
Plotly

 i

Plotly

 ii

About the Tutorial

This tutorial is about Canada based technical computing company Plotly which is also

known for its URL. Here, you will learn about how to develop data analytics and

visualization tools. Moreover, this tutorial describes the features of Plotly’s Python

graphing library to make interactive and publication-ready graphs for both online and

offline viewing.

Audience

The tutorial is aptly designed for all those who are passionate about learning online

graphing, analytics, and statistics tools. Furthermore, it is for those individuals who have

keen interest in understanding how Plotly helps in providing tools for scientific graphing

libraries of the computer programming languages such as Python, R, MATLAB, Perl, Julia,

Arduino, and REST.

Prerequisites

To work with Plotly, you need to create an account on the official website. The details

about how to create an account and get login is discussed in the tutorial. If you are novice

to knowledge about data analytics, visualization tools or any of the programming

languages like Python, R, MATLAB, Arduino, REST, Julia and Perl, we suggest you to go

through tutorials related to these before proceeding with this tutorial.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Plotly

 iii

Table of Contents

About the Tutorial ... ii

Audience .. ii

Prerequisites .. ii

Copyright & Disclaimer .. ii

Table of Contents ... iii

1. Plotly — Introduction .. 1

2. Plotly — Environment Setup ... 2

Installation of Python package .. 2

3. Plotly — Online and Offline Plotting ... 6

Settings for online plotting .. 6

Setting for Offline Plotting ... 8

4. Plotly — Plotting Inline with Jupyter Notebook .. 10

5. Plotly — Package Structure ... 12

6. Plotly — Exporting to Static Images .. 14

7. Plotly — Legends .. 16

8. Plotly — Format Axis and Ticks ... 18

Plot with Axis and Tick ... 18

Plot with Multiple Axes ... 20

9. Plotly — Subplots and Inset Plots.. 22

Making Subplots .. 22

Inset Plots .. 24

10. Plotly — Bar Chart and Pie Chart ... 26

Bar Chart .. 26

Pie chart ... 29

11. Plotly — Scatter Plot, Scattergl Plot and Bubble Charts... 33

Scatter Plot .. 33

Plotly

 iv

Scattergl Plot ... 34

Bubble charts ... 35

12. Plotly — Dot Plots and Table ... 38

Dot Plots .. 38

Table in Plotly .. 39

13. Plotly — Histogram ... 42

14. Plotly — Box Plot, Violin Plot and Contour Plot... 45

Box Plot .. 45

Violin Plot .. 47

Contour plot .. 48

Quiver plot ... 50

15. Plotly — Distplots, Density Plot and Error Bar Plot.. 52

Distplots ... 52

Density Plot ... 53

Error Bar Plot ... 54

16. Plotly — Heatmap ... 58

17. Plotly — Polar Chart and Radar Chart ... 60

Polar Chart ... 60

Radar chart .. 62

18. Plotly — OHLC Chart, Waterfall Chart and Funnel Chart ... 64

OHLC Chart .. 64

Waterfall chart .. 66

Funnel Chart .. 67

19. Plotly — 3D Scatter and Surface Plot .. 68

3D Scatter Plot ... 68

3D Surface Plot .. 69

20. Plotly — Adding Buttons/Dropdown ... 71

21. Plotly — Slider Control .. 78

Plotly

 v

22. Plotly — FigureWidget Class ... 80

23. Plotly with Pandas and Cufflinks ... 84

Pandas dataframes from databases .. 86

24. Plotly with Matplotlib and Chart Studio .. 87

Matplotlib .. 87

Chart Studio ... 88

Plotly

 1

Plotly is a Montreal based technical computing company involved in development of data

analytics and visualisation tools such as Dash and Chart Studio. It has also developed

open source graphing Application Programming Interface (API) libraries for Python, R,

MATLAB, Javascript and other computer programming languages.

Some of the important features of Plotly are as follows:

 It produces interactive graphs.

 The graphs are stored in JavaScript Object Notation (JSON) data format so that

they can be read using scripts of other programming languages such as R, Julia,

MATLAB etc.

 Graphs can be exported in various raster as well as vector image formats

1. Plotly — Introduction

Plotly

 2

This chapter focusses on how to do the environmental set up in Python with the help of

Plotly.

Installation of Python package

It is always recommended to use Python’s virtual environment feature for installation of a

new package. Following command creates a virtual environment in the specified folder.

python -m myenv

To activate the so created virtual environment run activate script in bin sub folder as

shown below.

source bin/activate

Now we can install plotly’s Python package as given below using pip utility.

pip install plotly

You may also want to install Jupyter notebook app which is a web based interface to

Ipython interpreter.

pip install jupyter notebook

Firstly, you need to create an account on website which is available at https://plot.ly. You

can sign up by using the link mentioned herewith https://plot.ly/api_signup and then log

in successfully.

2. Plotly — Environment Setup

https://plot.ly/
https://plot.ly/api_signup

Plotly

 3

Next, obtain the API key from settings page of your dashboard.

Plotly

 4

Use your username and API key to set up credentials on Python interpreter session.

import plotly

plotly.tools.set_credentials_file(username='test',

api_key='********************')

A special file named credentials is created in .plotly subfolder under your home

directory. It looks similar to the following:

{

"username": "test",

"api_key": "********************",

"proxy_username": "",

Plotly

 5

"proxy_password": "",

"stream_ids": []

}

In order to generate plots, we need to import the following module from plotly package:

import plotly.plotly as py

import plotly.graph_objs as go

plotly.plotly module contains the functions that will help us communicate with the Plotly

servers. Functions in plotly.graph_objs module generates graph objects.

Plotly

 6

The following chapter deals with the settings for the online and offline plotting. Let us first

study the settings for online plotting.

Settings for online plotting

Data and graph of online plot are save in your plot.ly account. Online plots are

generated by two methods both of which create a unique url for the plot and save it in

your Plotly account.

 py.plot() : returns the unique url and optionally open the url.

 py.iplot() : when working in a Jupyter Notebook to display the plot in the

notebook.

We shall now display simple plot of angle in radians vs. its sine value. First, obtain

ndarray object of angles between 0 and 2π using arange() function from numpy library.

This ndarray object serves as values on x axis of the graph. Corresponding sine values of

angles in x which has to be displayed on y axis are obtained by following statements:

import numpy as np

import math #needed for definition of pi

xpoints=np.arange(0, math.pi*2, 0.05)

ypoints=np.sin(xpoints)

Next, create a scatter trace using Scatter() function in graph_objs module.

trace0 = go.Scatter(

x=xpoints,

y=ypoints

)

data = [trace0]

Use above list object as argument to plot() function.

py.plot(data, filename = 'Sine wave', auto_open=True)

Save following script as plotly1.py

import plotly

plotly.tools.set_credentials_file(username='lathkar',

api_key='********************')

import plotly.plotly as py

import plotly.graph_objs as go

3. Plotly — Online and Offline Plotting

Plotly

 7

import numpy as np

import math #needed for definition of pi

xpoints=np.arange(0, math.pi*2, 0.05)

ypoints=np.sin(xpoints)

trace0 = go.Scatter(

x=xpoints, y=ypoints

)

data = [trace0]

py.plot(data, filename = 'Sine wave', auto_open=True)

Execute the above mentioned script from command line. Resultant plot will be displayed

in the browser at specified URL as stated below.

$ python plotly1.py

High five! You successfully sent some data to your account on plotly. View your

plot in your browser at https://plot.ly/~lathkar/0

Just above the displayed graph, you will find tabs Plot, Data, Python &Rand Forking history.

Plotly

 8

Currently, Plot tab is selected. The Data tab shows a grid containing x and y data points.

From Python & R tab, you can view code corresponding to current plot in Python, R, JSON,

Matlab etc. Following snapshot shows Python code for the plot as generated above:

Setting for Offline Plotting

Plotly allows you to generate graphs offline and save them in local machine. The

plotly.offline.plot() function creates a standalone HTML that is saved locally and opened

inside your web browser.

Use plotly.offline.iplot() when working offline in a Jupyter Notebook to display the

plot in the notebook.

Note: Plotly's version 1.9.4+ is needed for offline plotting.

Change plot() function statement in the script and run. A HTML file named temp-

plot.html will be created locally and opened in web browser.

plotly.offline.plot({ "data": data,"layout": go.Layout(title="hello world")},

auto_open=True)

Plotly

 9

Plotly

 10

In this chapter, we will study how to do inline plotting with the Jupyter Notebook.

In order to display the plot inside the notebook, you need to initiate plotly’s notebook

mode as follows:

from plotly.offline import init_notebook_mode

init_notebook_mode(connected=True)

Keep rest of the script as it is and run the notebook cell by pressing Shift+Enter. Graph

will be displayed offline inside the notebook itself.

import plotly

plotly.tools.set_credentials_file(username='lathkar', api_key='************')

from plotly.offline import iplot, init_notebook_mode

init_notebook_mode(connected=True)

import plotly

import plotly.graph_objs as go

import numpy as np

import math #needed for definition of pi

xpoints=np.arange(0, math.pi*2, 0.05)

ypoints=np.sin(xpoints)

trace0 = go.Scatter(

x=xpoints, y=ypoints

)

data = [trace0]

plotly.offline.iplot({ "data": data,"layout": go.Layout(title="Sine wave")})

Jupyter notebook output will be as shown below:

4. Plotly — Plotting Inline with Jupyter
Notebook

Plotly

 11

The plot output shows a tool bar at top right. It contains buttons for download as png,

zoom in and out, box and lasso, select and hover.

