DATA STRUCTURES ALGORITHMS MOCK TEST

This section presents you various set of Mock Tests related to Data Structures Algorithms. You can download these sample mock tests at your local machine and solve offline at your convenience. Every mock test is supplied with a mock test key to let you verify the final score and grade yourself.

Mack

Tests

DATA STRUCTURES ALGORITHMS MOCK TEST III

Q 1 - What will be the running-time of Dijkstra's single source shortest path algorithm, if the graph $G V, E$ is stored in form of adjacency list and binary heap is used -
$\mathrm{A}-\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
B-O $|V| \log |V|$
C-O|E|+|V|log|V|
D - None of these

Q 2 - How many swaps are required to sort the given array using bubble sort - \{ 2, 5, $1,3,4\}$

A-4
B-5
C-6
D-7

Q 3 - Match the following -

(1) Bubble Sort
(A) On
(2) Shell Sort
(B) $\mathrm{O}\left(\mathrm{n}^{2}\right)$
(3) Selection Sort
(C) Onlogn
$A-1 \rightarrow A, 2 \rightarrow B, 3 \rightarrow C$
$B-1 \rightarrow B, 2 \rightarrow C, 3 \rightarrow A$
C-1 $\rightarrow \mathrm{A}, 2 \rightarrow \mathrm{C}, 3 \rightarrow \mathrm{~B}$
$D-1 \rightarrow B, 2 \rightarrow A, 3 \rightarrow C$

Q 4 - In context with time-complexity, find the odd out -
A - Deletion from Linked List.
B - Searching in Hash Table
C - Adding edge in Adjacency Matrix
D - Heapify a Binary Heap

Q 5 - In binary heap, whenever the root is removed then the rightmost element of last level is replaced by the root. Why?

A - It is the easiest possible way.
B - To make sure that it is still complete binary tree.
C - Because left and right subtree might be missing.
D - None of the above!

Q 6 - Time required to merge two sorted lists of size m and n, is
A $-\mathrm{Om} \mid n$
B $-\mathrm{Om}+n$
C - Omlogn
D - Onlogm

Q 7 - The number of binary trees with 3 nodes which when traversed in post order gives the sequence A, B, C is ?

A - 3
B - 4
C-5
D-6

Q 8 - Quick sort running time depends on the selection of
A - size of array
B - pivot element
C - sequence of values
D - none of the above!

Q 9 - Which of the below given sorting techniques has highest best-case runtime complexity -

A - quick sort
B - selection sort
C - insertion sort
D - bubble sort

Q 10 - Which of the below mentioned sorting algorithms are not stable?
A - Selection Sort
B - Bubble Sort
C - Merge Sort
D - Insertion Sort

Q 11 - If queue is implemented using arrays, what would be the worst run time complexity of queue and dequeue operations?

A - On, On
B - On, O1
C-O1, On
D - O1, O1

Q 12 - A queue data-structure can be used for -
A - expression parsing
B - recursion
C - resource allocation
D - all of the above

Q 13 - The Θ notation in asymptotic evaluation represents -
B - Base case
C - Average case
D - Worst case
A - NULL case

Q 14 - Which of these alogrithmic approach tries to achieve localized optimum solution -

A - Greedy approach
B - Divide and conquer approach

C - Dynamic approach
D - All of the above

Q 15 - Which of the following uses memoization?

A - Greedy approach
B - Divide and conquer approach
C - Dynamic programming approach
D - None of the above!

Q 16 - Index of arrays in C programming langauge starts from

A 0
B-1
C - either 0 or 1
D - undefined

Q 17 - In doubly linked lists

A - a pointer is maintained to store both next and previous nodes.
B - two pointers are maintained to store next and previous nodes.
C - a pointer to self is maintained for each node.
D - none of the above.

Q 18 - node.next -> node.next.next; will make
A - node.next inaccessible
B - node.next.next inaccessible
C - this node inaccessible
D - none of the above

Q 19 - Linked list search complexity is

A-O1
B - On
C - Ologn
D - Ologlogn

A - Declaration
B - Definition
C - Dynamic Allocation
D - Array of strings

Q 21 - In C programming, when we remove an item from bottom of the stack, then -
A - The stack will fall down.
B - Stack will rearranged items.
C - It will convert to LIFO
D - This operation is not allowed.

Q 22-Program with highest run-time complexity is

A - Tower of Hanoi
B - Fibonacci Series
C - Prime Number Series
D - None of the above

Q 23 - Tower of hanoi is a classic example of

A - divide and conquer
B - recursive approach
C - B but not A
D - Both A \& B

Q 24 - Which of the following algorithm cannot be desiged without recursion -

A - Tower of Hanoi
B - Fibonacci Series
C - Tree Traversal
D - None of the above

Q 25 - If there's no base criteria in a recursive program, the program will
A - not be executed.
B - execute until all conditions match.
C - execute infinitely.
D - obtain progressive approach.

ANSWER SHEET

Question Number	Answer Key
1	C
2	A
3	B
4	D
5	B
6	B
7	C
8	B
9	B
10	A
11	D
12	C
13	B
14	A
15	C
16	A
17	B
18	A
19	B
20	C
21	D
22	A
23	D
24	D
25	C

