

JAVA PERSISTENCE

API (JPA)
Tutorial

 JAVA PERSISTENCE API (JPA)

2

 Simply Easy Learning

 JAVA PERSISTENCE API (JPA)

3

About the Tutorial

This tutorial provides a basic understanding of how to store a copy of database objects

into temporary memory using JAVA Persistence API (JPA).

Audience

This tutorial is designed for readers intend to do Java programing with Database

connectivity, using Persistence API.

Prerequisites

Awareness of Java programming with JDK 1.6 or later is a prerequisite to understand this

tutorial. In addition, we assume the readers are acquainted with the concepts of JDBC in

Java.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com .

mailto:contact@tutorialspoint.com

 JAVA PERSISTENCE API (JPA)

4

Table of Contents

About the Tutorial .. 3

Audience ... 3

Prerequisites ... 3

Copyright & Disclaimer ... 3

Table of Contents .. 4

1. JPA – INTRODUCTION ... 7

Mismatch between Relational and Object Models .. 7

What is JPA? ... 7

Where to use JPA? .. 7

JPA History .. 8

JPA Providers .. 8

2. JPA – ARCHITECTURE .. 9

Class Level Architecture .. 9

JPA Class Relationships ... 10

3. JPA – ORM COMPONENTS .. 12

Object Relational Mapping ... 12

Advanced Features ... 12

ORM Architecture ... 12

Mapping.xml ... 14

Annotations .. 17

Java Bean Standard ... 19

Bean Conventions ... 19

 JAVA PERSISTENCE API (JPA)

5

4. JPA – INSTALLATION .. 21

Step 1 : Verify your Java Installation ... 21

Step 2 : Set your Java Environment ... 22

Step 3 : Installing JPA .. 22

Adding MySQL connector to the Project ... 27

5. JPA – ENTITY MANAGERS .. 29

Creating Entities .. 30

Persistence Operations ... 34

Create Employee ... 34

Update Employee ... 35

Deleting Employee .. 38

6. JPA – JPQL ... 40

Java Persistence Query language .. 40

Query Structure .. 40

Scalar and Aggregate Functions .. 41

Between, And, Like Keywords ... 43

Ordering ... 45

Named Queries ... 46

Eager and Lazy Fetching .. 50

7. JPA – ADVANCED MAPPINGS .. 51

Inheritance Strategies ... 51

Single Table strategy ... 51

Joined Table Strategy .. 58

 JAVA PERSISTENCE API (JPA)

6

Table per Class Strategy .. 66

8. JPA – ENTITY RELATIONSHIPS .. 74

@ManyToOne Relation ... 74

@OneToMany Relation ... 81

@OneToOne Relation ... 89

@ManyToMany Relation .. 96

9. JPA – CRITERIA API .. 106

History of Criteria.. 106

Criteria Query Structure .. 106

Example of Criteria API ... 107

 JAVA PERSISTENCE API (JPA)

7

Any enterprise application performs database operations by storing and retrieving vast

amounts of data. Despite all the available technologies for storage management, application

developers normally struggle to perform database operations efficiently.

Generally, Java developers use lots of code, or use the proprietary framework to interact with

the database, whereas using JPA, the burden of interacting with the database reduces

significantly. It forms a bridge between object models (Java program) and relational models

(database program).

Mismatch between Relational and Object Models

Relational objects are represented in a tabular format, while object models are represented

in an interconnected graph of object format. While storing and retrieving an object model

from a relational database, some mismatch occurs due to the following reasons:

 Granularity: Object model has more granularity than relational model.

 Subtypes: Subtypes (means inheritance) are not supported by all types of relational

databases.

 Identity: Like object model, relational model does not expose identity while writing

equality.

 Associations: Relational models cannot determine multiple relationships while

looking into an object domain model.

 Data navigation: Data navigation between objects in an object network is different

in both models.

What is JPA?

Java Persistence API is a collection of classes and methods to persistently store the vast

amounts of data into a database which is provided by the Oracle Corporation.

Where to use JPA?