Plotly

 12

Plotly Python package has three main modules which are given below:

 plotly.plotly

 plotly.graph_objs

 plotly.tools

The plotly.plotly module contains functions that require a response from Plotly's servers.

Functions in this module are interface between your local machine and Plotly.

The plotly.graph_objs module is the most important module that contains all of the

class definitions for the objects that make up the plots you see. Following graph objects

are defined:

 Figure,

 Data,

 Layout,

 Different graph traces like Scatter, Box, Histogram etc.

All graph objects are dictionary- and list-like objects used to generate and/or modify every

feature of a Plotly plot.

The plotly.tools module contains many helpful functions facilitating and enhancing the

Plotly experience. Functions for subplot generation, embedding Plotly plots in IPython

notebooks, saving and retrieving your credentials are defined in this module.

A plot is represented by Figure object which represents Figure class defined in

plotly.graph_objs module. It’s constructor needs following parameters:

import plotly.graph_objs as go

fig=go.Figure(data, layout, frames)

5. Plotly — Package Structure

Plotly

 13

The data parameter is a list object in Python. It is a list of all the traces that you wish to

plot. A trace is just the name we give to a collection of data which is to be plotted. A trace

object is named according to how you want the data displayed on the plotting surface.

Plotly provides number of trace objects such as scatter, bar, pie, heatmap etc. and each

is returned by respective functions in graph_objs functions. For example: go.scatter()

returns a scatter trace.

import numpy as np

import math #needed for definition of pi

xpoints=np.arange(0, math.pi*2, 0.05)

ypoints=np.sin(xpoints)

trace0 = go.Scatter(

x=xpoints, y=ypoints

)

data = [trace0]

The layout parameter defines the appearance of the plot, and plot features which are

unrelated to the data. So we will be able to change things like the title, axis titles,

annotations, legends, spacing, font and even draw shapes on top of your plot.

layout=go.Layout(title="Sine wave", xaxis={'title':'angle'},

yaxis={'title':'sine'})

A plot can have plot title as well as axis title. It also may have annotations to indicate

other descriptions.

Finally, there is a Figure object created by go.Figure() function. It is a dictionary-like

object that contains both the data object and the layout object. The figure object is

eventually plotted.

py.iplot(fig)

Plotly

 14

Outputs of offline graphs can be exported to various raster and vector image formats. For

that purpose, we need to install two dependencies – orca and psutil.

Orca

Orca stands for Open-source Report Creator App. It is an Electron app that generates

images and reports of plotly graphs, dash apps, dashboards from the command line. Orca

is the backbone of Plotly's Image Server.

psutil

psutil (python system and process utilities) is a cross-platform library for retrieving

information on running processes and system utilization in Python. It implements many

functionalities offered by UNIX command line tools such as: ps, top, netstat, ifconfig,

who, etc. psutil supports all major operating systems such as Linux, Windows and MacOs.

Installation of Orca and psutil

If you are using Anaconda distribution of Python, installation of orca and psutil is very

easily done by conda package manager as follows:

conda install -c plotly plotly-orca psutil

Since, orca is not available in PyPi repository. You can instead use npm utility to install

it.

npm install -g electron@1.8.4 orca

Use pip to install psutil

pip install psutil

If you are not able to use npm or conda, prebuilt binaries of orca can also be downloaded

from the following website which is available at https://github.com/plotly/orca/releases.

To export Figure object to png, jpg or WebP format, first, import plotly.io module

import plotly.io as pio

Now, we can call write_image() function as follows:

pio.write_image(fig, ‘sinewave.png’)

pio.write_image(fig, ‘sinewave.jpeg’)

pio.write_image(fig,’sinewave.webp)

The orca tool also supports exporting plotly to svg, pdf and eps formats.

6. Plotly — Exporting to Static Images

https://github.com/plotly/orca/releases

Plotly

 15

Pio.write_image(fig, ‘sinewave.svg’)

pio.write_image(fig, ‘sinewave.pdf’)

In Jupyter notebook, the image object obtained by pio.to_image() function can be

displayed inline as follows:

Plotly

 16

By default, Plotly chart with multiple traces shows legends automatically. If it has only one

trace, it is not displayed automatically. To display, set showlegend parameter of Layout

object to True.

layout=go.Layoyt(showlegend=True)

Default labels of legends are trace object names. To set legend label explicitly set name

property of trace.

In following example, two scatter traces with name property are plotted.

import numpy as np

import math #needed for definition of pi

xpoints=np.arange(0, math.pi*2, 0.05)

y1=np.sin(xpoints)

y2=np.cos(xpoints)

trace0 = go.Scatter(

x=xpoints,

y=y1,

name='Sine'

)

trace1 = go.Scatter(

x=xpoints,

y=y2,

name='cos'

)

data = [trace0, trace1]

layout=go.Layout(title="Sine and cos", xaxis={'title':'angle'},

yaxis={'title':'value'})

fig = go.Figure(data=data, layout=layout)

iplot(fig)

The plot appears as below:

7. Plotly — Legends

Plotly

 17

Plotly

 18

You can configure appearance of each axis by specifying the line width and color. It is also

possible to define grid width and grid color. Let us learn about the same in detail in this

chapter.

Plot with Axis and Tick

In the Layout object’s properties, setting showticklabels to true will enable ticks. The

tickfont property is a dict object specifying font name, size, color, etc. The tickmode

property can have two possible values — linear and array. If it is linear, the position of

starting tick is determined by tick0 and step between ticks by dtick properties.

If tickmode is set to array, you have to provide list of values and labels as tickval and

ticktext properties.

The Layout object also has Exponentformat attribute set to ‘e’ will cause tick values to

be displayed in scientific notation. You also need to set showexponent property to ‘all’.

We now format the Layout object in above example to configure x and y axis by specifying

line, grid and title font properties and tick mode, values and font.

layout=go.Layout(

title="Sine and cos",

xaxis=dict(title='angle',

showgrid=True,

zeroline=True,

showline=True,

showticklabels=True,

gridwidth=1

),

yaxis=dict(

showgrid=True,

zeroline=True,

showline=True,

gridcolor='#bdbdbd',

gridwidth=2,

zerolinecolor='#969696',

zerolinewidth=2,

linecolor='#636363',

8. Plotly — Format Axis and Ticks

Plotly

 19

linewidth=2,

title='VALUE',

titlefont=dict(

family='Arial, sans-serif',

size=18,

color='lightgrey'

),

showticklabels=True,

tickangle=45,

tickfont=dict(

family='Old Standard TT, serif',

size=14,

color='black'

),

tickmode = 'linear',

tick0 = 0.0,

dtick = 0.25

))

Plotly

 20

Plot with Multiple Axes

Sometimes it is useful to have dual x or y axes in a figure; for example, when plotting

curves with different units together. Matplotlib supports this with the twinx

and twiny functions. In the following example, the plot has dual y axes, one showing

exp(x) and other showing log(x)

x=np.arange(1,11)

y1=np.exp(x)

y2=np.log(x)

trace1 = go.Scatter(

x=x,

y=y1,

name='exp'

)

trace2 = go.Scatter(

x=x,

y=y2,

name='log',

yaxis='y2'

)

data = [trace1, trace2]

layout = go.Layout(

title='Double Y Axis Example',

yaxis=dict(

title='exp',zeroline=True,

showline=True

),

yaxis2=dict(

title='log',

zeroline=True,

showline=True,

overlaying='y',

side='right'

)

)

Plotly

 21

fig = go.Figure(data=data, layout=layout)

iplot(fig)

Here, additional y axis is configured as yaxis2 and appears on right side, having ‘log’ as

title. Resultant plot is as follows:

Plotly

 22

Here, we will understand the concept of subplots and inset plots in Plotly.

Making Subplots

Sometimes it is helpful to compare different views of data side by side. This supports the

concept of subplots. It offers make_subplots() function in plotly.tools module. The

function returns a Figure object.

