
http://www.tutorialspoint.com/nodejs/nodejs_dns_module.htm Copyright © tutorialspoint.com

NODE.JS - DNS MODULENODE.JS - DNS MODULE

Node.js dns module is used to do actual DNS lookup as well as to use underlying operating system
name resolution functionalities. This module provides an aynchronous network wrapper and can
be imported using following syntax.

var dns = require("dns")

Methods

S.N. Method & Description

1 dns.lookuphostname[, options], callback
Resolves a hostname e. g. ′google. com ′ into the first found A IPv4 or AAAA IPv6 record.
options can be an object or integer. If options is not provided, then IP v4 and v6
addresses are both valid. If options is an integer, then it must be 4 or 6.

2 dns.lookupServiceaddress, port, callback
Resolves the given address and port into a hostname and service using getnameinfo.

3 dns.resolvehostname[, rrtype], callback
Resolves a hostname e. g. ′google. com ′ into an array of the record types specified by rrtype.

4 dns.resolve4hostname, callback
The same as dns.resolve, but only for IPv4 queries Arecords. addresses is an array of IPv4
addresses e. g. [′74.125.79.104 ′, ′74.125.79.105 ′, ′74.125.79.106 ′].

5 dns.resolve6hostname, callback
The same as dns.resolve4 except for IPv6 queries anAAAAquery.

6 dns.resolveMxhostname, callback
The same as dns.resolve, but only for mail exchange queries MXrecords.

7 dns.resolveTxthostname, callback
The same as dns.resolve, but only for text queries TXTrecords. addresses is an 2-d array of
the text records available for hostname e. g. , [[′v = spf1ip4: 0.0.0.0 ′, ′ all ′]]. Each sub-array
contains TXT chunks of one record. Depending on the use case, the could be either
joined together or treated separately.

8 dns.resolveSrvhostname, callback
The same as dns.resolve, but only for service records SRVrecords. addresses is an array of
the SRV records available for hostname. Properties of SRV records are priority, weight,
port, and name e. g. , [′priority ′ : 10, ′weight ′ : 5, ′port ′ : 21223, ′name ′ : ′service. example. com ′, . . .].

9 dns.resolveSoahostname, callback
The same as dns.resolve, but only for start of authority record queries SOArecord.

10 dns.resolveNshostname, callback
The same as dns.resolve, but only for name server records NSrecords. addresses is an
array of the name server records available for hostname
e. g. , [′ns1.example. com ′, ′ns2.example. com ′].

11 dns.resolveCnamehostname, callback
The same as dns.resolve, but only for canonical name records CNAMErecords. addresses is
an array of the canonical name records available for hostname e. g. , [′bar. example. com ′].

12 dns.reverseip, callback
Reverse resolves an ip address to an array of hostnames.

13 dns.getServers

http://www.tutorialspoint.com/nodejs/nodejs_dns_module.htm

Returns an array of IP addresses as strings that are currently being used for resolution.

14 dns.setServersservers
Given an array of IP addresses as strings, set them as the servers to use for resolving.

rrtypes
Following is the list of valid rrtypes used by dns.resolve method

A - IPV4 addresses, default

AAAA - IPV6 addresses

MX - mail exchange records

TXT - text records

SRV - SRV records

PTR - used for reverse IP lookups

NS - name server records

CNAME - canonical name records

SOA - start of authority record

Error Codes
Each DNS query can return one of the following error codes:

dns.NODATA - DNS server returned answer with no data.

dns.FORMERR - DNS server claims query was misformatted.

dns.SERVFAIL - DNS server returned general failure.

dns.NOTFOUND - Domain name not found.

dns.NOTIMP - DNS server does not implement requested operation.

dns.REFUSED - DNS server refused query.

dns.BADQUERY - Misformatted DNS query.

dns.BADNAME - Misformatted hostname.

dns.BADFAMILY - Unsupported address family.

dns.BADRESP - Misformatted DNS reply.

dns.CONNREFUSED - Could not contact DNS servers.

dns.TIMEOUT - Timeout while contacting DNS servers.

dns.EOF - End of file.

dns.FILE - Error reading file.

dns.NOMEM - Out of memory.

dns.DESTRUCTION - Channel is being destroyed.

dns.BADSTR - Misformatted string.

dns.BADFLAGS - Illegal flags specified.

dns.NONAME - Given hostname is not numeric.

dns.BADHINTS - Illegal hints flags specified.

dns.NOTINITIALIZED - c-ares library initialization not yet performed.

dns.LOADIPHLPAPI - Error loading iphlpapi.dll.

dns.ADDRGETNETWORKPARAMS - Could not find GetNetworkParams function.

dns.CANCELLED - DNS query cancelled.

Example
Create a js file named main.js having the following code:

var dns = require('dns');

dns.lookup('www.google.com', function onLookup(err, address, family) {
 console.log('address:', address);
 dns.reverse(address, function (err, hostnames) {
 if (err) {
 console.log(err.stack);
 }

 console.log('reverse for ' + address + ': ' + JSON.stringify(hostnames));
});
});

Now run the main.js to see the result:

$ node main.js

Verify the Output.

address: 173.194.46.83
reverse for 173.194.46.83: ["ord08s11-in-f19.1e100.net"]

Processing math: 100%