To reduce the burden of writing codes for relational object management, a programmer

follows the ‘JPA Provider’ framework, which allows easy interaction with database instance.

Here the required framework is taken over by JPA.

1. JPA – INTRODUCTION

 JAVA PERSISTENCE API (JPA)

8

JPA History

Earlier versions of EJB, defined the persistence layer combined with the business logic layer

using javax.ejb.EntityBean Interface.

 While introducing EJB 3.0, the persistence layer was separated and specified as JPA

1.0 (Java Persistence API). The specifications of this API were released along with the

specifications of JAVA EE5 on May 11, 2006 using JSR 220.

 JPA 2.0 was released with the specifications of JAVA EE6 on December 10, 2009 as a

part of Java Community Process JSR 317.

 JPA 2.1 was released with the specification of JAVA EE7 on April 22, 2013 using JSR

338.

JPA Providers

JPA is an open source API, therefore various enterprise vendors such as Oracle, Redhat,

Eclipse, etc. provide new products by adding the JPA persistence flavor in them. Some of

these products include:

 Hibernate

 Eclipselink

 Toplink

 Spring Data JPA

 JAVA PERSISTENCE API (JPA)

9

Java Persistence API is a source to store business entities as relational entities. It shows how

to define a Plain Oriented Java Object (POJO) as an entity and how to manage entities with

relations.

Class Level Architecture

The following image shows the class level architecture of JPA. It shows the core classes and

the interfaces of JPA.

The following table describes each of the units shown in the above architecture.

Units Description

EntityManagerFactory
This is a factory class of EntityManager. It creates and

manages multiple EntityManager instances.

2. JPA – ARCHITECTURE

 JAVA PERSISTENCE API (JPA)

10

EntityManager
It is an Interface. It manages the persistence operations on

objects. It works like a factory for Query instance.

Entity
Entities are the persistence objects, stored as records in the

database.

EntityTransaction

It has one-to-one relationship with the EntityManager. For

each EntityManager, operations are maintained by the

EntityTransaction class.

Persistence
This class contains static methods to obtain the

EntityManagerFactory instance.

Query
This interface is implemented by each JPA vendor to obtain

the relational objects that meet the criteria.

The above classes and interfaces are used for storing entities into a database as a record.

They help programmers by reducing their efforts to write codes for storing data into a

database so that they can concentrate on more important activities such as writing codes for

mapping the classes with database tables.

JPA Class Relationships

In the above architecture, the relations between the classes and interfaces belong to the

javax.persistence package. The following diagram shows the relationship between them.

 JAVA PERSISTENCE API (JPA)

11

 The relationship between EntityManagerFactory and EntityManager is one-to-many. It

is a factory class to EntityManager instances.

 The relationship between EntityManager and EntityTransaction is one-to-one. For each

EntityManager operation, there is an EntityTransaction instance.

 The relationship between EntityManager and Query is one-to-many. A number of

queries can execute using one EntityManager instance.

 The relationship between EntityManager and Entity is one-to-many. One

EntityManager instance can manage multiple Entities.

 JAVA PERSISTENCE API (JPA)

12

Most contemporary applications use relational database to store data. Recently, many vendors

switched to object database to reduce their burden on data maintenance. It means object

database or object relational technologies are taking care of storing, retrieving, updating, and

maintaining data. The core part of this object relational technology is mapping orm.xml files.

As xml does not require compilation, we can easily make changes to multiple data sources

with less administration.

Object Relational Mapping

Object Relational Mapping (ORM) briefly tells you about what is ORM and how it works. ORM

is a programming ability to covert data from object type to relational type and vice versa.

The main feature of ORM is mapping or binding an object to its data in the database. While

mapping, we have to consider the data, the type of data, and its relations with self-entity or

entities in any other table.

Advanced Features

 Idiomatic persistence: It enables you to write persistence classes using object oriented

classes.

 High Performance: It has many fetching techniques and helpful locking techniques.

 Reliable: It is highly stable and used by many professional programmers.

ORM Architecture

The ORM architecture looks as follows.