The following statement creates two subplots in one row.

fig = tools.make_subplots(rows=1, cols=2)

We can now add two different traces (the exp and log traces in example above) to the

figure.

fig.append_trace(trace1, 1, 1)

fig.append_trace(trace2, 1, 2)

The Layout of figure is further configured by specifying title, width, height, etc. using

update() method.

fig['layout'].update(height=600, width=800, title='subplots')

Here's the complete script:

from plotly import tools

import plotly.plotly as py

import plotly.graph_objs as go

from plotly.offline import iplot, init_notebook_mode

init_notebook_mode(connected=True)

import numpy as np

x=np.arange(1,11)

y1=np.exp(x)

y2=np.log(x)

trace1 = go.Scatter(

x=x,

y=y1,

name='exp'

)

trace2 = go.Scatter(

9. Plotly — Subplots and Inset Plots

Plotly

 23

x=x,

y=y2,

name='log'

)

fig = tools.make_subplots(rows=1, cols=2)

fig.append_trace(trace1, 1, 1)

fig.append_trace(trace2, 1, 2)

fig['layout'].update(height=600, width=800, title='subplot')

iplot(fig)

This is the format of your plot grid: [(1,1) x1,y1] [(1,2) x2,y2]

Plotly

 24

Inset Plots

To display a subplot as inset, we need to configure its trace object. First the xaxis and

yaxis properties of inset trace to ‘x2’ and ‘y2’ respectively. Following statement puts ‘log’

trace in inset.

trace2 = go.Scatter(

x=x,

y=y2,

xaxis='x2',

yaxis='y2',

name='log'

)

Secondly, configure Layout object where the location of x and y axes of inset is defined by

domain property that specifies is position with respective to major axis.

xaxis2=dict(

domain=[0.1, 0.5],

anchor='y2'

),

yaxis2=dict(

domain=[0.5, 0.9],

anchor='x2'

)

Complete script to display log trace in inset and exp trace on main axis is given below:

trace1 = go.Scatter(

x=x,

y=y1,

name='exp'

)

trace2 = go.Scatter(

x=x,

y=y2,

xaxis='x2',

yaxis='y2',

name='log'

)

data = [trace1, trace2]

Plotly

 25

layout = go.Layout(

yaxis=dict(showline=True),

xaxis2=dict(

domain=[0.1, 0.5],

anchor='y2'

),

yaxis2=dict(

showline=True,

domain=[0.5, 0.9],

anchor='x2'

)

)

fig = go.Figure(data=data, layout=layout)

iplot(fig)

The output is mentioned below:

Plotly

 26

In this chapter, we will learn how to make bar and pie charts with the help of Plotly. Let

us begin by understanding about bar chart.

Bar Chart

A bar chart presents categorical data with rectangular bars with heights or lengths

proportional to the values that they represent. Bars can be displayed vertically or

horizontally. It helps to show comparisons among discrete categories. One axis of the

chart shows the specific categories being compared, and the other axis represents a

measured value.

Following example plots a simple bar chart about number of students enrolled for different

courses. The go.Bar() function returns a bar trace with x coordinate set as list of subjects

and y coordinate as number of students.

import plotly.graph_objs as go

langs=['C', 'C++', 'Java', 'Python', 'PHP']

students=[23,17,35,29,12]

data = [go.Bar(

x=langs,

y=students

)]

fig = go.Figure(data=data)

iplot(fig)

The output will be as shown below:

10. Plotly — Bar Chart and Pie Chart

Plotly

 27

To display a grouped bar chart, the barmode property of Layout object must be set to

group. In the following code, multiple traces representing students in each year are

plotted against subjects and shown as grouped bar chart.

branches=['CSE', 'Mech', 'Electronics']

fy=[23,17,35]

sy=[20, 23, 30]

ty=[30,20,15]

trace1 = go.Bar(

x=branches,

y=fy,

name='FY'

)

trace2 = go.Bar(

x=branches,

y=sy,

name='SY'

)

trace3 = go.Bar(

Plotly

 28

x=branches,

y=ty,

name='TY'

)

data=[trace1, trace2, trace3]

layout=go.Layout(barmode='group')

fig = go.Figure(data=data, layout=layout)

iplot(fig)

The output of the same is as follows:

The barmode property determines how bars at the same location coordinate are displayed

on the graph. Defined values are "stack" (bars stacked on top of one another), "relative",

(bars are stacked on top of one another, with negative values below the axis, positive

values above), "group" (bars plotted next to one another).

By changing barmode property to ‘stack’ the plotted graph appears as below:

Plotly

 29

Pie chart

A Pie Chart displays only one series of data. Pie charts show the size of items (called

wedge) in one data series, proportional to the sum of the items. Data points are shown

as a percentage of the whole pie.

The pie() function in graph_objs module – go.Pie(), returns a Pie trace. Two required

arguments are labels and values. Let us plot a simple pie chart of language courses vs

number of students as in the example given herewith.

import plotly

plotly.tools.set_credentials_file(username='lathkar',

api_key='U7vgRe1hqmRp4ZNf4PTN')

from plotly.offline import iplot, init_notebook_mode

init_notebook_mode(connected=True)

import plotly.graph_objs as go

langs=['C', 'C++', 'Java', 'Python', 'PHP']

students=[23,17,35,29,12]

trace = go.Pie(labels=langs, values=students)

data=[trace]

fig = go.Figure(data=data)

iplot(fig)

Plotly

 30

Following output is displayed in Jupyter notebook:

Donut chart is a pie chart with a round hole in the center which makes it look like a

donut. In the following example, two donut charts are displayed in 1X2 grid layout. While

‘label’ layout is same for both pie traces, row and column destination of each subplot is

decided by domain property.

For this purpose, we use the data of party-wise seats and vote share in 2019 parliamentary

elections. Enter the following code in Jupyter notebook cell:

parties=['BJP', 'CONGRESS', 'DMK', 'TMC', 'YSRC', 'SS', 'JDU','BJD',

'BSP','OTH']

seats=[303,52,23,22,22,18,16,12,10, 65]

percent=[37.36, 19.49, 2.26, 4.07, 2.53, 2.10, 1.46, 1.66, 3.63, 25.44]

import plotly.graph_objs as go

data1={

"values": seats,

"labels": parties,

"domain": {"column": 0},

"name": "seats",

"hoverinfo":"label+percent+name",

"hole": .4,

"type": "pie"

}

data2={

Plotly

 31

"values": percent,

"labels": parties,

"domain": {"column": 1},

"name": "vote share",

"hoverinfo":"label+percent+name",

"hole": .4,

"type": "pie"

}

data=[data1,data2]

layout=go.Layout(

{

"title":"Parliamentary Election 2019",

"grid": {"rows": 1, "columns": 2},

"annotations": [

{

"font": {

"size": 20

},

"showarrow": False,

"text": "seats",

"x": 0.20,

"y": 0.5

},

{

"font": {

"size": 20

},

"showarrow": False,

"text": "votes",

"x": 0.8,

"y": 0.5

}

]

}

)

fig = go.Figure(data=data, layout=layout)

Plotly

 32

iplot(fig)

The output of the same is given below:

Plotly

 33

This chapter emphasizes on details about Scatter Plot, Scattergl Plot and Bubble Charts.

First, let us study about Scatter Plot.

Scatter Plot

Scatter plots are used to plot data points on a horizontal and a vertical axis to show how

one variable affects another. Each row in the data table is represented by a marker whose

position depends on its values in the columns set on the X and Y axes.

The scatter() method of graph_objs module (go.Scatter) produces a scatter trace. Here,

the mode property decides the appearance of data points. Default value of mode is lines

which displays a continuous line connecting data points. If set to markers, only the data

points represented by small filled circles are displayed. When mode is assigned

‘lines+markers’, both circles and lines are displayed.

In the following example, plots scatter traces of three sets of randomly generated points

in Cartesian coordinate system. Each trace displayed with different mode property is

explained below.

import numpy as np

N = 100

x_vals = np.linspace(0, 1, N)

y1 = np.random.randn(N) + 5

y2 = np.random.randn(N)

y3 = np.random.randn(N) - 5

trace0 = go.Scatter(

x=x_vals,

y=y1,

mode='markers',

name='markers'

)

trace1 = go.Scatter(

x=x_vals,

y=y2,

mode='lines+markers',

name='line+markers'

)

trace2 = go.Scatter(

11. Plotly — Scatter Plot, Scattergl Plot and
Bubble Charts

Plotly

 34

x=x_vals,

y=y3,

mode='lines',

name='line'

)

data=[trace0, trace1, trace2]

fig=go.Figure(data=data)

iplot(fig)

The output of Jupyter notebook cell is as given below:

Scattergl Plot

WebGL (Web Graphics Library) is a JavaScript API for rendering interactive 2D and 3D

graphics within any compatible web browser without the use of plug-ins. WebGL is fully

integrated with other web standards, allowing Graphics Processing Unit (GPU) accelerated

usage of image processing.

Plotly you can implement WebGL with Scattergl() in place of Scatter() for increased

speed, improved interactivity, and the ability to plot even more data. The go.scattergl()

function which gives better performance when a large number of data points are involved.

import numpy as np

N=100000

Plotly

 35

x = np.random.randn(N)

y = np.random.randn(N)

trace0 = go.Scattergl(

x=x, y=y, mode='markers'

)

data = [trace0]

layout=go.Layout(title="scattergl plot ")

fig = go.Figure(data=data, layout=layout)

iplot(fig)

The output is mentioned below:

Bubble charts

A bubble chart displays three dimensions of data. Each entity with its three dimensions of

associated data is plotted as a disk (bubble) that expresses two of the dimensions through

the disk's xy location and the third through its size. The sizes of the bubbles are

determined by the values in the third data series.

