2,2)

 pygame.draw.rect(screen, (255,0,0),rect3,2)

 screen.blit(text3, rect3)

 if event.type == pygame.QUIT:

 done = True

 if event.type == pygame.MOUSEBUTTONDOWN:

 if rect1.collidepoint(event.pos):

 pygame.mixer.music.play()

 if rect2.collidepoint(event.pos):

 if psmode==True:

 pygame.mixer.music.pause()

 psmode=False

 else:

 if psmode==False:

 pygame.mixer.music.unpause()

 psmode=True

Pygame

 62

 if rect3.collidepoint(event.pos):

 pygame.mixer.music.stop()

 pygame.display.update()

Pygame

 63

Pygame has discontinued support for video files in its latest version. However, earlier

versions on Python 2.7 distributions, it can be still used. For this section, Pygame 1.9.2

and Python 2.7.18 has been used.

The pygame.movie module supports playback video and audio from basic encoded MPEG-

1 video files. Movie playback happens in background threads, which makes playback easy

to manage. the pygame.mixerpygame module for loading and playing sounds module must

be uninitialized if the movie’s sound is to be played.

To begin with obtain a Movie object by following syntax:

movie = pygame.movie.Movie('sample.mpg')

The Movie class provides following methods to control playback.

pygame.movie.Movie.play start playback of a movie

pygame.movie.Movie.stop stop movie playback

pygame.movie.Movie.pause temporarily stop and resume playback

pygame.movie.Movie.skip advance the movie playback position

pygame.movie.Movie.rewind

 restart the movie playback

pygame.movie.Movie.get_time

 get the current vide playback time

pygame.movie.Movie.get_length

 the total length of the movie in seconds

pygame.movie.Movie.get_size

 get the resolution of the video

pygame.movie.Movie.has_audio

 check if the movie file contains audio

pygame.movie.Movie.set_volume

 set the audio playback volume

pygame.movie.Movie.set_display

 set the video target Surface

Following code plays a .MPG file on the Pygame display window.

import pygame

FPS = 60

21. Pygame — Playing Movie

Pygame

 64

pygame.init()

clock = pygame.time.Clock()

movie = pygame.movie.Movie('sample_640x360.mpg')

screen = pygame.display.set_mode(movie.get_size())

movie_screen = pygame.Surface(movie.get_size()).convert()

movie.set_display(movie_screen)

movie.play()

playing = True

while playing:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 movie.stop()

 playing = False

 screen.blit(movie_screen,(0,0))

 pygame.display.update()

 clock.tick(FPS)

pygame.quit()

Pygame

 65

Earlier versions of Pygame upto 1.9.6 contain pygame.camera module. This module

contains functionality to capture camera feed on the game window and grab an image

from it. The camera devices available to the system are enumerated in a list returned by

list_cameras() method.

pygame.camera.list_cameras()

To initialize a camera object, use camera id, resolution and format arguments.

pygame.camera.Camera(device, (width, height), format)

The default format is RGB. Width and height parameters are by default 640x480.

The camera module has following methods defined in Camera class.

pygame.camera.Camera.start() opens, initializes, and starts capturing

pygame.camera.Camera.stop() stops, uninitializes, and closes the camera

pygame.camera.Camera.get_controls() gets current values of user controls

pygame.camera.Camera.set_controls() changes camera settings if supported by the

camera

pygame.camera.Camera.get_size() returns the dimensions of the images being

recorded

pygame.camera.Camera.query_image() checks if a frame is ready

pygame.camera.Camera.get_image() captures an image as a Surface

pygame.camera.Camera.get_raw() returns an unmodified image as a string

Following programs captures live feed from computer’s default web camera.

import pygame

import pygame.camera

pygame.init()

gameDisplay = pygame.display.set_mode((640,480))

pygame.camera.init()

print (pygame.camera.list_cameras())

cam = pygame.camera.Camera(0)

cam.start()

22. Pygame — Using Camera module

Pygame

 66

while True:

 img = cam.get_image()

 gameDisplay.blit(img,(0,0))

 pygame.display.update()

 for event in pygame.event.get() :

 if event.type == pygame.QUIT :

 cam.stop()

 pygame.quit()

 exit()

Please note that on Windows OS, you may have to install Videocapture module.

 pip3 install VideoCapture

Pygame

 67

Pygame can let you control system cursor. Onlu black and white cursors can be used in

Pygame. The pygame.cursors module defines contain predefined cursor enumerations.

 pygame.cursors.arrow

 pygame.cursors.diamond

 pygame.cursors.broken_x

 pygame.cursors.tri_left

 pygame.cursors.tri_right

The arrow cursor is the default choice. To use another cursor, we use set_cursor() function

in pygame.mouse module.

