
- Design and Analysis of Algorithms
- Home
- Basics of Algorithms
- DAA - Introduction
- DAA - Analysis of Algorithms
- DAA - Methodology of Analysis
- Asymptotic Notations & Apriori Analysis
- Time Complexity
- Master’s Theorem
- DAA - Space Complexities
- Divide & Conquer
- DAA - Divide & Conquer
- DAA - Max-Min Problem
- DAA - Merge Sort
- DAA - Binary Search
- Strassen’s Matrix Multiplication
- Karatsuba Algorithm
- Towers of Hanoi
- Greedy Algorithms
- DAA - Greedy Method
- Travelling Salesman Problem
- Prim's Minimal Spanning Tree
- Kruskal’s Minimal Spanning Tree
- Dijkstra’s Shortest Path Algorithm
- Map Colouring Algorithm
- DAA - Fractional Knapsack
- DAA - Job Sequencing with Deadline
- DAA - Optimal Merge Pattern
- Dynamic Programming
- DAA - Dynamic Programming
- Matrix Chain Multiplication
- Floyd Warshall Algorithm
- DAA - 0-1 Knapsack
- Longest Common Subsequence
- Travelling Salesman Problem | Dynamic Programming
- Randomized Algorithms
- Randomized Algorithms
- Randomized Quick Sort
- Karger’s Minimum Cut
- Fisher-Yates Shuffle
- Approximation Algorithms
- Approximation Algorithms
- Vertex Cover Problem
- Set Cover Problem
- Travelling Salesperson Approximation Algorithm
- Graph Theory
- DAA - Spanning Tree
- DAA - Shortest Paths
- DAA - Multistage Graph
- Optimal Cost Binary Search Trees
- Heap Algorithms
- DAA - Binary Heap
- DAA - Insert Method
- DAA - Heapify Method
- DAA - Extract Method
- Sorting Techniques
- DAA - Bubble Sort
- DAA - Insertion Sort
- DAA - Selection Sort
- DAA - Shell Sort
- DAA - Heap Sort
- DAA - Bucket Sort
- DAA - Counting Sort
- DAA - Radix Sort
- Searching Techniques
- Searching Techniques Introduction
- DAA - Linear Search
- DAA - Binary Search
- DAA - Interpolation Search
- DAA - Jump Search
- DAA - Exponential Search
- DAA - Fibonacci Search
- DAA - Sublist Search
- Complexity Theory
- Deterministic vs. Nondeterministic Computations
- DAA - Max Cliques
- DAA - Vertex Cover
- DAA - P and NP Class
- DAA - Cook’s Theorem
- NP Hard & NP-Complete Classes
- DAA - Hill Climbing Algorithm
- DAA Useful Resources
- DAA - Quick Guide
- DAA - Useful Resources
- DAA - Discussion
Design and Analysis Extract Method
Extract method is used to extract the root element of a Heap. Following is the algorithm.
Algorithm: Heap-Extract-Max (numbers[]) max = numbers[1] numbers[1] = numbers[heapsize] heapsize = heapsize – 1 Max-Heapify (numbers[], 1) return max
Example
Let us consider the same example discussed previously. Now we want to extract an element. This method will return the root element of the heap.

After deletion of the root element, the last element will be moved to the root position.

Now, Heapify function will be called. After Heapify, the following heap is generated.

Advertisements