Plotly

 36

Bubble chart is a variation of the scatter plot, in which the data points are replaced with

bubbles. If your data has three dimensions as shown below, creating a Bubble chart will

be a good choice.

Company Products Sale Share

A 13 2354 23

B 6 5423 47

C 23 2451 30

Bubble chart is produced with go.Scatter() trace. Two of the above data series are given

as x and y properties. Third dimension is shown by marker with its size representing third

data series. In the above mentioned case, we use products and sale as x and y properties

and market share as marker size.

Enter the following code in Jupyter notebook.

company=['A','B','C']

products=[13,6,23]

sale=[2354,5423,4251]

share=[23,47,30]

fig = go.Figure(data=[go.Scatter(

x=products, y=sale,

text=['company:'+c+' share:'+str(s)+'%' for c in company for s in share if

company.index(c)==share.index(s)],

mode='markers',

marker_size=share, marker_color=['blue','red','yellow'])

])

iplot(fig)

The output would be as shown below:

Plotly

 37

Plotly

 38

Here, we will learn about dot plots and table function in Plotly. Firstly, let us start with dot

plots.

Dot Plots

A dot plot displays points on a very simple scale. It is only suitable for a small amount of

data as a large number of points will make it look very cluttered. Dot plots are also known

as Cleveland dot plots. They show changes between two (or more) points in time or

between two (or more) conditions.

Dot plots are similar to horizontal bar chart. However, they can be less cluttered and allow

an easier comparison between conditions. The figure plots a scatter trace with mode

attribute set to markers.

Following example shows comparison of literacy rate amongst men and women as

recorded in each census after independence of India. Two traces in the graph represent

literacy percentage of men and women in each census after 1951 up to 2011.

from plotly.offline import iplot, init_notebook_mode

init_notebook_mode(connected=True)

census=[1951,1961,1971,1981,1991,2001, 2011]

x1=[8.86, 15.35, 21.97, 29.76, 39.29, 53.67, 64.63]

x2=[27.15, 40.40, 45.96, 56.38,64.13, 75.26, 80.88]

traceA = go.Scatter(

x=x1,

y=census,

marker=dict(color="crimson", size=12),

mode="markers",

name="Women"

)

traceB=go.Scatter(

x=x2,

y=census,

marker=dict(color="gold", size=12),

mode="markers",

name="Men")

data=[traceA, traceB]

layout=go.Layout(title="Trend in Literacy rate in Post independent India",

xaxis_title="percentage",

12. Plotly — Dot Plots and Table

Plotly

 39

yaxis_title="census")

fig=go.Figure(data=data, layout=layout)

iplot(fig)

The output would be as shown below:

Table in Plotly

Plotly's Table object is returned by go.Table() function. Table trace is a graph object

useful for detailed data viewing in a grid of rows and columns. Table is using a column-

major order, i.e. the grid is represented as a vector of column vectors.

Two important parameters of go.Table() function are header which is the first row of

table and cells which form rest of rows. Both parameters are dictionary objects. The values

attribute of headers is a list of column headings, and a list of lists, each corresponding to

one row.

Further styling customization is done by linecolor, fill_color, font and other attributes.

Following code displays the points table of round robin stage of recently concluded Cricket

World Cup 2019.

trace=go.Table(

header=dict(values=['Teams','Mat','Won','Lost','Tied','NR','Pts','NRR'],

line_color='gray',

fill_color='lightskyblue',

align='left'),

Plotly

 40

cells=dict(values=[['India','Australia','England','New Zealand','Pakistan','Sri

Lanka','South Africa','Bangladesh','West Indies','Afghanistan'],

[9,9,9,9,9,9,9,9,9,9],

[7,7,6,5,5,3,3,3,2,0],

[1,2,3,3,3,4,5,5,6,9],

[0,0,0,0,0,0,0,0,0,0],

[1,0,0,1,1,2,1,1,1,0],

[15,14,12,11,11,8,7,7,5,0],

[0.809,0.868,1.152,0.175,-0.43,-0.919,-0.03,-0.41,-0.225,-1.322]],

line_color='gray',

fill_color='lightcyan',

align='left'))

data=[trace]

fig=go.Figure(data=data)

iplot(fig)

The output is as mentioned below:

Table data can also be populated from Pandas dataframe. Let us create a comma separated

file (points-table.csv) as below:

Teams,Matches,Won,Lost,Tie,NR,Points,NRR

India,9,7,1,0,1,15,0.809

Australia,9,7,2,0,0,14,0.868

England,9,6,3,0,0,12,1.152

Plotly

 41

New Zealand,9,5,3,0,1,11,0.175

Pakistan,9,5,3,0,1,11,-0.43

Sri Lanka,9,3,4,0,2,8,-0.919

South Africa,9,3,5,0,1,7,-0.03

Bangladesh,9,3,5,0,1,7,-0.41

West Indies,9,2,6,0,1,5,-0.225

Afghanistan,9,0,9,0,0,0,-1.322

We now construct a dataframe object from this csv file and use it to construct table trace

as below:

import pandas as pd

df = pd.read_csv('point-table.csv')

trace=go.Table(

header=dict(values=list(df.columns)),

cells=dict(values=[df.Teams, df.Matches, df.Won, df.Lost, df.Tie, df.NR,

df.Points, df.NRR]))

data=[trace]

fig=go.Figure(data=data)

iplot(fig)

Plotly

 42

Introduced by Karl Pearson, a histogram is an accurate representation of the distribution

of numerical data which is an estimate of the probability distribution of a continuous

variable (CORAL). It appears similar to bar graph, but, a bar graph relates two variables,

whereas a histogram relates only one.

A histogram requires bin (or bucket) which divides the entire range of values into a series

of intervals—and then count how many values fall into each interval. The bins are usually

specified as consecutive, non-overlapping intervals of a variable. The bins must be

adjacent, and are often of equal size. A rectangle is erected over the bin with height

proportional to the frequency—the number of cases in each bin.

A Histogram trace object is returned by go.Histogram() function. Its customization is

done by various arguments or attributes. One essential argument is x or y set to a list,

numpy array or Pandas dataframe object which is to be distributed in bins.

By default, Plotly distributes the data points in automatically sized bins. However, you can

define custom bin size. For that you need to set autobins to false, specify nbins (number

of bins), its start and end values and size.

Following code generates a simple histogram showing distribution of marks of students in

a class inbins (sized automatically):

import numpy as np

x1 =np.array([22,87,5,43,56,73,55,54,11,20,51,5,79,31,27])

data=[go.Histogram(x=x1)]

fig = go.Figure(data)

iplot(fig)

The output is as shown below:

13. Plotly — Histogram

Plotly

 43

The go.Histogram() function accepts histnorm, which specifies the type of

normalization used for this histogram trace. Default is "", the span of each bar corresponds

to the number of occurrences (i.e. the number of data points lying inside the bins). If

assigned "percent" / "probability", the span of each bar corresponds to the percentage

/ fraction of occurrences with respect to the total number of sample points. If it is equal

to "density", the span of each bar corresponds to the number of occurrences in a bin

divided by the size of the bin interval.

There is also histfunc parameter whose default value is count. As a result, height of

rectangle over a bin corresponds to count of data points. It can be set to sum, avg, min

or max.

The histogram() function can be set to display cumulative distribution of values in

successive bins. For that, you need to set cumulative property to enabled. Result can be

seen as below:

data=[go.Histogram(x=x1, cumulative_enabled=True)]

fig = go.Figure(data)

iplot(fig)

The output is as mentioned below:

Plotly

 44

Plotly

 45

This chapter focusses on detail understanding about various plots including box plot, violin

plot, contour plot and quiver plot. Initially, we will begin with the Box Plot follow

Box Plot

A box plot displays a summary of a set of data containing the minimum, first quartile,

median, third quartile, and maximum. In a box plot, we draw a box from the first

quartile to the third quartile. A vertical line goes through the box at the median. The lines

extending vertically from the boxes indicating variability outside the upper and lower

quartiles are called whiskers. Hence, box plot is also known as box and whisker plot. The

whiskers go from each quartile to the minimum or maximum.

To draw Box chart, we have to use go.Box() function. The data series can be assigned to

x or y parameter. Accordingly, the box plot will be drawn horizontally or vertically. In

following example, sales figures of a certain company in its various branches is converted

in horizontal box plot. It shows the median of minimum and maximum value.

trace1=go.Box(y=[1140,1460,489,594,502,508,370,200])

data=[trace1]

fig=go.Figure(data)

iplot(fig)

The output of the same will be as follows:

14. Plotly — Box Plot, Violin Plot and Contour Plot

Plotly

 46

The go.Box() function can be given various other parameters to control the appearance

and behaviour of box plot. One such is boxmean parameter.

The boxmean parameter is set to true by default. As a result, the mean of the boxes'

underlying distribution is drawn as a dashed line inside the boxes. If it is set to sd, the

standard deviation of the distribution is also drawn.

The boxpoints parameter is by default equal to "outliers". Only the sample points lying

outside the whiskers are shown. If "suspectedoutliers", the outlier points are shown and

points either less than 4"Q1-3"Q3 or greater than 4"Q3-3"Q1 are highlighted. If "False",

only the box(es) are shown with no sample points.

