
- Converting Decimals to Fractions
- Home
- Converting a decimal to a proper fraction without simplifying: Basic
- Converting a decimal to a proper fraction without simplifying: Advanced
- Converting a decimal to a proper fraction in simplest form: Basic
- Converting a decimal to a proper fraction in simplest form: Advanced
- Converting a decimal to a mixed number and an improper fraction without simplifying
- Converting a decimal to a mixed number and an improper fraction in simplest form: Basic
- Exponents and fractions
- Order of operations with fractions: Problem type 1
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Order of operations with fractions: Problem type 1 Online Quiz
Following quiz provides Multiple Choice Questions (MCQs) related to Order of operations with fractions: Problem type 1. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Answer : A
Explanation
Step 1:
$\mathbf {\left ( \frac{27}{8}-\frac{14}{8} \right )}\times\frac{8}{9}-\frac{2}{3}=$
$ \left ( \frac{27-14}{8} \right )\times\frac{8}{9}-\frac{2}{3}=\frac{13}{8} \times \frac{8}{9} - \frac{2}{3}$
Step 2:
$\mathbf{\frac{13}{8}\times\frac{8}{9}}-\frac{2}{3}=\frac{13}{9}-\frac{2}{3}$
Step 3:
$\mathbf{\frac{13}{9}-\frac{2}{3}}=\frac{(13-6)}{9}=\frac{7}{9}$
Step 4:
So, $\left ( \frac{27}{8}-\frac{14}{8} \right ) \times \frac{8}{9} - \frac{2}{3}=\frac{7}{9}$
Answer : C
Explanation
Step 1:
$\mathbf{\left ( \frac{13}{5} - \frac{7}{5} \right )} \times \left ( \frac{5}{9} \right )^2 = \frac{(13-7)}{5} \times \left ( \frac{5}{9} \right )^2$
$= \frac{6}{5} \times (\frac{5}{9})^2$
Step 2:
$\frac{6}{5} \times \mathbf{\left ( \frac{5}{9} \right )^2}=\frac{6}{5} \times \frac{25}{81}$
Step 3:
$\mathbf{\frac{6}{5} \times \frac{25}{81}}=\frac{10}{27}$
Step 4:
So, $\left ( \frac{13}{5}-\frac{7}{5} \right ) \times \left ( \frac{5}{9} \right )^2 = \frac{10}{27}$
Answer : B
Explanation
Step 1:
$\mathbf{\left ( \frac{4}{7} \div \frac{11}{7} \right )} \times \mathbf{\left ( \frac{6}{5} + \frac{3}{5} \right )} =$
$\left ( \frac{4}{7} \times \frac{7}{11} \right ) \times \frac{(6+3)}{5} = \frac{4}{11} \times \frac{9}{5}$
Step 2:
$\mathbf{\frac{4}{11} \times \frac{9}{5}} = \frac{36}{55}$
Step 3:
So, $\left ( \frac{4}{7} \div \frac{11}{7} \right ) \times \left ( \frac{6}{5} + \frac{3}{5} \right ) = \frac{36}{55}$
Answer : D
Explanation
Step 1:
$\mathbf {\left ( \frac{15}{9} - \frac{8 }{9} \right )} \div \frac{8}{3}+\frac{5}{9} = $
$\frac{(15-8)}{9} \div \frac{8}{3} + \frac{5}{9} = \frac{7}{9} \div \frac{8}{3} +\frac{5}{9}$
Step 2:
$\mathbf {\frac{7}{9} \div \frac{8}{3} + \frac{5}{9}} = \frac{7}{9} \times \frac{3}{8} + \frac{5}{9} = \frac{7}{24} + \frac{5}{9}$
Step 3:
$\mathbf {\frac{7}{24} + \frac{5}{9}} = \frac{(21 + 40)}{72} = \frac{61}{72}$
Step 4:
So, $\left ( \frac{15}{9} - \frac{8}{9} \right ) \div \frac{8}{3} + \frac{5}{9} = \frac{61}{72}$
Answer : C
Explanation
Step 1:
$\frac{9}{8} \div \frac{4}{3} \times \mathbf {\left ( \frac{8}{5} - \frac{4}{9} \right )} = $
$\frac{9}{8} \div \frac{4}{3} \times \frac{(72-20)}{45} = \frac{9}{8} \div \frac{4}{3} \times \frac{52}{45}$
Step 2:
$\mathbf {\frac{9}{8} \div \frac{4}{3}} \times \frac{52}{45} =$
