
- Design and Analysis of Algorithms
- Home
- Basics of Algorithms
- DAA - Introduction
- DAA - Analysis of Algorithms
- DAA - Methodology of Analysis
- Asymptotic Notations & Apriori Analysis
- Time Complexity
- Master’s Theorem
- DAA - Space Complexities
- Divide & Conquer
- DAA - Divide & Conquer
- DAA - Max-Min Problem
- DAA - Merge Sort
- DAA - Binary Search
- Strassen’s Matrix Multiplication
- Karatsuba Algorithm
- Towers of Hanoi
- Greedy Algorithms
- DAA - Greedy Method
- Travelling Salesman Problem
- Prim's Minimal Spanning Tree
- Kruskal’s Minimal Spanning Tree
- Dijkstra’s Shortest Path Algorithm
- Map Colouring Algorithm
- DAA - Fractional Knapsack
- DAA - Job Sequencing with Deadline
- DAA - Optimal Merge Pattern
- Dynamic Programming
- DAA - Dynamic Programming
- Matrix Chain Multiplication
- Floyd Warshall Algorithm
- DAA - 0-1 Knapsack
- Longest Common Subsequence
- Travelling Salesman Problem | Dynamic Programming
- Randomized Algorithms
- Randomized Algorithms
- Randomized Quick Sort
- Karger’s Minimum Cut
- Fisher-Yates Shuffle
- Approximation Algorithms
- Approximation Algorithms
- Vertex Cover Problem
- Set Cover Problem
- Travelling Salesperson Approximation Algorithm
- Graph Theory
- DAA - Spanning Tree
- DAA - Shortest Paths
- DAA - Multistage Graph
- Optimal Cost Binary Search Trees
- Heap Algorithms
- DAA - Binary Heap
- DAA - Insert Method
- DAA - Heapify Method
- DAA - Extract Method
- Sorting Techniques
- DAA - Bubble Sort
- DAA - Insertion Sort
- DAA - Selection Sort
- DAA - Shell Sort
- DAA - Heap Sort
- DAA - Bucket Sort
- DAA - Counting Sort
- DAA - Radix Sort
- Searching Techniques
- Searching Techniques Introduction
- DAA - Linear Search
- DAA - Binary Search
- DAA - Interpolation Search
- DAA - Jump Search
- DAA - Exponential Search
- DAA - Fibonacci Search
- DAA - Sublist Search
- Complexity Theory
- Deterministic vs. Nondeterministic Computations
- DAA - Max Cliques
- DAA - Vertex Cover
- DAA - P and NP Class
- DAA - Cook’s Theorem
- NP Hard & NP-Complete Classes
- DAA - Hill Climbing Algorithm
- DAA Useful Resources
- DAA - Quick Guide
- DAA - Useful Resources
- DAA - Discussion
Design and Analysis - Shell Sort
Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm. This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the far right and has to be moved to the far left.
This algorithm uses insertion sort on a widely spread elements, first to sort them and then sorts the less widely spaced elements. This spacing is termed as interval. This interval is calculated based on Knuth's formula as −
h = h * 3 + 1 where − h is interval with initial value 1
This algorithm is quite efficient for medium-sized data sets as its average and worst case complexity are of O(n), where n is the number of items.
Shell Sort Algorithm
Following is the algorithm for shell sort.
Step 1 − Initialize the value of h
Step 2 − Divide the list into smaller sub-list of equal interval h
Step 3 − Sort these sub-lists using insertion sort
Step 3 − Repeat until complete list is sorted
Pseudocode
Following is the pseudocode for shell sort.
procedure shellSort() A : array of items /* calculate interval*/ while interval < A.length /3 do: interval = interval * 3 + 1 end while while interval > 0 do: for outer = interval; outer < A.length; outer ++ do: /* select value to be inserted */ valueToInsert = A[outer] inner = outer; /*shift element towards right*/ while inner > interval -1 && A[inner - interval] >= valueToInsert do: A[inner] = A[inner - interval] inner = inner – interval end while /* insert the number at hole position */ A[inner] = valueToInsert end for /* calculate interval*/ interval = (interval -1) /3; end while end procedure
Example
Let us consider the following example to have an idea of how shell sort works. We take the same array we have used in our previous examples. For our example and ease of understanding, we take the interval of 4. Make a virtual sub-list of all values located at the interval of 4 positions. Here these values are {35, 14}, {33, 19}, {42, 27} and {10, 14}