In the following example, the box trace is drawn with standard deviation and outlier

points.

trc=go.Box(

y=[0.75, 5.25, 5.5, 6, 6.2, 6.6, 6.80, 7.0, 7.2, 7.5, 7.5, 7.75, 8.15,

8.15, 8.65, 8.93, 9.2, 9.5, 10, 10.25, 11.5, 12, 16, 20.90, 22.3, 23.25],

boxpoints='suspectedoutliers', boxmean='sd'

)

data=[trc]

fig=go.Figure(data)

iplot(fig)

The output of the same is stated below:

Plotly

 47

Violin Plot

Violin plots are similar to box plots, except that they also show the probability density of

the data at different values. Violin plots will include a marker for the median of the data

and a box indicating the interquartile range, as in standard box plots. Overlaid on this box

plot is a kernel density estimation. Like box plots, violin plots are used to represent

comparison of a variable distribution (or sample distribution) across different "categories".

A violin plot is more informative than a plain box plot. In fact, while a box plot only shows

summary statistics such as mean/median and interquartile ranges, the violin plot shows

the full distribution of the data.

Violin trace object is returned by go.Violin() function in graph_objects module. In order

to display underlying box plot, the boxplot_visible attribute is set to True. Similarly, by

setting meanline_visible property to true, a line corresponding to the sample's mean is

shown inside the violins.

Following example demonstrates how Violin plot is displayed using plotly’s functionality.

import numpy as np

np.random.seed(10)

c1 = np.random.normal(100, 10, 200)

c2 = np.random.normal(80, 30, 200)

trace1=go.Violin(y=c1, meanline_visible=True)

trace2=go.Violin(y=c2, box_visible=True)

data=[trace1, trace2]

fig=go.Figure(data=data)

iplot(fig)

Plotly

 48

The output is as follows:

Contour plot

A 2D contour plot shows the contour lines of a 2D numerical array z, i.e. interpolated lines

of isovalues of z. A contour line of a function of two variables is a curve along which the

function has a constant value, so that the curve joins points of equal value.

A contour plot is appropriate if you want to see how some value Z changes as a function

of two inputs, X and Y such that Z = f(X,Y). A contour line or isoline of a function of two

variables is a curve along which the function has a constant value.

The independent variables x and y are usually restricted to a regular grid called meshgrid.

The numpy.meshgrid creates a rectangular grid out of an array of x values and an array

of y values.

Let us first create data values for x, y and z using linspace() function from Numpy library.

We create a meshgrid from x and y values and obtain z array consisting of square root

of x2+y2

We have go.Contour() function in graph_objects module which takes x,y and z

attributes. Following code snippet displays contour plot of x, y and z values computed as

above.

import numpy as np

xlist = np.linspace(-3.0, 3.0, 100)

ylist = np.linspace(-3.0, 3.0, 100)

X, Y = np.meshgrid(xlist, ylist)

Z = np.sqrt(X**2 + Y**2)

trace=go.Contour(x=xlist, y=ylist, z=Z)

data=[trace]

Plotly

 49

fig=go.Figure(data)

iplot(fig)

The output is as follows:

The contour plot can be customized by one or more of following parameters:

 Transpose (boolean) : Transposes the z data.

If xtype (or ytype) equals "array", x/y coordinates are given by "x"/"y". If "scaled", x

coordinates are given by "x0" and "dx".

 The connectgaps parameter determines whether or not gaps in the z data are

filled in.

 Default value of ncontours parameter is 15. The actual number of contours will be

chosen automatically to be less than or equal to the value of `ncontours`. Has an

effect only if `autocontour` is "True".

Contours type is by default: "levels" so the data is represented as a contour plot with

multiple levels displayed. If constrain, the data is represented as constraints with the

invalid region shaded as specified by the operation and value parameters.

showlines: Determines whether or not the contour lines are drawn.

zauto is True by default and determines whether or not the color domain is computed

with respect to the input data (here in `z`) or the bounds set in `zmin` and `zmax`

Defaults to `False` when `zmin` and `zmax` are set by the user.

Plotly

 50

Quiver plot

Quiver plot is also known as velocity plot. It displays velocity vectors as arrows with

components (u,v) at the points (x,y). In order to draw Quiver plot, we will use

create_quiver() function defined in figure_factory module in Plotly.

Plotly's Python API contains a figure factory module which includes many wrapper

functions that create unique chart types that are not yet included in plotly.js, Plotly's

open-source graphing library.

The create_quiver() function accepts following parameters:

 x: x coordinates of the arrow locations

 y: y coordinates of the arrow locations

 u: x components of the arrow vectors

 v: y components of the arrow vectors

 scale: scales size of the arrows

 arrow_scale: length of arrowhead.

 angle: angle of arrowhead.

Following code renders a simple quiver plot in Jupyter notebook:

import plotly.figure_factory as ff

import numpy as np

x,y = np.meshgrid(np.arange(-2, 2, .2), np.arange(-2, 2, .25))

z = x*np.exp(-x**2 - y**2)

v, u = np.gradient(z, .2, .2)

Create quiver figure

fig = ff.create_quiver(x, y, u, v,

scale=.25, arrow_scale=.4,

name='quiver', line=dict(width=1))

iplot(fig)

Output of the code is as follows:

Plotly

 51

Plotly

 52

In this chapter, we will understand about distplots, density plot and error bar plot in detail.

Let us begin by learning about distplots.

Distplots

The distplot figure factory displays a combination of statistical representations of numerical

data, such as histogram, kernel density estimation or normal curve, and rug plot.

The distplot can be composed of all or any combination of the following 3 components:

 histogram

 curve: (a) kernel density estimation or (b) normal curve, and

 rug plot

The figure_factory module has create_distplot() function which needs a mandatory

parameter called hist_data.

Following code creates a basic distplot consisting of a histogram, a kde plot and a rug plot.

x = np.random.randn(1000)

hist_data = [x]

group_labels = ['distplot']

fig = ff.create_distplot(hist_data, group_labels)

iplot(fig)

The output of the code mentioned above is as follows:

15. Plotly — Distplots, Density Plot and Error Bar
Plot

Plotly

 53

Density Plot

A density plot is a smoothed, continuous version of a histogram estimated from the data.

The most common form of estimation is known as kernel density estimation (KDE). In

this method, a continuous curve (the kernel) is drawn at every individual data point and

all of these curves are then added together to make a single smooth density estimation.

The create_2d_density() function in module plotly.figure_factory._2d_density

returns a figure object for a 2D density plot.

Following code is used to produce 2D Density plot over histogram data.

t = np.linspace(-1, 1.2, 2000)

x = (t**3) + (0.3 * np.random.randn(2000))

y = (t**6) + (0.3 * np.random.randn(2000))

fig = ff.create_2d_density(x, y)

iplot(fig)

Below mentioned is the output of the above given code.

Plotly

 54

Error Bar Plot

Error bars are graphical representations of the error or uncertainty in data, and they assist

correct interpretation. For scientific purposes, reporting of errors is crucial in

understanding the given data.

Error bars are useful to problem solvers because error bars show the confidence or

precision in a set of measurements or calculated values.

Mostly error bars represent range and standard deviation of a dataset. They can help

visualize how the data is spread around the mean value. Error bars can be generated on

variety of plots such as bar plot, line plot, scatter plot etc.

The go.Scatter() function has error_x and error_y properties that control how error

bars are generated.

 visible (boolean): Determines whether or not this set of error bars is visible.

Plotly

 55

Type property has possible values "percent" | "constant" | "sqrt" | "data”. It sets the

rule used to generate the error bars. If "percent", the bar lengths correspond to a

percentage of underlying data. Set this percentage in `value`. If "sqrt", the bar lengths

correspond to the square of the underlying data. If "data", the bar lengths are set with

data set `array`.

 symmetric property can be true or false. Accordingly, the error bars will have the

same length in both direction or not (top/bottom for vertical bars, left/right for

horizontal bars.

 array: sets the data corresponding the length of each error bar. Values are plotted

relative to the underlying data.

 arrayminus: Sets the data corresponding the length of each error bar in the

bottom (left) direction for vertical (horizontal) bars Values are plotted relative to

the underlying data.

Following code displays symmetric error bars on a scatter plot:

trace=go.Scatter(

x=[0, 1, 2], y=[6, 10, 2],

error_y=dict(

type='data', # value of error bar given in data coordinates

array=[1, 2, 3], visible=True)

)

data=[trace]

layout=go.Layout(title='Symmetric Error Bar')

fig=go.Figure(data=data, layout=layout)

iplot(fig)

Given below is the output of the above stated code.

