
http://www.tutorialspoint.com/mvc_framework/mvc_framework_exception_handling.htm
Copyright © tutorialspoint.com

MVC FRAMEWORK - EXCEPTION HANDLINGMVC FRAMEWORK - EXCEPTION HANDLING

In ASP.NET, error handling is done using the standard try catch approach or using application
events. ASP.NET MVC comes with built-in support for exception handling using a feature known as
exception filters. We are going to learn two approaches here: one with overriding the onException
method and another by defining the HandleError filters.

Override OnException method
This approach is used when we want to handle all the exceptions across the Action methods at the
controller level.

To understand this approach, create an MVC application followthestepscoveredinpreviouschapters. Now add
a new Controller class and add the following code which overrides the onException method and
explicitly throws an error in our Action method:

Now let us create a common View named Error which will be shown to the user when any
exception happens in the application. Inside the Views folder, create a new folder called Shared
and add a new View named Error.

http://www.tutorialspoint.com/mvc_framework/mvc_framework_exception_handling.htm

Copy the following code inside the newly created Error.cshtml:

If you try to run the application now, it will give the following result. The above code renders the
Error View when any exception occurs in any of the action methods within this controller.

The advantage of this approach is that multiple actions within the same controller can share this
error handling logic. However, the disadvantage is that we cannot use the same error handling
logic across multiple controllers.

HandleError Attribute
The HandleError Attribute is one of the action filters that we studied in Filters and Action Filters
chapter. The HandleErrorAttribute is the default implementation of IExceptionFilter. This filter
handles all the exceptions raised by controller actions, filters and views.

To use this feature, first of all turn on the customErrors section in web.config. Open the web.config
and place the following code inside system.web and set its value as On.

 <customErrors mode="On"/>

We already have the Error View created inside the Shared folder under Views. This time change
the code of this View file to the following to strongly-type it with the HandleErrorInfo model
whichispresentunderSystem. Web. MVC:

@model System.Web.Mvc.HandleErrorInfo
@{
Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Error</title>
</head>
<body>
<h2>
 Sorry, an error occurred while processing your request.

</h2>
 <h2>Exception details</h2>
<p>
 Controller: @Model.ControllerName

 Action: @Model.ActionName
 Exception: @Model.Exception
</p>

</body>
</html>

Now place the following code in your controller file which specifies [HandleError] attribute at the
Controller file.

using System;
using System.Data.Common;
using System.Web.Mvc;

namespace ExceptionHandlingMVC.Controllers
{
 [HandleError]
 public class ExceptionHandlingController : Controller
 {
 public ActionResult TestMethod()
 {
 throw new Exception("Test Exception");
 return View();
 }
 }

}

If you try to run the application now, you will get an error similar to shown below:

As you can see, this time the error contains more information about the Controller and Action
related details. In this manner, the HandleError can be used at any level and across controllers to
handle such errors.
Loading [MathJax]/jax/output/HTML-CSS/jax.js