We compare values in each sub-list and swap them (if necessary) in the original array. After this step, the new array should look like this −

Then, we take interval of 2 and this gap generates two sub-lists - {14, 27, 35, 42}, {19, 10, 33, 44}

We compare and swap the values, if required, in the original array. After this step, the array should look like this −

Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion sort to sort the array.
Following is the step-by-step depiction −












We see that it required only four swaps to sort the rest of the array.
Example
Shell sort is a highly efficient sorting algorithm and is based on insertion sort algorithm. This algorithm avoids large shifts as in case of insertion sort, if the smaller value is to the far right and has to be moved to the far left.
#include <stdio.h> void shellSort(int arr[], int n){ int gap, j, k; for(gap = n/2; gap > 0; gap = gap / 2) { //initially gap = n/2, decreasing by gap /2 for(j = gap; j<n; j++) { for(k = j-gap; k>=0; k -= gap) { if(arr[k+gap] >= arr[k]) break; else { int temp; temp = arr[k+gap]; arr[k+gap] = arr[k]; arr[k] = temp; } } } } } int main(){ int n; n = 5; int arr[5] = {33, 45, 62, 12, 98}; // initialize the array printf("Array before Sorting: "); for(int i = 0; i<n; i++) printf("%d ",arr[i]); printf("\n"); shellSort(arr, n); printf("Array after Sorting: "); for(int i = 0; i<n; i++) printf("%d ", arr[i]); printf("\n"); }
Output
Array before Sorting: 33 45 62 12 98 Array after Sorting: 12 33 45 62 98
#include<iostream> using namespace std; void shellSort(int *arr, int n){ int gap, j, k; for(gap = n/2; gap > 0; gap = gap / 2) { //initially gap = n/2, decreasing by gap /2 for(j = gap; j<n; j++) { for(k = j-gap; k>=0; k -= gap) { if(arr[k+gap] >= arr[k]) break; else { int temp; temp = arr[k+gap]; arr[k+gap] = arr[k]; arr[k] = temp; } } } } } int main(){ int n; n = 5; int arr[5] = {33, 45, 62, 12, 98}; // initialize the array cout << "Array before Sorting: "; for(int i = 0; i<n; i++) cout << arr[i] << " "; cout << endl; shellSort(arr, n); cout << "Array after Sorting: "; for(int i = 0; i<n; i++) cout << arr[i] << " "; cout << endl; }
Output
Array before Sorting: 33 45 62 12 98 Array after Sorting: 12 33 45 62 98
import java.io.*; import java.util.*; public class ShellSort { public static void main(String args[]) { int n = 5; int[] arr = {33, 45, 62, 12, 98}; //initialize an array System.out.print("Array before Sorting: "); for(int i = 0; i<n; i++) System.out.print(arr[i] + " "); System.out.println(); int gap; for(gap = n/2; gap > 0; gap = gap / 2) { //initially gap = n/2, decreasing by gap /2 for(int j = gap; j<n; j++) { for(int k = j-gap; k>=0; k -= gap) { if(arr[k+gap] >= arr[k]) break; else { int temp; temp = arr[k+gap]; arr[k+gap] = arr[k]; arr[k] = temp; } } } } System.out.print("Array After Sorting: "); for(int i = 0; i<n; i++) System.out.print(arr[i] + " "); System.out.println(); } }
Output
Array before Sorting: 33 45 62 12 98 Array After Sorting: 12 33 45 62 98
def shell_sort(array,n): gap = n//2 #using floor division to avoid float values as result while gap > 0: for i in range(int(gap),n): temp = array[i] j = i while j >= gap and array[j-gap] >temp: array[j] = array[j-gap] j -= gap array[j] = temp gap = gap // 2 #using floor division to avoid float values as result arr = [33, 45, 62, 12, 98] n = len(arr) print("Array before Sorting: ") print(arr) shell_sort(arr, n); print("Array after Sorting: ") print(arr)
Output
Array before Sorting: [33, 45, 62, 12, 98] Array after Sorting: [12, 33, 45, 62, 98]