
http://www.tutorialspoint.com/automata_theory/dfa_minimization.htm Copyright © tutorialspoint.com

DFA MINIMIZATIONDFA MINIMIZATION

DFA Minimization using Myphill-Nerode Theorem

Algorithm

Input: DFA

Output: Minimized DFA

Step 1 Draw a table for all pairs of states (Qi, Qj) not necessarily connected directly [All are
unmarked initially]

Step 2 Consider every state pair (Qi, Qj) in the DFA where Qi ∈ F and Qj ∉ F or vice versa
and mark them. [Here F is the set of final states].

Step 3
Repeat this step until we cannot mark anymore states −

If there is an unmarked pair (Qi, Qj), mark it if the pair {δ(Qi, A), δ (Qi, A)} is marked
for some input alphabet.

Step 4 Combine all the unmarked pair (Qi, Qj) and make them a single state in the
reduced DFA.

Example
Let us use above algorithm to minimize the DFA shown below.

Step 1 − We draw a table for all pair of states.

a b c d e f

a

b

c

d

e

http://www.tutorialspoint.com/automata_theory/dfa_minimization.htm


f

Step 2 − We mark the state pairs −

a b c d e f

a

b

c ✔ ✔

d ✔ ✔

e ✔ ✔

f ✔ ✔ ✔

Step 3 − We will try to mark the state pairs, with green colored check mark, transitively. If we
input 1 to state ‘a’ and ‘f’, it will go to state ‘c’ and ‘f’ respectively. c, f is already marked, hence we
will mark pair a, f. Now, we input 1 to state ‘b’ and ‘f’; it will go to state ‘d’ and ‘f’ respectively. d, f is
already marked, hence we will mark pair b, f.

a b c d e f

a

b

c ✔ ✔

d ✔ ✔

e ✔ ✔

f ✔ ✔ ✔ ✔ ✔

After step 3, we have got state combinations {a, b} {c, d} {c, e} {d, e} that are unmarked.

We can recombine {c, d} {c, e} {d, e} into {c, d, e}

Hence we got two combined states as − {a, b} and {c, d, e}

So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e}



DFA Minimization using Equivalence Theorem
If X and Y are two states in a DFA, we can combine these two states into {X, Y} if they are not
distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ 
X, S and δ Y, S is accepting and another is not accepting. Hence, a DFA is minimal if and only if all
the states are distinguishable.

Algorithm

Step 1 All the states Q are divided in two partitions − final states and non-final states and
are denoted by P0. All the states in a partition are 0th equivalent. Take a counter k
and initialize it with 0.

Step 2 Increment k by 1. For each partition in Pk, divide the states in Pk into two partitions if
they are k-distinguishable. Two states within this partition X and Y are k-
distinguishable if there is an input S such that δX, S and δY, S are k − 1-distinguishable.

Step 3 If Pk ≠ Pk-1, repeat Step 2, otherwise go to Step 4.

Step 4 Combine kth equivalent sets and make them the new states of the reduced DFA.

Example
Let us consider the following DFA −

q δq, 0 δq, 1

a b c

b a d

c e f

d e f

e e f

f f f

Let us apply above algorithm to the above DFA −

P0 = {c, d, e, a, b, f}



P1 = {c, d, e, a, b,f}

P2 = {c, d, e, a, b,f}

Hence, P1 = P2.

There are three states in the reduced DFA. The reduced DFA is as follows −

The State table of DFA is as follows −

Q δq, 0 δq, 1

a, b a, b c, d, e

c, d, e c, d, e f

f f f

Its graphical representation would be as follows −

Loading [MathJax]/jax/output/HTML-CSS/jax.js