3. JPA – ORM COMPONENTS

 JAVA PERSISTENCE API (JPA)

13

The above architecture explains how object data is stored into a relational database in three

phases.

Phase 1

The first phase, named as the object data phase, contains POJO classes, service interfaces,

and classes. It is the main business component layer, which has business logic operations and

attributes.

For example, let us take an employee database as a schema.

 Employee POJO class contains attributes such as ID, name, salary, and designation. It

also contains methods like setter and getter of those attributes.

 Employee DAO/Service classes contain service methods such as create employee, find

employee, and delete employee.

 JAVA PERSISTENCE API (JPA)

14

Phase 2

The second phase, named as mapping or persistence phase, contains JPA provider,

mapping file (ORM.xml), JPA Loader, and Object Grid.

 JPA Provider: It is the vendor product that contains the JPA flavor

(javax.persistence). For example Eclipselink, Toplink, Hibernate, etc.

 Mapping file: The mapping file (ORM.xml) contains mapping configuration between

the data in a POJO class and data in a relational database.

 JPA Loader: The JPA loader works like a cache memory. It can load the relational grid

data. It works like a copy of database to interact with service classes for POJO data

(attributes of POJO class).

 Object Grid: It is a temporary location that can store a copy of relational data, like a

cache memory. All queries against the database is first effected on the data in the

object grid. Only after it is committed, it affects the main database.

Phase 3

The third phase is the relational data phase. It contains the relational data that is logically

connected to the business component. As discussed above, only when the business

component commits the data, it is stored into the database physically. Until then, the modified

data is stored in a cache memory as a grid format. The process of the obtaining the data is

identical to that of storing the data.

The mechanism of the programmatic interaction of the above three phases is called as object

relational mapping.

Mapping.xml

The mapping.xml file instructs the JPA vendor to map the entity classes with the database

tables.

Let us take an example of Employee entity that contains four attributes. The POJO class of

Employee entity named Employee.java is as follows:

public class Employee

{

 private int eid;

 private String ename;

 private double salary;

 private String deg;

 JAVA PERSISTENCE API (JPA)

15

 public Employee(int eid, String ename, double salary, String deg)

 {

 super();

 this.eid = eid;

 this.ename = ename;

 this.salary = salary;

 this.deg = deg;

 }

 public Employee()

 {

 super();

 }

 public int getEid()

 {

 return eid;

 }

 public void setEid(int eid)

 {

 this.eid = eid;

 }

 public String getEname()

 {

 return ename;

 }

 public void setEname(String ename)

 {

 this.ename = ename;

 }

 JAVA PERSISTENCE API (JPA)

16

 public double getSalary()

 {

 return salary;

 }

 public void setSalary(double salary)

 {

 this.salary = salary;

 }

 public String getDeg()

 {

 return deg;

 }

 public void setDeg(String deg)

 {

 this.deg = deg;

 }

}

The above code is the Employee entity POJO class. It contain four attributes eid, ename,

salary, and deg. Consider these attributes as the table fields in a table and eid as the primary

key of this table. Now we have to design the hibernate mapping file for it. The mapping file

named mapping.xml is as follows:

<? xml version="1.0" encoding="UTF-8" ?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm

 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"

 version="1.0">

 <description> XML Mapping file</description>

 <entity class="Employee">

 <table name="EMPLOYEETABLE"/>

 <attributes>

 JAVA PERSISTENCE API (JPA)

17

 <id name="eid">

 <generated-value strategy="TABLE"/>

 </id>

 <basic name="ename">

 <column name="EMP_NAME" length="100"/>

 </basic>

 <basic name="salary">

 </basic>

 <basic name="deg">

 </basic>

 </attributes>

 </entity>

</entity-mappings>

The above script is used for mapping the entity class with the database table. In this file,

 <entity-mappings> tag defines the schema definition to allow entity tags into the xml

file.

 <description> tag provides a description of the application.

 <entity> tag defines the entity class which you want to convert into a table in a

database. Attribute class defines the POJO entity class name.