pygame.mouse.set_cursor(pygame.cursors.broken_x)

In the following example, this cursor can be seen on the display window.

import pygame,sys

from pygame.locals import *

pygame.init()

pygame.mouse.set_cursor(pygame.cursors.broken_x)

canvas=pygame.display.set_mode((400,300))

pygame.display.set_caption("Cursor")

while True:

 for event in pygame.event.get():

 if(event.type == QUIT):

 pygame.quit()

 sys.exit(1)

Output

23. Pygame — Load cursor

Pygame

 68

This module also contains a few cursors as formatted strings. To use them, use

pygame.cursors.compile() function.

 pygame.cursors.thickarrow_strings

 pygame.cursors.sizer_x_strings

 pygame.cursors.sizer_y_strings

 pygame.cursors.sizer_xy_strings

 pygame.cursor.textmarker_strings

cursor = pygame.cursors.compile(pygame.cursors.textmarker_strings)

pygame.mouse.set_cursor((10,10), (0, 0), *cursor)

Pygame

 69

The pygame library has pygame.cdrom module that enables the program to manage

playback from audio CDs and DVDs. We need to explicitly initialize this module for its use.

>>> import pygame

>>> pygame.cdrom.init()

The module defines all important CD class to represent the CDROM device. The constructor

requires ID of CDROM drive available, starting with 0.

>>> obj=pygame.cdrom.CD(0)

The CDROM object has access to following useful functions to control the playback.

init() initialize a cdrom drive for use

quit() uninitialize a cdrom drive for use

play() start playing audio

stop() stop audio playback

pause() temporarily stop audio playback

resume() unpause audio playback

eject() eject or open the cdrom drive

get_busy() true if the drive is playing audio

get_paused() true if the drive is paused

get_empty() False if a cdrom is in the drive

get_numtracks() the number of tracks on the cdrom

get_track_audio() true if the cdrom track has audio data

get_track_start() start time of a cdrom track

get_track_length() length of a cdrom track

First, initialize the object.

>>> obj.init()

To find out how many tracks are present in the current CD:

>>> obj.get_numtracks()

8

24. Pygame — Access CDROM

Pygame

 70

To start playing the required track, give its number to play() function.

>>> obj.play(4)

To pause, resume and stop the playback, we can use relevant functions listed above.

Pygame

 71

Any bitmap that is drawn in our game window and that can move around is called a Sprite.

The pygame.sprite module contains classes and functionality useful in game development.

Along with a Sprite class to create collection of sprite objects, there are functions that

enable collision of sprite objects.

The Sprite class serves as a base class for different objects in the game. You may have to

put one more objects in groups. for that purpose, group classes are also provided.

Let us first develop a Sprite class by subclassing the sprite.Sprite class. Each object of this

Block class is a rectangular block filled with black color.

class Block(pygame.sprite.Sprite):

 def __init__(self, color, width, height):

 super().__init__()

 self.image = pygame.Surface([width, height])

 self.image.fill(color)

 self.rect = self.image.get_rect()

We shall create 50 block objects and put them in a list.

for i in range(50):

 block = Block(BLACK, 20, 15)

 # Set a random location for the block

 block.rect.x = random.randrange(screen_width)

 block.rect.y = random.randrange(screen_height)

 # Add the block to the list of objects

 block_list.add(block)

 all_sprites_list.add(block)

We create a block with red color call it player, and add it too to the list.

Create a RED player block

player = Block(RED, 20, 15)

25. Pygame — The Sprite Module

Pygame

 72

all_sprites_list.add(player)

Inside the game’s event loop, detect the collision of red block (player) as it moves along

with mouse motion and black block and count the collisions.

The event loop code is as follows:

while not done:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 done = True

 # Clear the screen

 screen.fill(WHITE)

 # Get the current mouse position. This returns the position

 # as a list of two numbers.

 pos = pygame.mouse.get_pos()

 # Fetch the x and y out of the list,

 # just like we'd fetch letters out of a string.

 # Set the player object to the mouse location

 player.rect.x = pos[0]

 player.rect.y = pos[1]

 # See if the player block has collided with anything.

 blocks_hit_list = pygame.sprite.spritecollide(player, block_list, True)

 # Check the list of collisions.

 for block in blocks_hit_list:

 score += 1

 print(score)

 # Draw all the spites

 all_sprites_list.draw(screen)

 # Go ahead and update the screen with what we've drawn.

 pygame.display.flip()

Pygame

 73

 # Limit to 60 frames per second

 clock.tick(60)

pygame.quit()

Run the above code. Move the player block to capture as many black blocks. The score

will be echoed on the console.

