
Financial Accounting Tutorial

i

About the Tutorial

Apache ANT is a Java based build tool from Apache Software Foundation. Apache

ANT’s build files are written in XML and they take advantage of being open

standard, portable and easy to understand.

This tutorial will teach you how to use Apache ANT to automate the build and

deployment process in simple and easy steps. After completing this tutorial, you

will find yourself at a moderate level of expertise in using Apache ANT from where

you can take yourself to next levels.

Audience

This tutorial is prepared for the beginners to help them understand basic

functionality of Apache ANT tool to automate the build and deployment process.

Prerequisites

We assume you have knowledge of software development using any programming

language, especially Java, and the software build and deployment process.

Disclaimer & Copyright

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy,

distribute or republish any contents or a part of contents of this e-book in any

manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial. If

you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com.

mailto:contact@tutorialspoint.com

 Apache ANT

 ii

Table of Contents

About the Tutorial ..i

Audience ..i

Prerequisites ..i

Disclaimer & Copyright ...i

Table of Contents .. ii

1. ANT INTRODUCTION .. 1

Need for a Build Tool ...1

History of Apache ANT ..1

Features of Apache ANT ..1

2. ANT ENVIRONMENT SETUP ... 3

Installing Apache ANT ...3

Verifying Apache ANT Installation ...3

Installing Eclipse ..4

3. ANT BUILD FILES .. 5

4. ANT PROPERTY TASK ... 8

5. ANT PROPERTY FILES ... 10

build.xml ... 10

build.properties .. 11

6. ANT SERVICES .. 13

Fileset ... 13

Patternset ... 13

Filelist.. 14

Filterset ... 14

Path .. 15

 Apache ANT

 iii

7. ANT BUILDING PROJECTS... 16

8. ANT BUILD DOCUMENTATION ... 20

Attributes .. 20

Putting it All Together ... 20

9. ANT CREATING JAR FILES ... 23

10. ANT PACKAGING APPLICATIONS .. 29

build.properties .. 29

build.xml ... 29

11. ANT FOR DEPLOYING APPLICATIONS ... 33

build.properties .. 33

build.xml ... 33

12. EXECUTING JAVA CODE ... 40

13. ECLIPSE INTEGRATION ... 42

14. ANT JUNIT INTEGRATION ... 44

15. EXTENDING ANT .. 46

 Apache ANT

1

ANT stands for Another Neat Tool. Before going into details of Apache ANT, you
must understand the need for a build tool.

Need for a Build Tool

Apart from coding and testing, the JAVA developers are engaged in the following
tasks:

 Compiling the code

 Packaging the binaries

 Deploying the binaries to the test server

 Testing the changes

 Copying the code from one location to another

To automate and simplify the above tasks, Apache ANT is useful. It is an operating

system build and deployment tool that can be executed from command line.

History of Apache ANT

 ANT was created by James Duncan Davidson, the original author of Tomcat.

 It was originally used to build Tomcat, and was bundled as part of Tomcat

distribution.

 ANT was born out of the problems and complexities associated with Apache

Make tool.

 ANT was promoted as an independent project in Apache in the year 2000.

 The latest version of Apache ANT as on May 2014 is 1.9.4.

 NAnt is a .NET build tool that is similar to ANT, except that is used to build

.NET apps.

Features of Apache ANT

 ANT is the most complete Java build and deployment tool available.

 ANT is platform neutral and can handle platform-specific properties such as

file separators.

1. ANT INTRODUCTION

 Apache ANT

2

 ANT can be used to perform platform-specific tasks such as modifying the

modified time of a file using 'touch' command.

 ANT scripts are written using plain XML. If you are already familiar with

XML, you can learn Ant pretty quickly.

 ANT is good at automating complicated repetitive tasks.

 ANT comes with a big list of predefined tasks.

 ANT provides an interface to develop custom tasks.

 ANT can be easily invoked from the command line and it can integrate with

free and commercial IDEs.

 Apache ANT

3

Apache ANT is distributed under the Apache Software License, a full-fledged open

source license certified by the open source initiative.

The latest Apache Ant version, including full-source code, class files and

documentation can be found at http://ant.apache.org.

Installing Apache ANT

It is assumed that you have already downloaded and installed Java Development

Kit (JDK) on your computer. If not, please follow the instructions here.

 Ensure that the JAVA_HOME environment variable is set to the folder where

your JDK is installed.

 Download the binaries from http://ant.apache.org

 Unzip the .zip file to a convenient location using Winzip, winRAR, 7-zip or

similar tools, on say c:\folder.

 Create a new environment variable called ANT_HOME that points to the

ANT installation folder, in this case, c:\apache-ant-1.9.4-bin folder.

