DFA MINIMIZATION

http://www.tutorialspoint.com/automata_theory/dfa_minimization.htm

Copyright © tutorialspoint.com

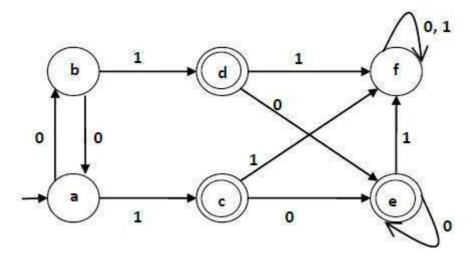
DFA Minimization using Myphill-Nerode Theorem

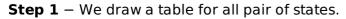
Algorithm

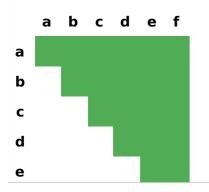
Input:	DFA
Output:	Minimized DFA
Step 1	Draw a table for all pairs of states (Q _i , Q _j) not necessarily connected directly [All are unmarked initially]
Step 2	Consider every state pair (Q _i , Q _j) in the DFA where Q _i \in F and Q _j \notin F or vice versa and mark them. [Here F is the set of final states].
Step 3	Repeat this step until we cannot mark anymore states – If there is an unmarked pair (Q _i , Q _j), mark it if the pair { $\delta(Q_i, A), \delta(Q_i, A)$ } is marked for some input alphabet.
Step 4	Combine all the unmarked pair (Q _i , Q _j) and make them a single state in the reduced DFA.

Example

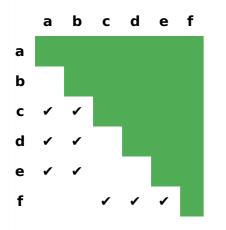
Let us use above algorithm to minimize the DFA shown below.



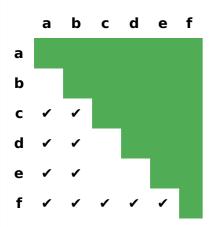




Step 2 - We mark the state pairs -



Step 3 – We will try to mark the state pairs, with green colored check mark, transitively. If we input 1 to state 'a' and 'f', it will go to state 'c' and 'f' respectively. c, f is already marked, hence we will mark pair a, f. Now, we input 1 to state 'b' and 'f'; it will go to state 'd' and 'f' respectively. d, f is already marked, hence we will mark pair b, f.

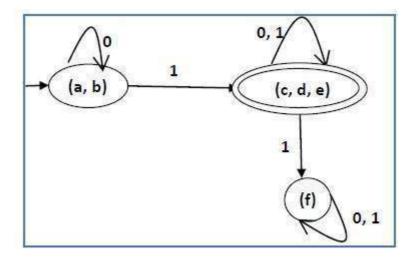


After step 3, we have got state combinations $\{a, b\} \{c, d\} \{c, e\} \{d, e\}$ that are unmarked.

We can recombine {c, d} {c, e} {d, e} into {c, d, e}

Hence we got two combined states as – $\{a, b\}$ and $\{c, d, e\}$

So the final minimized DFA will contain three states {f}, {a, b} and {c, d, e}



DFA Minimization using Equivalence Theorem

If X and Y are two states in a DFA, we can combine these two states into {X, Y} if they are not distinguishable. Two states are distinguishable, if there is at least one string S, such that one of δ X, S and δ Y, S is accepting and another is not accepting. Hence, a DFA is minimal if and only if all the states are distinguishable.

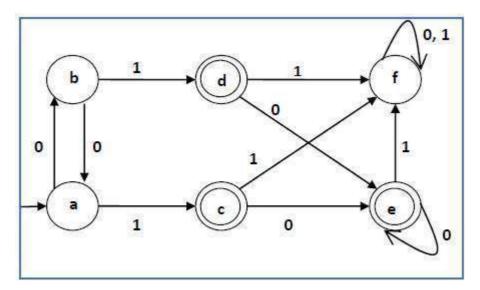
Algorithm

- **Step 1** All the states **Q** are divided in two partitions **final states** and **non-final states** and are denoted by P_0 . All the states in a partition are 0th equivalent. Take a counter **k** and initialize it with 0.
- **Step 2** Increment k by 1. For each partition in P_k , divide the states in P_k into two partitions if they are k-distinguishable. Two states within this partition X and Y are k-distinguishable if there is an input **S** such that δX , S and δY , S are k 1-distinguishable.
- **Step 3** If $P_k \neq P_{k-1}$, repeat Step 2, otherwise go to Step 4.
- **Step 4** Combine kth equivalent sets and make them the new states of the reduced DFA.

Example

Let us consider the following DFA -

q	δ q, 0	δ q, 1
а	b	С
b	а	d
с	е	f
d	е	f
e	е	f
f	f	f



Let us apply above algorithm to the above DFA -

• $P_0 = \{c, d, e, a, b, f\}$

- $P_1 = \{c, d, e, a, b, f\}$
- $P_2 = \{c, d, e, a, b, f\}$

Hence, $P_1 = P_2$.

There are three states in the reduced DFA. The reduced DFA is as follows – The State table of DFA is as follows –

Q	δ q, 0	δ q, 1
a, b	a, b	c, d, e
c, d, e	c, d, e	f
f	f	f

Its graphical representation would be as follows -