Pygame

 74

OpenGL is a cross-language, cross-platform API for rendering 2D and 3D vector graphics.

By interacting with a graphics processing unit (GPU), it achieves hardware-accelerated

rendering. PyOpenGL library is Python’s binding for OpenGL.

We need to install it using pip utility:

pip3 install pyopengl

First we shall import functions from OpenGL.GL and OpenGL.GLU (utility functions)

modules.

OpenGL specifies objects within the space by defining vertices or nodes. Lines between

vertices are called edges. The OpenGL code is written between glBegin and glEnd.

In our example, we shall draw a cube with following vertices and edges:

verticies = (

 (1, -1, -1),

 (1, 1, -1),

 (-1, 1, -1),

 (-1, -1, -1),

 (1, -1, 1),

 (1, 1, 1),

 (-1, -1, 1),

 (-1, 1, 1)

)

edges = (

 (0,1),

 (0,3),

 (0,4),

 (2,1),

 (2,3),

 (2,7),

 (6,3),

 (6,4),

 (6,7),

 (5,1),

26. Pygame — PyOpenGL

Pygame

 75

 (5,4),

 (5,7)

)

The cube() function performs OpenGL drawing:

def Cube():

 glBegin(GL_LINES)

 for edge in edges:

 for vertex in edge:

 glVertex3fv(verticies[vertex])

 glEnd()

The GL_LINES attribute to glBegin() tells that lines are to be drawn.

We need to specify OPENGL and DOUBLEBUF flags in set_mode() function that sets up the

display.

pygame.display.set_mode(display, DOUBLEBUF|OPENGL)

Then call the gluPerspective() determines the perspective. The first parameter is the

degree of the field of view. The second value is the aspect ratio. The next two values here

are the znear and zfar, which are the near and far clipping planes.

gluPerspective(45, (display[0]/display[1]), 0.1, 50.0)

glTranslatef(0.0,0.0, -5)

Inside the Pygame event loop, first rotate the current matrix, clear the color buffer and

depth buffer, and call cube() function. Finally, we update the display window.

while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 quit()

 glRotatef(1, 3, 1, 1)

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 Cube()

 pygame.display.flip()

 pygame.time.wait(10)

The complete code of the example is as follows:

import pygame

Pygame

 76

from pygame.locals import *

from OpenGL.GL import *

from OpenGL.GLU import *

verticies = (

 (1, -1, -1),

 (1, 1, -1),

 (-1, 1, -1),

 (-1, -1, -1),

 (1, -1, 1),

 (1, 1, 1),

 (-1, -1, 1),

 (-1, 1, 1)

)

edges = (

 (0,1),

 (0,3),

 (0,4),

 (2,1),

 (2,3),

 (2,7),

 (6,3),

 (6,4),

 (6,7),

 (5,1),

 (5,4),

 (5,7)

)

def Cube():

 glBegin(GL_LINES)

 for edge in edges:

 for vertex in edge:

 glVertex3fv(verticies[vertex])

Pygame

 77

 glEnd()

def main():

 pygame.init()

 display = (800,600)

 pygame.display.set_mode(display, DOUBLEBUF|OPENGL)

 gluPerspective(45, (display[0]/display[1]), 0.1, 50.0)

 glTranslatef(0.0,0.0, -5)

 while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 quit()

 glRotatef(1, 3, 1, 1)

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

 Cube()

 pygame.display.flip()

 pygame.time.wait(10)

main()

Run the above code. You will see a rotating cube on Pygame’s window surface. This is a

short demonstration of capability of PyOpenGL. A detailed discussion of this library is

beyond the scope of this tutorial.

Pygame

 78

Pygame

 79

Top level pygame module defines pygame.error as a standard Pygame exception. This

exception is raised whenever a pygame or SDL operation fails. You can catch any

anticipated problems and deal with the error. The exception is always raised with a

descriptive message about the problem.

>>> import pygame

pygame 1.9.6

Hello from the pygame community. https://www.pygame.org/contribute.html

>>> screen = pygame.display.set_mode((640, -1))

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in <module>

 screen = pygame.display.set_mode((640, -1))

pygame.error: Cannot set negative sized display mode

Being derived from the RuntimeError exception, which can also be used to catch these

raised errors.

>>> try:

 screen = pygame.display.set_mode((640, -1))

except pygame.error as e:

 print ("unable to set display: ", e)

unable to set display Cannot set: negative sized display mode

There are two more functions in this module to set and retrieve error message.

set_error(error_msg)

SDL maintains an internal error message. When pygame.error()standard pygame

exception is raised, this string is used as error message.

It gets the current error message.

get_error()

It returns the string as error message of pygame.error() message.

27. Pygame — Errors and Exception