Plotly

 56

Asymmetric error plot is rendered by following script:

trace=go.Scatter(

x=[1, 2, 3, 4], y=[2, 1, 3, 4],

error_y=dict(

type='data',

symmetric=False,

array=[0.1, 0.2, 0.1, 0.1], arrayminus=[0.2, 0.4, 1, 0.2])

)

data=[trace]

layout=go.Layout(title='Asymmetric Error Bar')

fig=go.Figure(data=data, layout=layout)

iplot(fig)

The output of the same is as given below:

Plotly

 57

Plotly

 58

A heat map (or heatmap) is a graphical representation of data where the individual values

contained in a matrix are represented as colors. The primary purpose of Heat Maps is to

better visualize the volume of locations/events within a dataset and assist in directing

viewers towards areas on data visualizations that matter most.

Because of their reliance on color to communicate values, Heat Maps are perhaps most

commonly used to display a more generalized view of numeric values. Heat Maps are

extremely versatile and efficient in drawing attention to trends, and it’s for these reasons

they have become increasingly popular within the analytics community.

Heat Maps are innately self-explanatory. The darker the shade, the greater the quantity

(the higher the value, the tighter the dispersion, etc.). Plotly’s graph_objects module

contains Heatmap() function. It needs x, y and z attributes. Their value can be a list,

numpy array or Pandas dataframe.

In the following example, we have a 2D list or array which defines the data (harvest by

different farmers in tons/year) to color code. We then also need two lists of names of

farmers and vegetables cultivated by them.

vegetables = ["cucumber", "tomato", "lettuce", "asparagus",

"potato", "wheat", "barley"]

farmers = ["Farmer Joe", "Upland Bros.", "Smith Gardening",

"Agrifun", "Organiculture", "BioGoods Ltd.", "Cornylee Corp."]

harvest = np.array([[0.8, 2.4, 2.5, 3.9, 0.0, 4.0, 0.0],

[2.4, 0.0, 4.0, 1.0, 2.7, 0.0, 0.0],

[1.1, 2.4, 0.8, 4.3, 1.9, 4.4, 0.0],

[0.6, 0.0, 0.3, 0.0, 3.1, 0.0, 0.0],

[0.7, 1.7, 0.6, 2.6, 2.2, 6.2, 0.0],

[1.3, 1.2, 0.0, 0.0, 0.0, 3.2, 5.1],

[0.1, 2.0, 0.0, 1.4, 0.0, 1.9, 6.3]])

trace=go.Heatmap(

x = vegetables,

y = farmers,

z = harvest,

type = 'heatmap',

colorscale = 'Viridis')

data=[trace]

16. Plotly — Heatmap

Plotly

 59

fig=go.Figure(data=data)

iplot(fig)

The output of the above mentioned code is given as follows:

Plotly

 60

In this chapter, we will learn how Polar Chart and Radar Chart can be made with the help

Plotly.

First of all, let us study about polar chart.

Polar Chart

Polar Chart is a common variation of circular graphs. It is useful when relationships

between data points can be visualized most easily in terms of radiuses and angles.

In Polar Charts, a series is represented by a closed curve that connect points in the polar

coordinate system. Each data point is determined by the distance from the pole (the radial

coordinate) and the angle from the fixed direction (the angular coordinate).

A polar chart represents data along radial and angular axes. The radial and angular

coordinates are given with the r and theta arguments for go.Scatterpolar() function.

The theta data can be categorical, but, numerical data are possible too and is the most

commonly used.

Following code produces a basic polar chart. In addition to r and theta arguments, we set

mode to lines (it can be set to markers well in which case only the data points will be

displayed).

import numpy as np

r1 = [0,6,12,18,24,30,36,42,48,54,60]

t1 = [1,0.995,0.978,0.951,0.914,0.866,0.809,0.743,0.669,0.588,0.5]

trace= go.Scatterpolar(

r = [0.5,1,2,2.5,3,4],

theta = [35,70,120,155,205,240],

mode = 'lines',

)

data=[trace]

fig=go.Figure(data=data)

iplot(fig)

The output is given below:

17. Plotly — Polar Chart and Radar Chart

Plotly

 61

In the following example data from a comma-separated values (CSV) file is used to

generate polar chart. First few rows of polar.csv are as follows:

y,x1,x2,x3,x4,x5,

0,1,1,1,1,1,

6,0.995,0.997,0.996,0.998,0.997,

12,0.978,0.989,0.984,0.993,0.986,

18,0.951,0.976,0.963,0.985,0.969,

24,0.914,0.957,0.935,0.974,0.946,

30,0.866,0.933,0.9,0.96,0.916,

36,0.809,0.905,0.857,0.943,0.88,

42,0.743,0.872,0.807,0.923,0.838,

48,0.669,0.835,0.752,0.901,0.792,

54,0.588,0.794,0.691,0.876,0.74,

60,0.5,0.75,0.625,0.85,0.685,

Enter the following script in notebook’s input cell to generate polar chart as below:

import pandas as pd

df = pd.read_csv("polar.csv")

Plotly

 62

t1=go.Scatterpolar(

r = df['x1'], theta = df['y'], mode = 'lines', name =

't1'

)

t2=go.Scatterpolar(

r = df['x2'], theta = df['y'], mode = 'lines', name =

't2'

)

t3=go.Scatterpolar(

r = df['x3'], theta = df['y'], mode = 'lines', name =

't3'

)

data=[t1,t2,t3]

fig=go.Figure(data=data)

iplot(fig)

Given below is the output of the above mentioned code:

Radar chart

A Radar Chart (also known as a spider plot or star plot) displays multivariate data in the

form of a two-dimensional chart of quantitative variables represented on axes originating

from the center. The relative position and angle of the axes is typically uninformative.

Plotly

 63

For a Radar Chart, use a polar chart with categorical angular variables in

go.Scatterpolar() function in the general case.

Following code renders a basic radar chart with Scatterpolar() function:

radar=go.Scatterpolar(

r=[1, 5, 2, 2, 3],

theta=['processing cost','mechanical properties','chemical stability', 'thermal

stability',

'device integration'],

fill='toself'

)

data=[radar]

fig=go.Figure(data=data)

iplot(fig)

The below mentioned output is a result of the above given code:

Plotly

 64

This chapter focusses on other three types of charts including OHLC, Waterfall and Funnel

Chart which can be made with the help of Plotly.

OHLC Chart

An open-high-low-close chart (also OHLC) is a type of bar chart typically used to

illustrate movements in the price of a financial instrument such as shares. OHLC charts

are useful since they show the four major data points over a period. The chart type is

useful because it can show increasing or decreasing momentum. The high and low data

points are useful in assessing volatility.

Each vertical line on the chart shows the price range (the highest and lowest prices) over

one unit of time, such as day or hour. Tick marks project from each side of the line

indicating the opening price (e.g., for a daily bar chart this would be the starting price for

that day) on the left, and the closing price for that time period on the right.

Sample data for demonstration of OHLC chart is shown below. It has list objects

corresponding to high, low, open and close values as on corresponding date strings. The

date representation of string is converted to date object by using strtp() function from

datetime module.

open_data = [33.0, 33.3, 33.5, 33.0, 34.1]

high_data = [33.1, 33.3, 33.6, 33.2, 34.8]

low_data = [32.7, 32.7, 32.8, 32.6, 32.8]

close_data = [33.0, 32.9, 33.3, 33.1, 33.1]

date_data=['10-10-2013', '11-10-2013', '12-10-2013','01-10-2014','02-10-2014']

import datetime

dates=[datetime.datetime.strptime(date_str, '%m-%d-%Y').date() for date_str in

date_data]

We have to use above dates object as x parameter and others for open, high, low and

close parameters required for go.Ohlc() function that returns OHLC trace.

trace=go.Ohlc(x=dates, open=open_data, high=high_data,

low=low_data, close=close_data)

data=[trace]

fig=go.Figure(data=data)

iplot(fig)

The output of the code is given below:

18. Plotly — OHLC Chart, Waterfall Chart and
Funnel Chart

Plotly

 65

Candlestick Chart

The candlestick chart is similar to OHLC chart. It is like a combination of line-chart and

a bar-chart. The boxes represent the spread between the open and close values and the

lines represent the spread between the low and high values. Sample points where the

close value is higher (lower) then the open value are called increasing (decreasing).

Candlestrick trace is returned by go.Candlestick() function. We use same data (as for

OHLC chart) to render candlestick chart as given below:

trace=go.Candlestick(x=dates, open=open_data, high=high_data,

low=low_data, close=close_data)

Output of the above given code is mentioned below:

Plotly

 66

Waterfall chart

A waterfall chart (also known as flying bricks chart or Mario chart) helps in

understanding the cumulative effect of sequentially introduced positive or negative values

which can either be time based or category based.

Initial and final values are shown as columns with the individual negative and positive

adjustments depicted as floating steps. Some waterfall charts connect the lines between

the columns to make the chart look like a bridge.

go.Waterfall() function returns a Waterfall trace. This object can be customized by

various named arguments or attributes. Here, x and y attributes set up data for x and y

coordinates of the graph. Both can be a Python list, numpy array or Pandas series or

strings or date time objects.

Another attribute is measure which is an array containing types of values. By default, the

values are considered as relative. Set it to 'total' to compute the sums. If it is equal to

absolute it resets the computed total or to declare an initial value where needed. The

'base' attribute sets where the bar base is drawn (in position axis units).