 <table> tag defines the table name. If you want to have identical names for both the

class as well as the table, then this tag is not necessary.

 <attributes> tag defines the attributes (fields in a table).

 <id> tag defines the primary key of the table. The <generated-value> tag defines

how to assign the primary key value such as Automatic, Manual, or Taken from

Sequence.

 <basic> tag is used for defining the remaining attributes of the table.

 <column-name> tag is used to set user-defined field names in the table.

Annotations

Generally xml files are used to configure specific components, or mapping two different

specifications of components. In our case, we have to maintain xml files separately in a

 JAVA PERSISTENCE API (JPA)

18

framework. That means while writing a mapping xml file, we need to compare the POJO class

attributes with entity tags in the mapping.xml file.

Here is the solution. In the class definition, we can write the configuration part using

annotations. Annotations are used for classes, properties, and methods. Annotations start

with ‘@’ symbol. Annotations are declared prior to a class, property, or method. All

annotations of JPA are defined in the javax.persistence package.

The list of annotations used in our examples are given below.

Annotation Description

@Entity Declares the class as an entity or a table.

@Table Declares table name.

@Basic Specifies non-constraint fields explicitly.

@Embedded
Specifies the properties of class or an entity whose

value is an instance of an embeddable class.

@Id
Specifies the property, use for identity (primary key

of a table) of the class.

@GeneratedValue

Specifies how the identity attribute can be initialized

such as automatic, manual, or value taken from a

sequence table.

@Transient
Specifies the property that is not persistent, i.e., the

value is never stored in the database.

@Column
Specifies the column attribute for the persistence

property.

@SequenceGenerator

Specifies the value for the property that is specified

in the @GeneratedValue annotation. It creates a

sequence.

 JAVA PERSISTENCE API (JPA)

19

@TableGenerator

Specifies the value generator for the property

specified in the @GeneratedValue annotation. It

creates a table for value generation.

@AccessType

This type of annotation is used to set the access type.

If you set @AccessType(FIELD), then access occurs

Field wise. If you set @AccessType(PROPERTY), then

access occurs Property wise.

@JoinColumn

Specifies an entity association or entity collection.

This is used in many- to-one and one-to-many

associations.

@UniqueConstraint
Specifies the fields and the unique constraints for the

primary or the secondary table.

@ColumnResult
References the name of a column in the SQL query

using select clause.

@ManyToMany
Defines a many-to-many relationship between the

join Tables.

@ManyToOne
Defines a many-to-one relationship between the join

Tables.

@OneToMany
Defines a one-to-many relationship between the join

Tables.

@OneToOne
Defines a one-to-one relationship between the join

Tables.

@NamedQueries Specifies a list of named queries.

@NamedQuery Specifies a Query using static name.

Java Bean Standard

The Java class encapsulates the instance values and their behaviors into a single unit called

object. Java Bean is a temporary storage and reusable component or an object. It is a

 JAVA PERSISTENCE API (JPA)

20

serializable class which has a default constructor and getter and setter methods to initialize

the instance attributes individually.

Bean Conventions

 Bean contains its default constructor or a file that contains a serialized instance.

Therefore, a bean can instantiate another bean.

 The properties of a bean can be segregated into Boolean properties or non-Boolean

properties.

 Non-Boolean property contains getter and setter methods.

 Boolean property contains setter and is method.

 Getter method of any property should start with small lettered get (Java method

convention) and continued with a field name that starts with a capital letter. For

example, the field name is salary, therefore the getter method of this field is

getSalary ().

 Setter method of any property should start with small lettered set (Java method

convention), continued with a field name that starts with a capital letter and the

argument value to set to field. For example, the field name is salary, therefore the

setter method of this field is setSalary (double sal).

 For Boolean property, the is method is used to check if it is true or false. For example,

for the Boolean property empty, the is method of this field is isEmpty ().

 JAVA PERSISTENCE API (JPA)

21

End of ebook preview

If you liked what you saw…

Buy it from our store @ https://store.tutorialspoint.com

