
http://www.tutorialspoint.com/computer_programming/computer_programming_syntax.htm
Copyright © tutorialspoint.com

COMPUTER PROGRAMMING BASIC SYNTAXCOMPUTER PROGRAMMING BASIC SYNTAX

Let’s start with little coding, which will really make you computer programmer. I’m going to write a
single-line computer program to write Hello, World! on your screen. Let’s see how it can be
written using different programming languages:

Hello World Program in C
Try to click Try It option to see the output of the following program. This Try it option is available
at the top right-corner of the following code box. Try to change the content inside printf instead of
Hello World! and then check its result. It just prints whatever you keep inside two double quotes.

#include <stdio.h>

main()
{
   /* printf() function to write Hello, World! */
   printf( "Hello, World!" );
}

This little Hello World program will help us in understanding various basic concepts related to C
Programming.

Program Entry Point

For now just forget about #include <stdio.h> statement, but keep a note that you
have to put this statement at the top of a C program.

So, every C program starts with main, which is called main function and then it is followed by a left
curly brace. Rest of the program instruction is written in between and finally a right curly brace
ends the program.

The coding part inside these two curly braces is called program body. The left curly brace can be
in the same line as main{ or in the next line like it has been mentioned in the above program.

Functions
Functions are small units of programs and they are used to carry out a specific task. For example,
above program makes use of two functions a main and b printf. Here, function main provides the
entry point for the program execution and another function printf is being used to print an
information on computer screen.

You can write your own functions which we will see in separate chapter, but C programming itself
provides various built-in functions like main, printf, etc., which we can use in our programs based
on our need.

Few programming languages use word sub-routine instead of function but their functionality is
more or less same.

Comments
A C program can have statements enclosed inside /*.....*/. Such statements are called comments
and these comments are used to make program user friendly and easy to understand the
program. Good thing about comments is that they are completely ignored by compilers and
interpreters. So you can whatever language you want to write your comments.

Whitespaces

http://www.tutorialspoint.com/computer_programming/computer_programming_syntax.htm


When we write a program using any programming language, we use various printable characters
to prepare programming statements. These printable characters are a, b, c,......z, A, B, C,.....Z,
1, 2, 3,...... 0, !, @, #, $, %, ^, &, *, (, ), -, _, +, =, \, |, {, }, [, ], :, ;, <, >, ?, /, \, ~. `. ", '.
Hope I'm not missing any printable characters from your keyboard.

Apart from these characters, there are some characters which we use very frequently but they are
invisible in your program and these characters are spaces, tabs \t, new lines\n. These characters
are called whitespaces.

These three important whitespace characters are common in all the programming languages and
they remain invisible in your text document having your program:

Whitespace Explanation Representation

New Line This will be used to create a new line. \n

Tab This will be used to create a tab. \t

Space This will be used to create a space. empty space

A line containing only whitespace, possibly with a comment, is known as a blank line, and a C
compiler totally ignores it. Whitespace is the term used in C to describe blanks, tabs, newline
characters and comments. So you can write printf " Hello, World! " ; as follows. Here all the created
spaces around "Hello, World!" are useless and the compiler will ignore them at the time of
compilation.

#include <stdio.h>

main()
{

   /* printf() function to write Hello, World! */
   
   printf(    "Hello, World!"      );
   
}

Assuming, I make all these whitespace characters visible, then your above program will look like
something below and you will not be able to compile it:

#include <stdio.h>\n
\n
main()\n
{
\n
\t/* printf() function to write Hello, World! */
\n 
\tprintf(\t"Hello, World!"\t);\n
\n
}\n

Semicolons
Every individual statement in C Program, must be ended with a semicolon ; For example, if you
want to write "Hello, World!" twice, then it will be written as follows:

#include <stdio.h>

main()
{
   /* printf() function to write Hello, World! */
   printf( "Hello, World!\n" );
   printf( "Hello, World!" );



}

This program will produce the following result:

Hello, World! 
Hello, World!

Here, I'm using new line character \n in first printf function to create a new line. Let us see what
happens if I do not use this new line character:

#include <stdio.h>

main()
{
   /* printf() function to write Hello, World! */
   printf( "Hello, World!" );
   printf( "Hello, World!" );
}

This program will produce following result:

Hello, World! Hello, World!

I'm skipping explanation about identifiers and keywords and will take them in next few chapters.

Program Explanation
Let's try to understand how the above C program to print “Hello, World!” works. First of above
program is converted into a binary format using C compiler. So let’s put this code in test.c file and
compile it as follows:

$gcc test.c -o demo

If there is any grammatical error Syntaxerrorsincomputerterminologies, then we fix it before converting it
into binary format. If everything goes fine then it produces binary file called demo. Finally we
execute produced binary demo as follows:

$./demo

Which produces following result:

Hello, World!

Here, when we execute binary a.out file, what computer does is, it enters inside the program
starting from main and encounters a printf statements. Keep a note about line inside /*....*/ is a
comment so it is filtered at the time of compilation. So printf function instructs computer to print
the given line at the computer screen. Finally it encounters a right curly brace which indicates the
end of main function and exit of the program.

Syntax Error
If you do not follow rules defined by the programing language then at the time of compilation you
will get syntax error and program will not be compiled. From syntax point of view, even a single dot
or comma or single semicolon matters and you should take care of such small syntax as well.
Following is Hello, World! program but here I'm not using semicolon, let's try to compile following
program:

#include <stdio.h>

main()
{
   printf("Hello, World!")
   



}

This program will produce following result:

main.c: In function 'main':
main.c:7:1: error: expected ';' before '}' token
 }
 ^

So bottom-line is that if you are not following proper syntax defined by the programming language
in your program then you will get similar type of syntax errors and before trying next compilation
you will need to fix them and then proceed.

Hello World Program in Java
Following is the equivalent program written in Java. This program will also produce same result
Hello, World!.

public class HelloWorld
{    
   public static void main(String []args) 
   {
      /* println() function to write Hello, World! */
      System.out.println("Hello, World!");     
   }
}

Hello World Program in Python
Following is the equivalent program written in Python. This program will also produce same result
Hello, World!.

#  print function to write Hello, World! */
print "Hello, World!"

Hope you noted that for C and Java examples, first we are compiling programs and then executing
produced binaries but in Python program we are directly executing it. As I explained in previous
chapter, Python is an interpreted language and it does not need intermediate step called
compilation.

Python programming languages does not require a semicolon ;  to terminate a statement like we
used in C and Java, rather a new line always means termination of the statement.

Conclusion
Not sure if you understood what I taught you above in this chapter, but if you did not understand
then I will suggest to go through it once again and make sure you understood all the above
concepts. But if you understood these concepts, then you are almost done and let's proceed to the
next chapter, which you are going to enjoy a lot.
Processing math: 100%


