Design and Analysis - Binary Search

Binary search method is a searching algorithm that follows the divide and conquer technique. This is based on the idea of ordered searching where the algorithm divides the sorted list into two halves and performs the searching. If the key value to be searched is lower than the mid-point value of the sorted list, it performs searching on the left half; otherwise it searches the right half. If the array is unsorted, linear search is used to determine the position.

Binary Search Algorithm

In this algorithm, we want to find whether element x belongs to a set of numbers stored in an array numbers[]. Where l and r represent the left and right index of a sub-array in which searching operation should be performed.

Algorithm: Binary-Search(numbers[], x, l, r)
if l = r then
return l
else
m := $\lfloor (l + r) / 2\rfloor$
if x ≤ numbers[m] then
return Binary-Search(numbers[], x, l, m)
else
return Binary-Search(numbers[], x, m+1, r)


Example

In this example, we are going to search element 63.

Analysis

Linear search runs in O(n) time. Whereas binary search produces the result in O(log n) time.

Let T(n) be the number of comparisons in worst-case in an array of n elements.

Hence,

$$T\left ( n \right )=\left\{\begin{matrix} 0 & if\: n=1\\ T\left ( \frac{n}{2} \right )+1 & otherwise \\ \end{matrix}\right.$$

Using this recurrence relation T(n)=log n.

Therefore, binary search uses O(log n) time.

Example

In the following implementation, we are trying to search for an integer value from a list of values by applying the bianry search algorithm.

#include <stdio.h>
#define MAX 20

// array of items on which linear search will be conducted.
int intArray[MAX] = {1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,66};
void printline(int count){
int i;
for(i = 0; i <count-1; i++) {
printf("=");
}
printf("=\n");
}
int find(int data){
int lowerBound = 0;
int upperBound = MAX -1;
int midPoint = -1;
int comparisons = 0;
int index = -1;
while(lowerBound <= upperBound) {
printf("Comparison %d\n" , (comparisons +1) );
printf("lowerBound : %d, intArray[%d] = %d\n",lowerBound,lowerBound,
intArray[lowerBound]);
printf("upperBound : %d, intArray[%d] = %d\n",upperBound,upperBound,
intArray[upperBound]);
comparisons++;

// compute the mid point
// midPoint = (lowerBound + upperBound) / 2;
midPoint = lowerBound + (upperBound - lowerBound) / 2;

// data found
if(intArray[midPoint] == data) {
index = midPoint;
break;
} else {

// if data is larger
if(intArray[midPoint] < data) {

// data is in upper half
lowerBound = midPoint + 1;
}

// data is smaller
else {

// data is in lower half
upperBound = midPoint -1;
}
}
}
printf("Total comparisons made: %d" , comparisons);
return index;
}
void display(){
int i;
printf("[");

// navigate through all items
for(i = 0; i<MAX; i++) {
printf("%d ",intArray[i]);
}
printf("]\n");
}
void main(){
printf("Input Array: ");
display();
printline(50);

//find location of 1
int location = find(55);

// if element was found
if(location != -1)
printf("\nElement found at location: %d" ,(location+1));
else
}


Output

Input Array: [1 2 3 4 6 7 9 11 12 14 15 16 17 19 33 34 43 45 55 66 ]
==================================================
Comparison 1
lowerBound : 0, intArray[0] = 1
upperBound : 19, intArray[19] = 66
Comparison 2
lowerBound : 10, intArray[10] = 15
upperBound : 19, intArray[19] = 66
Comparison 3
lowerBound : 15, intArray[15] = 34
upperBound : 19, intArray[19] = 66
Comparison 4
lowerBound : 18, intArray[18] = 55
upperBound : 19, intArray[19] = 66
Element found at location: 19

#include<iostream>
using namespace std;
int binarySearch(int arr[], int p, int r, int num){
if (p <= r) {
int mid = (p + r)/2;
if (arr[mid] == num)
return mid ;
if (arr[mid] > num)
return binarySearch(arr, p, mid-1, num);
if (arr[mid] < num)
return binarySearch(arr, mid+1, r, num);
}
return -1;
}
int main(void){
int arr[] = {1, 3, 7, 15, 18, 20, 25, 33, 36, 40};
int n = sizeof(arr)/ sizeof(arr[0]);
int num = 15;
int index = binarySearch (arr, 0, n-1, num);
if(index == -1) {
cout<< num <<" is not present in the array";
} else {
cout<< num <<" is present at index "<< index <<" in the array";
}
return 0;
}



Output

15 is present at index 3 in the array

public class Binary_Search {
public static int binarySearch(int arr[], int low, int high, int key) {
int mid = (low + high)/2;
while( low <= high ) {
if ( arr[mid] < key ) {
low = mid + 1;
} else if ( arr[mid] == key ) {
return mid;
} else {
high = mid - 1;
}
mid = (low + high)/2;
}
return -1;
}
public static void main(String args[]) {
int[] arr = { 10, 20, 30, 40, 50, 60 };
int key = 30;
int high=arr.length-1;
int i = binarySearch(arr,0,high,key);
if (i != -1) {
System.out.println(key + " is present at index: " + i);
} else {
System.out.println(key + " is not present.");
}
}
}


Output

30 is present at index: 2

def binarySearch(arr, low, high, key):
mid = (low + high)//2
while( low <= high ):
if ( arr[mid] < key ):
low = mid + 1
elif ( arr[mid] == key ):
return mid
else:
high = mid - 1
mid = (low + high)//2
return -1;

arr = [ 10, 20, 30, 40, 50, 60 ]
key = 50
high=len(arr)-1
i = binarySearch(arr,0,high,key)
if (i != -1):
print("key is present at index: ")
print(i)
else:
print("key is not present.")


Output

key is present at index:
4