 Append the path to the Apache ANT batch file to the PATH environment

variable. In our case, this would be the c:\apache-ant-1.9.4-

bin\bin folder.

Verifying Apache ANT Installation

To verify the successful installation of Apache ANT on your computer, start

command prompt and type ant. You should see an output similar to:

C:\>ant -version

Apache Ant(TM) version 1.9.4 compiled on December 20 2014

If you do not see the above reply, then please confirm if you followed the

installation steps properly.

2. ANT ENVIRONMENT SETUP

http://ant.apache.org/
http://localhost/java/java_environment_setup.htm
http://ant.apache.org/

 Apache ANT

4

Installing Eclipse

This tutorial also covers integration of ANT with Eclipse IDE. Hence, if you have

not installed Eclipse already, please download and install Eclipse as given below:

 Download the latest Eclipse binaries from www.eclipse.org.

 Unzip the Eclipse binaries to a convenient location, say c:\.

 Run Eclipse from c:\eclipse\eclipse.exe.

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/indigor

 Apache ANT

5

Typically, ANT’s build file called build.xml should reside in the base directory of

the project. Although, you are free to use other file name or place for the build

file.

For this exercise, create a file called build.xml anywhere in your computer with

the following contents in it:

<?xml version="1.0"?>

 <project name="Hello World Project" default="info">

 <target name="info">

 <echo>Hello World - Welcome to Apache Ant!</echo>

 </target>

</project>

Note that there must be no blank line(s) or whitespace(s) before the xml

declaration. If you allow them, the following error message occurs while executing

the ant build –

The processing instruction target matching "[xX][mM][lL]" is not allowed.

All build files require the project element and at least one target element.

The XML element project has three attributes:

Attributes Description

Name The Name of the project. (Optional)

default The default target for the build script. A project may contain any

number of targets. This attribute specifies which target should

be considered as the default. (Mandatory)

basedir The base directory (or) the root folder for the project. (Optional)

A target is a collection of tasks that you want to run as one unit. In our example,

we have a simple target to provide an informational message to the user.

Targets can have dependencies on other targets. For example, a deploy target

may have a dependency on the package target, the package target may have a

3. ANT BUILD FILES

 Apache ANT

6

dependency on the compile target, and so forth. Dependencies are denoted using

depends attribute. For example:

<target name="deploy" depends="package">

</target>

<target name="package" depends="clean,compile">

</target>

<target name="clean" >

</target>

<target name="compile" >

</target>

The target element has the following attributes:

Attributes Description

name The name of the target (Required)

depends Comma separated list of all targets that this target depends on.

(Optional)

description A short description of the target. (optional)

if Allows the execution of a target based on the trueness of a

conditional attribute. (optional)

unless Adds the target to the dependency list of the specified Extension

Point. An Extension Point is similar to a target, but it does not

have any tasks. (Optional)

The echo task in the above example is a trivial task that prints a message. In our

example, it prints the message Hello World.

To run the ANT build file, start command prompt and navigate to the folder where

the build.xml resides, and type ant info. You can also type ant instead. Both will

 Apache ANT

7

work, because info is the default target in the build file. You should see the

following output:

 C:\>ant

Buildfile: C:\build.xml

info:

 [echo] Hello World - Welcome to Apache Ant!

BUILD SUCCESSFUL

Total time: 0 seconds

C:\>

 Apache ANT

8

ANT uses the property element which allows you to specify properties. This

allows the properties to be changed from one build to another, or from one

environment to another.

By default, ANT provides the following pre-defined properties that can be used in

the build file:

Properties Description

ant.file The full location of the build file.

ant.version The version of the Apache ANT installation.

basedir The basedir of the build, as specified in

the basedir attribute of the project element.

ant.java.version The version of the JDK that is used by ANT.

ant.project.name The name of the project, as specified in

the name attribute of the project element.

ant.project.default-target The default target of the current project.

ant.project.invoked-targets Comma separated list of the targets that were

invoked in the current project.

ant.core.lib The full location of the ANT jar file.

ant.home The home directory of ANT installation.

ant.library.dir The home directory for ANT library files - typically

ANT_HOME/lib folder.

4. ANT PROPERTY TASK

 Apache ANT

9

ANT also makes the system properties. For Example, file.separator is available to

the build file.