Following code renders a waterfall chart:

s1=["Sales", "Consulting", "Net revenue", "Purchases", "Other expenses",

"Profit before tax"]

s2=[60, 80, 0, -40, -20, 0]

trace=go.Waterfall(x=s1,y=s2, base=200,

measure = ["relative", "relative", "total", "relative", "relative", "total"])

data=[trace]

fig=go.Figure(data=data)

iplot(fig)

Below mentioned output is a result of the code given above.

Plotly

 67

Funnel Chart

Funnel charts represent data in different stages of a business process. It is an important

mechanism in Business Intelligence to identify potential problem areas of a process. Funnel

chart is used to visualize how data reduces progressively as it passes from one phase to

another. Data in each of these phases is represented as different portions of 100% (the

whole).

Like the Pie chart, the Funnel chart does not use any axes either. It can also be treated as

similar to a stacked percent bar chart. Any funnel consists of the higher part called

head (or base) and the lower part referred to as neck. The most common use of the Funnel

chart is in visualizing sales conversion data.

Plotly's go.Funnel() function produces Funnel trace. Essential attributes to be provided

to this function are x and y. Each of them is assigned a Python list of items or an array.

from plotly import graph_objects as go

fig = go.Figure(go.Funnel(

y = ["Website visit", "Downloads", "Potential customers", "Requested price",

"invoice sent"],

x = [39, 27.4, 20.6, 11, 2]))

fig.show()

The output is as given below:

Plotly

 68

This chapter will give information about the three-dimensional (3D) Scatter Plot and 3D

Surface Plot and how to make them with the help of Plotly.

3D Scatter Plot

A three-dimensional (3D) scatter plot is like a scatter plot, but with three variables - x,

y, and z or f(x, y) are real numbers. The graph can be represented as dots in a three-

dimensional Cartesian coordinate system. It is typically drawn on a two-dimensional page

or screen using perspective methods (isometric or perspective), so that one of the

dimensions appears to be coming out of the page.

3D scatter plots are used to plot data points on three axes in an attempt to show the

relationship between three variables. Each row in the data table is represented by a marker

whose position depends on its values in the columns set on the X, Y, and Z axes.

A fourth variable can be set to correspond to the color or size of the markers, thus,

adding yet another dimension to the plot. The relationship between different variables is

called correlation.

A Scatter3D trace is a graph object returned by go.Scatter3D() function. Mandatory

arguments to this function are x, y and z each of them is a list or array object.

For example:

import plotly.graph_objs as go

import numpy as np

z = np.linspace(0, 10, 50)

x = np.cos(z)

y= np.sin(z)

trace=go.Scatter3d(x=x, y=y, z=z,mode='markers',

marker=dict(

size=12,

color=z, # set color to an array/list of desired values

colorscale='Viridis')

)

layout=go.Layout(title='3D Scatter plot')

fig = go.Figure(data=[trace], layout=layout)

iplot(fig)

19. Plotly — 3D Scatter and Surface Plot

Plotly

 69

The output of the code is given below:

3D Surface Plot

Surface plots are diagrams of three-dimensional data. In a surface plot, each point is

defined by 3 points: its latitude, longitude, and altitude (X, Y and Z). Rather than

showing the individual data points, surface plots show a functional relationship between a

designated dependent variable (Y), and two independent variables (X and Z). This

plot is a companion plot to the contour plot.

Here, is a Python script to render simple surface plot where y array is transpose of x and

z is calculated as cos(x2+y2)

import numpy as np

x = np.outer(np.linspace(-2, 2, 30), np.ones(30))

y = x.copy().T # transpose

z = np.cos(x ** 2 + y ** 2)

trace=go.Surface(x=x, y=y, z=z)

data=[trace]

layout=go.Layout(title='3D Surface plot')

fig=go.Figure(data=data)

Plotly

 70

iplot(fig)

Below mentioned is the output of the code which is explained above:

Plotly

 71

Plotly provides high degree of interactivity by use of different controls on the plotting area

– such as buttons, dropdowns and sliders etc. These controls are incorporated with

updatemenu attribute of the plot layout. You can add button and its behaviour by

specifying the method to be called.

There are four possible methods that can be associated with a button as follows:

 restyle: modify data or data attributes

 relayout: modify layout attributes

 update: modify data and layout attributes

 animate: start or pause an animation

The restyle method should be used when modifying the data and data attributes of

the graph. In the following example, two buttons are added by Updatemenu() method

to the layout with restyle method.

go.layout.Updatemenu(

type = "buttons",

direction = "left",

buttons=list([

dict(

args=["type", "box"], label="Box", method="restyle"

),

dict(

args=["type", "violin"], label="Violin", method="restyle")

Value of type property is buttons by default. To render a dropdown list of buttons, change

type to dropdown. A Box trace added to Figure object before updating its layout as above.

The complete code that renders boxplot and violin plot depending on button clicked, is

as follows:

import plotly.graph_objs as go

fig = go.Figure()

fig.add_trace(go.Box(y=[1140,1460,489,594,502,508,370,200]))

fig.layout.update(

updatemenus=[

go.layout.Updatemenu(

20. Plotly — Adding Buttons/Dropdown

Plotly

 72

type = "buttons", direction = "left",

buttons=list([

dict(

args=["type", "box"], label="Box", method="restyle"

),

dict(

args=["type", "violin"], label="Violin", method="restyle"

)

]),

pad={"r": 2, "t": 2},

showactive=True,

x=0.11,

xanchor="left",

y=1.1,

yanchor="top"

),])

iplot(fig)

The output of the code is given below:

Click on Violin button to display corresponding Violin plot.

Plotly

 73

As mentioned above, value of type key in Updatemenu() method is assigned dropdown

to display dropdown list of buttons. The plot appears as below:

The update method should be used when modifying the data and layout sections of the

graph. Following example demonstrates how to update and which traces are displayed

while simultaneously updating layout attributes, such as, the chart title. Two Scatter traces

corresponding to sine and cos wave are added to Figure object. The trace with visible

attribute as True will be displayed on the plot and other traces will be hidden.

import numpy as np

import math #needed for definition of pi

Plotly

 74

xpoints=np.arange(0, math.pi*2, 0.05)

y1=np.sin(xpoints)

y2=np.cos(xpoints)

fig = go.Figure()

Add Traces

fig.add_trace(

go.Scatter(

x=xpoints, y=y1, name='Sine'

))

fig.add_trace(

go.Scatter(

x=xpoints, y=y2, name='cos'

))

fig.layout.update(

updatemenus=[

go.layout.Updatemenu(

type="buttons", direction="right", active=0, x=0.1, y=1.2,

buttons=list([

dict(label="first", method="update",

args=[{"visible": [True, False]},{"title": "Sine"}]),

dict(label="second", method="update", args=[{"visible": [False,

True]},{"title": Cos"}])

]))

])

iplot(fig)

Initially, Sine curve will be displayed. If clicked on second button, cos trace appears.

Note that chart title also updates accordingly.

Plotly

 75

In order to use animate method, we need to add one or more Frames to the Figure

object. Along with data and layout, frames can be added as a key in a figure object. The

frames key points to a list of figures, each of which will be cycled through when animation

is triggered.

You can add, play and pause buttons to introduce animation in chart by adding an

updatemenus array to the layout.

"updatemenus": [{"type": "buttons",

"buttons": [{"label": "Your Label", "method": "animate", "args": [frames]}]}]

In the following example, a scatter curve trace is first plotted. Then add frames which

is a list of 50 Frame objects, each representing a red marker on the curve. Note that

the args attribute of button is set to None, due to which all frames are animated.

import numpy as np

t = np.linspace(-1, 1, 100)

x = t + t ** 2

y = t - t ** 2

xm = np.min(x) - 1.5

xM = np.max(x) + 1.5

ym = np.min(y) - 1.5

yM = np.max(y) + 1.5

Plotly

 76

N = 50

s = np.linspace(-1, 1, N)

#s=np.arange(0, math.pi*2, 0.1)

xx = s + s ** 2

yy = s - s ** 2

fig = go.Figure(

data=[go.Scatter(x=x, y=y,

mode="lines", line=dict(width=2, color="blue")),

go.Scatter(x=x, y=y,

mode="lines", line=dict(width=2, color="blue"))

],

layout=go.Layout(

xaxis=dict(range=[xm, xM], autorange=False, zeroline=False),

yaxis=dict(range=[ym, yM], autorange=False, zeroline=False),

title_text="Moving marker on curve",

updatemenus=[dict(type="buttons",

buttons=[dict(label="Play", method="animate", args=[None])])

]),

frames=[go.Frame(

data=[go.Scatter(

x=[xx[k]], y=[yy[k]], mode="markers", marker=dict(color="red", size=10))])

for k in range(N)]

)

iplot(fig)

The output of the code is stated below:

Plotly

 77

The red marker will start moving along the curve on clicking play button.

Plotly

 78

Plotly has a convenient Slider that can be used to change the view of data/style of a

plot by sliding a knob on the control which is placed at the bottom of rendered plot.

