CONSTRUCTION OF AN FA FROM AN RE

Construction of an FA from an RE

We can use Thompson's Construction to find out a Finite Automaton from a Regular Expression. We will reduce the regular expression into smallest regular expressions and converting these to NFA and finally to DFA.

Some basic RA expressions are the following -
Case 1 - For a regular expression ' a ', we can construct the following FA -

Finite automata for $\mathrm{RE}=\mathbf{a}$
Case 2 - For a regular expression 'ab', we can construct the following FA -

Finite automata for RE $=\mathbf{a b}$
Case 3 - For a regular expression $a+b$, we can construct the following FA -

Finite automata for $\mathrm{RE}=(\mathbf{a + b})$
Case 4 - For a regular expression $a+b^{*}$, we can construct the following FA -

Finite automata for $\mathrm{RE}=(\mathrm{a}+\mathrm{b})^{*}$

Method

Step 1 Construct an NFA with Null moves from the given regular expression.
Step 2 Remove Null transition from the NFA and convert it into its equivalent DFA.

Problem

Convert the following RA into its equivalent DFA - $10+1^{*} 0$

Solution

We will concatenate three expressions "1", " 0 + 1 *" and " 0 "

NDFA with NULL transition for RA: $1(0+1)^{*} 0$
Now we will remove the $\boldsymbol{\varepsilon}$ transitions. After we remove the $\boldsymbol{\varepsilon}$ transitions from the NDFA, we get the following -

NDFA without NULL transition for RA: $1(0+1) * 0$

It is an NDFA corresponding to the RE: $10+1^{*} 0$. If you want to convert it into a DFA, simply apply the method of converting NDFA to DFA discussed in Chapter 1.

Finite Automata with Null Moves NFA-e

A Finite Automaton with null moves FA- ε does transit not only after giving input from the alphabet set but also without any input symbol. This transition without input is called a null move.

An NFA- ε is represented formally by a 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F$), consisting of

- Q - a finite set of states
- Σ - a finite set of input symbols
- δ - a transition function $\delta: Q \times \Sigma \cup \varepsilon \rightarrow 2^{\mathrm{Q}}$
- $\mathbf{q o}_{\mathbf{0}}$ - an initial state $\mathrm{q}_{0} \in \mathrm{Q}$
- F - a set of final state/states of $Q F \subseteq Q$.

\square
Finite automata with Null Moves

Removal of Null Moves from Finite Automata

If in an NDFA, there is ε-move between vertex X to vertex Y, we can remove it using the following steps -

- Find all the outgoing edges from Y.
- Copy all these edges starting from X without changing the edge labels.
- If X is an initial state, make Y also an initial state.
- If Y is a final state, make X also a final state.

Problem

Convert the following NFA- ε to NFA without Null move.

Solution

Step 1 -

Here the $\boldsymbol{\varepsilon}$ transition is between $\mathbf{q}_{\mathbf{1}}$ and $\mathbf{q}_{\mathbf{2}}$, so let $\mathbf{q}_{\mathbf{1}}$ is \mathbf{X} and $\mathbf{q}_{\mathbf{f}}$ is \mathbf{Y}.
Here the outgoing edges from q_{f} is to q_{f} for inputs 0 and 1 .

Step 2 -

Now we will Copy all these edges from q_{1} without changing the edges from q_{f} and get the following FA -

Step 3 -
Here $\mathbf{q}_{\mathbf{1}}$ is an initial state, so we make $\mathbf{q}_{\mathbf{f}}$ also an initial state.
So the FA becomes -

NDFA after Step 3

Step 4 -

Here $\mathbf{q}_{\mathbf{f}}$ is a final state, so we make $\mathbf{q}_{\mathbf{1}}$ also a final state.
So the FA becomes -