In addition to the above, the user can define additional properties using

the property element. The following example shows how to define a property

called sitename:

<?xml version="1.0"?>

<project name="Hello World Project" default="info">

 <property name="sitename" value="www.tutorialspoint.com"/>

 <target name="info">

 <echo>Apache Ant version is ${ant.version} - You are

 at ${sitename} </echo>

 </target>

</project>

Running ANT on the above build file produces the following output:

C:\>ant

Buildfile: C:\build.xml

info:

 [echo] Apache Ant version is Apache Ant(TM) version 1.9.4

 compiled on December 20 2014 - You are at www.tutorialspoint.com

BUILD SUCCESSFUL

Total time: 0 seconds

C:\>

 Apache ANT

10

Setting properties directly in the build file is fine if you are working with a handful

of properties. However, for a large project, it makes sense to store the properties

in a separate property file.

Storing the properties in a separate file is advantageous as:

 It allows you to reuse the same build file, with different property settings

for different execution environment. For example, build properties file can
be maintained separately for DEV, TEST, and PROD environments.

 it is useful when you do not know the values for a property (in a particular

environment) up front. This allows you to perform the build in other
environments where the property value is known.

There is no hard and fast rule, but typically the property file is

named build.properties and is placed alongwith the build.xml file. You can

create multiple build properties files based on the deployment environment - such

as build.properties.dev and build.properties.test

The contents of the build property file are similar to the normal java property file.

They contain one property per line. Each property is represented by a name-value

pair. The name-value pairs are separated by equals (=) signs. It is highly

recommended that the properties are annotated with proper comments.

Comments are listed using the hash (#) character.

The following example shows build.xml and an associated build.properties file:

build.xml

<?xml version="1.0"?>

<project name="Hello World Project" default="info">

 <property file="build.properties"/>

 <target name="info">

 <echo>Apache Ant version is ${ant.version} - You are

 at ${sitename} </echo>

 </target>

</project>

5. ANT PROPERTY FILES

 Apache ANT

11

build.properties

The Site Name

sitename=www.tutorialspoint.com

buildversion=3.3.2

In the above example, sitename is a custom property which is mapped to the

website name. You can declare any number of custom properties in this fashion.

Another custom property listed in the above example is the buildversion, which

in this instance refers to the version of the build.

In addition to the above, ant comes with a number of predefined build properties,

which are listed in the previous section, but is represented below once again.

Properties Description

ant.file The full location of the build file.

ant.version The version of the Apache ANT installation.

Basedir The basedir of the build, as specified in

the basedir attribute of the project element.

ant.java.version The version of the JDK that is used by ANT.

ant.project.name The name of the project, as specified in

the name attribute of the project element.

ant.project.default-target The default target of the current project.

ant.project.invoked-

targets

Comma separated list of the targets that were

invoked in the current project.

ant.core.lib The full location of the ANT jar file.

ant.home The home directory of ANT installation.

ant.library.dir The home directory for ANT library files - typically

ANT_HOME/lib folder.

 Apache ANT

12

In the example presented in this chapter, we use the ant.version built-in

property.

 Apache ANT

13

ANT provides a number of predefined Services. It provides services such as File

set (we can include/exclude set of files), Pattern Set (easily filter files or folders),

File List (explicit set of files), Filter Set (pattern matching for text/file/folder), Path

(Represents the class path), etc. The following services are provided by Apache

ANT:

Fileset

The fileset represents a collection of files. It is used as a filter to include or exclude

files that match a particular pattern.

For example, refer the following code. Here, the src attribute (${src}) points to

the source folder of the project. The fileset selects all .java files in the source

folder except those, which contain the word 'Stub'. The casesensitive filter is

applied to the fileset which means that a file with the name Samplestub.java will

not be excluded from the fileset.

<fileset dir="${src}" casesensitive="yes">

 <include name="**/*.java"/>

 <exclude name="**/*Stub*"/>

</fileset>

Patternset

A patternset is a pattern that allows to filter the files or folders easily, based on

certain patterns. Patterns can be created using the following meta characters:

? - Matches one character only.

* - Matches zero or many characters.

** - Matches zero or many directories recursively.

The following example depicts the usage of a patternset:

<patternset id="java.files.without.stubs">

 <include name="src/**/*.java"/>

 <exclude name="src/**/*Stub*"/>

</patternset>

6. ANT SERVICES

 Apache ANT

14

The patternset can be reused then with a fileset as follows:

<fileset dir="${src}" casesensitive="yes">

 <patternset refid="java.files.without.stubs"/>

 </fileset>

Filelist

The filelist service is similar to the fileset except the following differences:

 Filelist contains explicitly named lists of files and it does not support wild
cards.

 Filelist tag can be applied for existing or non-existing files.

Let us see the following example of filelist . Here, the attribute

webapp.src.folder points to the web application source folder of the project.