Slider control is made up of different properties which are as follows:

 steps property is required for defining sliding positions of knob over the control.

 method property is having possible values as restyle | relayout | animate |

update | skip, default is restyle.

 args property sets the arguments values to be passed to the Plotly method set in

method on slide.

We now deploy a simple slider control on a scatter plot which will vary the frequency of

sine wave as the knob slides along the control. The slider is configured to have 50 steps.

First add 50 traces of sine wave curve with incrementing frequency, all but 10th trace set

to visible.

Then, we configure each step with restyle method. For each step, all other step objects

have visibility set to false. Finally, update Figure object’s layout by initializing sliders

property.

Add traces, one for each slider step

for step in np.arange(0, 5, 0.1):

fig.add_trace(

go.Scatter(

visible=False,

line=dict(color="blue", width=2),

name="𝜈 = " + str(step),

x=np.arange(0, 10, 0.01),

y=np.sin(step * np.arange(0, 10, 0.01))))

fig.data[10].visible=True

Create and add slider

steps = []

for i in range(len(fig.data)):

step = dict(

method="restyle",

args=["visible", [False] * len(fig.data)],

)

21. Plotly — Slider Control

Plotly

 79

step["args"][1][i] = True # Toggle i'th trace to "visible"

steps.append(step)

sliders = [dict(

active=10,

steps=steps

)]

fig.layout.update(

sliders=sliders

)

iplot(fig)

To begin with, 10th sine wave trace will be visible. Try sliding the knob across the

horizontal control at the bottom. You will see the frequency changing as shown below.

Plotly

 80

Plotly 3.0.0 introduces a new Jupyter widget class: plotly.graph_objs.FigureWidget. It

has the same call signature as our existing Figure, and it is made specifically for Jupyter

Notebook and JupyterLab environments.

The go.FigureWiget() function returns an empty FigureWidget object with default x and

y axes.

f = go.FigureWidget()

iplot(f)

Given below is the output of the code:

Most important feature of FigureWidget is the resulting Plotly figure and it is dynamically

updatable as we go on adding data and other layout attributes to it.

For example, add following graph traces one by one and see the original empty figure

dynamically updated. That means we don’t have to call iplot() function again and again

as the plot is refreshed automatically. Final appearance of the FigureWidget is as shown

below:

f.add_scatter(y=[2, 1, 4, 3]);

f.add_bar(y=[1, 4, 3, 2]);

f.layout.title = 'Hello FigureWidget'

22. Plotly — FigureWidget Class

Plotly

 81

This widget is capable of event listeners for hovering, clicking, and selecting points and

zooming into regions.

In following example, the FigureWidget is programmed to respond to click event on plot

area. The widget itself contains a simple scatter plot with markers. The mouse click

location is marked with different color and size.

x = np.random.rand(100)

y = np.random.rand(100)

f = go.FigureWidget([go.Scatter(x=x, y=y, mode='markers')])

scatter = f.data[0]

colors = ['#a3a7e4'] * 100

scatter.marker.color = colors

scatter.marker.size = [10] * 100

f.layout.hovermode = 'closest'

def update_point(trace, points, selector):

c = list(scatter.marker.color)

Plotly

 82

s = list(scatter.marker.size)

for i in points.point_inds:

c[i] = 'red'

s[i] = 20

scatter.marker.color = c

scatter.marker.size = s

scatter.on_click(update_point)

f

Run above code in Jupyter notebook. A scatter plot is displayed. Click on a location in the

area which will be markd with red colour.

Plotly’s FigureWidget object can also make use of Ipython’s own widgets. Here, we use

interact control as defined in ipwidgets module. We first construct a FigureWidget and

add an empty scatter plot.

from ipywidgets import interact

fig = go.FigureWidget()

scatt = fig.add_scatter()

fig

We now define an update function that inputs the frequency and phase and sets the x

and y properties of the scatter trace defined above. The @interact decorator from

ipywidgets module is used to create a simple set of widgets to control the parameters of

a plot. The update function is decorated with @interact decorator from the ipywidgets

package. The decorator parameters are used to specify the ranges of parameters that we

want to sweep over.

xs=np.linspace(0, 6, 100)

Plotly

 83

@interact(a=(1.0, 4.0, 0.01), b=(0, 10.0, 0.01), color=['red', 'green',

'blue'])

def update(a=3.6, b=4.3, color='blue'):

with fig.batch_update():

scatt.x=xs

scatt.y=np.sin(a*xs-b)

scatt.line.color=color

Empty FigureWidget is now populated in blue colour with sine curve a and b as 3.6 and

4.3 respectively. Below the current notebook cell, you will get a group of sliders for

selecting values of a and b. There is also a dropdown to select the trace color. These

parameters are defined in @interact decorator.

Plotly

 84

Pandas is a very popular library in Python for data analysis. It also has its own plot function

support. However, Pandas plots don't provide interactivity in visualization. Thankfully,

plotly's interactive and dynamic plots can be built using Pandas dataframe objects.

We start by building a Dataframe from simple list objects.

data =

[['Ravi',21,67],['Kiran',24,61],['Anita',18,46],['Smita',20,78],['Sunil',17,90]

]

df = pd.DataFrame(data,columns=['name','age','marks'],dtype=float)

The dataframe columns are used as data values for x and y properties of graph object

traces. Here, we will generate a bar trace using name and marks columns.

trace=go.Bar(x=df.name, y=df.marks)

fig=go.Figure(data=[trace])

iplot(fig)

A simple bar plot will be displayed in Jupyter notebook as below:

23. Plotly with Pandas and Cufflinks

Plotly

 85

Plotly is built on top of d3.js and is specifically a charting library which can be used directly

with Pandas dataframes using another library named Cufflinks.

If not already available, install cufflinks package by using your favourite package manager

like pip as given below:

pip install cufflinks

or

conda install -c conda-forge cufflinks-py

First, import cufflinks along with other libraries such as Pandas and numpy which can

configure it for offline use.

import cufflinks as cf

cf.go_offline()

Now, you can directly use Pandas dataframe to display various kinds of plots without

having to use trace and figure objects from graph_objs module as we have been doing

previously.

df.iplot(kind='bar', x='name', y='marks')

Bar plot, very similar to earlier one will be displayed as given below:

Plotly

 86

Pandas dataframes from databases

Instead of using Python lists for constructing dataframe, it can be populated by data in

different types of databases. For example, data from a CSV file, SQLite database table or

mysql database table can be fetched into a Pandas dataframe, which eventually is

subjected to plotly graphs using Figure object or Cufflinks interface.

To fetch data from CSV file, we can use read_csv() function from Pandas library.

import pandas as pd

df = pd.read_csv('sample-data.csv')

If data is available in SQLite database table, it can be retrieved using SQLAlchemy

library as follows:

import pandas as pd

from sqlalchemy import create_engine

disk_engine = create_engine('sqlite:///mydb.db')

df = pd.read_sql_query('SELECT name,age,marks', disk_engine)

On the other hand, data from MySQL database is retrieved in a Pandas dataframe as

follows:

import pymysql

import pandas as pd

conn = pymysql.connect(host="localhost", user="root", passwd="xxxx", db="mydb")

cursor = conn.cursor()

cursor.execute('select name,age,marks')

rows = cursor.fetchall()

df = pd.DataFrame([[ij for ij in i] for i in rows])

df.rename(columns={0: 'Name', 1: 'age', 2: 'marks'}, inplace=True)

Plotly

 87

This chapter deals with data visualization library titled Matplotlib and online plot maker

named Chart Studio.

Matplotlib

Matplotlib is a popular Python data visualization library capable of producing production-

ready but static plots. you can convert your static matplotlib figures into interactive

plots with the help of mpl_to_plotly() function in plotly.tools module.

Following script produces a Sine wave Line plot using Matplotlib’s PyPlot API.

from matplotlib import pyplot as plt

import numpy as np

import math #needed for definition of pi

x=np.arange(0, math.pi*2, 0.05)

y=np.sin(x)

plt.plot(x,y)

plt.xlabel("angle")

plt.ylabel("sine")

plt.title('sine wave')

plt.show()

Now we shall convert it into a plotly figure as follows:

fig = plt.gcf()

plotly_fig = tls.mpl_to_plotly(fig)

py.iplot(plotly_fig)

The output of the code is as given below:

24. Plotly with Matplotlib and Chart Studio

Plotly

 88

Chart Studio

Chart Studio is an online plot maker tool made available by Plotly. It provides a graphical

user interface for importing and analyzing data into a grid and using stats tools. Graphs

can be embedded or downloaded. It is mainly used to enable creating graphs faster and

more efficiently.

After logging in to plotly’s account, start the chart studio app by visiting the link

https://plot.ly/create. The web page offers a blank work sheet below the plot area. Chart

Studio lets you to add plot traces by pushing + trace button.

https://plot.ly/create

Plotly

 89

Various plot structure elements such as annotations, style etc. as well as facility to save,

export and share the plots is available in the menu.

Let us add data in the worksheet and add choose bar plot trace from the trace types.

Click in the type text box and select bar plot.

Plotly

 90

Then, provide data columns for x and y axes and enter plot title.