$\frac{9}{8} \times \frac{3}{4} \times \frac{52}{45} = \frac{27}{32} \times \frac{52}{45} = \frac{39}{40}$
Step 3:
$\mathbf {\frac{27}{32} \times \frac{52}{45}} = \frac{39}{40}$
Step 4:
So, $\frac{9}{8} \div \frac{4}{3} \times \left ( \frac{8}{5} - \frac{4}{9} \right ) = \frac{39}{40}$
Answer : A
Explanation
Step 1:
$\frac{5}{8} + \frac{3}{4} \div \mathbf {\frac{2^2}{5}} - \frac{11}{16} =$
$\frac{5}{8} + \frac{3}{4} \div \frac{4}{5} - \frac{11}{16}$
Step 2:
$\frac{5}{8} + \mathbf {\frac{3}{4} \div \frac{4}{5}} -\frac{11}{16} =$
$\frac{5}{8} + \frac{3}{4} \times \frac{5}{4} - \frac{11}{16} =$
$\frac{5}{8} + \frac{15}{16} - \frac{11}{16}$
Step 3:
$\frac{5}{8} + \frac{15}{16} - \frac{11}{16} = \frac{(10 + 15 - 11)}{16} = \frac{14}{16} = \frac{7}{8}$
Step 4:
So, $\frac{5}{8} + \frac{3}{4} \div \frac{2^2}{5} - \frac{11}{16} = \frac{7}{8}$
Answer : B
Explanation
Step 1:
$\frac{3}{14} - \frac{1}{6} \times \mathbf {\left ( \frac{3}{5} \right )^2} \div \frac{7}{15} =$
$\frac{3}{14} - \frac{1}{6} \times \frac{9}{25} \div \frac{7}{15}$
Step 2:
$\frac{3}{14} - \mathbf {\frac{1}{6} \times \frac{9}{25}} \div \frac{7}{15} = \frac{3}{14} - \frac{3}{50} \div \frac{7}{15}$
Step 3:
$\frac{3}{14} - \mathbf {\frac{3}{50} \times \frac{15}{7}} = \frac{3}{14} - \frac{9}{70}$
Step 4:
$\mathbf {\frac{3}{14} - \frac{9}{70}} = \frac{(15-9)}{70} = \frac{6}{70} = \frac{3}{35}$
So, $\frac{3}{14} - \frac{1}{6} \times \left ( \frac{3}{5} \right )^2 \div \frac{7}{15} = \frac{3}{35}$
Answer : D
Explanation
Step 1:
$\mathbf {\left ( \frac{1}{9} \right )^2} \div \frac{5}{18} + \frac{7}{30} = \frac{1}{81} \div \frac{5}{18} + \frac{7}{30}$
Step 2:
$\mathbf {\frac{1}{18} \div \frac{5}{18}} + \frac{7}{30} = \frac{1}{81} \times \frac{18}{5} + \frac{7}{30}$
$\frac{2}{45} + \frac{7}{30}$
Step 3:
$\mathbf {\frac{2}{45} + \frac{7}{30}} = \frac{(4+21)}{90} = \frac{25}{90} = \frac{5}{18}$
Step 4:
So, $\left ( \frac{1}{9} \right )^2 \div \frac{5}{18} + \frac{7}{30} = \frac{5}{18}$
Answer : C
Explanation
Step 1:
$\left ( \frac{5}{8} - \frac{\mathbf {1^2}}{5} \right ) \times \frac{5}{3} = \left ( \frac{5}{8} - \frac{1}{5} \right ) \times \frac{5}{3}$
Step 2:
$\mathbf {\frac{5}{8} - \frac{1}{5}} \times \frac{5}{3} = \frac{(25-8)}{40} \times \frac{5}{3}$
$= \frac{17}{40} \times \frac{5}{3}$
Step 3:
$\mathbf {\frac{17}{40} \times \frac{5}{3}} = \frac{17}{24}$
Step 4:
So, $\left ( \frac{5}{8} - \frac{1^2}{5} \right ) \times \frac{5}{3} = \frac{17}{24}$
Answer : A
Explanation
Step 1:
$\frac{12}{6^2} \times \mathbf {\left ( \frac{5}{6} + \frac{4}{3} \right )} \times \frac{6}{5}$
$= \frac{12}{6^2} \times \frac{(5+8)}{6} \times \frac{6}{5} = \frac{12}{6^2} \times \frac{13}{6} \times \frac{6}{5}$
Step 2:
$\frac{12}{\mathbf{6^2}} \times \frac{13}{6} \times \frac{6}{5} = \frac{12}{36} \times \frac{13}{6} \times \frac{6}{5}$
Step 3:
$\mathbf {\frac{12}{36} \times \frac{13}{6}} \times \frac{6}{5} = \frac{13}{18} \times \frac{6}{5}$
Step 4:
$\mathbf {\frac{13}{18} \times \frac{6}{5}} = \frac{13}{15}$
So, $\frac{12}{6^2} \times \left ( \frac{5}{6} + \frac{4}{3} \right ) \times \frac{6}{5} = \frac{13}{15}$