<filelist id="config.files" dir="${webapp.src.folder}">

 <file name="applicationConfig.xml"/>

 <file name="faces-config.xml"/>

 <file name="web.xml"/>

 <file name="portlet.xml"/>

</filelist>

Filterset

Using filterset service along with the copy task, enables you to replace certain text

in all files that matches the pattern with a replacement value.

A common example is to append the version number to the release notes file, as

shown in the following code. Here, the attribute output.dir points to the output

folder of the project. The attribute releasenotes.dir points to the release notes

folder of the project. The attribute current.version points to the current version

folder of the project. The copy task, as the name suggests, is used to copy files

from one location to another.

<copy todir="${output.dir}">

 <fileset dir="${releasenotes.dir}" includes="**/*.txt"/>

 <filterset>

 <filter token="VERSION" value="${current.version}"/>

 </filterset>

 Apache ANT

15

</copy>

Path

The path service is commonly used to represent a class path. Entries in the path

are separated using semicolons or colons. However, these characters are replaced

at the run time by the executing system's path separator character.

The classpath is set to the list of jar files and classes in the project, as shown in

the example below. Here, the attribute env.J2EE_HOME points to the

environment variable J2EE_HOME. The attribute j2ee.jar points to the name of

the J2EE jar file in the J2EE base folder.

<path id="build.classpath.jar">

 <pathelement path="${env.J2EE_HOME}/${j2ee.jar}"/>

 <fileset dir="lib">

 <include name="**/*.jar"/>

 </fileset>

</path>

 Apache ANT

16

Now that you have learnt basic services in ANT, it is time to put your knowledge

into action. We will build a project in this chapter. The aim of this chapter is to

build an ANT file that compiles the java classes and places them in the WEB-

INF\classes folder. Consider the following project structure:

 The database scripts are stored in the db folder.

 The java source code is stored in the src folder.

 The images, js, META-INF, styles (css) are stored in the war folder.

 The JSPs are stored in the jsp folder.

 The third party jar files are stored in the lib folder.

 The java class files are stored in the WEB-INF\classes folder.

Let us assume the following folder hierarchy of a sample project. The project is

the Hello World Fax Web Application. Follow the same folder structure for the

rest of this tutorial.

C:\work\FaxWebApplication>tree

Folder PATH listing

Volume serial number is 00740061 EC1C:ADB1

C:.

+---db

+---src

. +---faxapp

. +---dao

. +---entity

. +---util

. +---web

+---war

 +---images

 +---js

 +---META-INF

 +---styles

 +---WEB-INF

 +---classes

7. ANT BUILDING PROJECTS

 Apache ANT

17

 +---jsp

 +---lib

Here is the build.xml required for this project. Let us consider it piece by piece.

The src.dir refers to the source folder of the project, where the java source files

can be found. The web.dir refers to the web source folder of the project. This is

where you can find the JSPs, web.xml, css, javascript, and other web related files.

Finally, the build.dir refers to the output folder of the project compilation.

<?xml version="1.0"?>

<project name="fax" basedir="." default="build">

 <property name="src.dir" value="src"/>

 <property name="web.dir" value="war"/>

 <property name="build.dir" value="${web.dir}/WEB-INF/classes"/>

 <property name="name" value="fax"/>

 <path id="master-classpath">

 <fileset dir="${web.dir}/WEB-INF/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement path="${build.dir}"/>

 </path>

 <target name="build" description="Compile source tree java files">

 <mkdir dir="${build.dir}"/>

 <javac destdir="${build.dir}" source="1.5" target="1.5">

 <src path="${src.dir}"/>

 <classpath refid="master-classpath"/>

 </javac>

 </target>

 <target name="clean" description="Clean output directories">

 <delete>

 <fileset dir="${build.dir}">

 <include name="**/*.class"/>

 </fileset>

 Apache ANT

18

 </delete>

 </target>

</project>

Let us disscuss above given build.xml in detail First, let us declare some properties

for the source, web, and build folders.

<property name="src.dir" value="src"/>

<property name="web.dir" value="war"/>

<property name="build.dir" value="${web.dir}/WEB-INF/classes"/>

Properties can refer to other properties. The build.dir property makes a reference

to the web.dir property. The src.dir refers to the source folder of the project.

The default target of our project is the compile target. But first let us look at

the clean target. The clean target, as the name suggests, deletes the files in the

build folder.

<target name="clean" description="Clean output directories">

 <delete>

 <fileset dir="${build.dir}">

 <include name="**/*.class"/>

 </fileset>

 </delete>

</target>

The master-classpath holds the classpath information. In this case, it includes the

classes in the build folder and the jar files in the lib folder.

<path id="master-classpath">

 <fileset dir="${web.dir}/WEB-INF/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement path="${build.dir}"/>

</path>

Finally, the build target to build the files. First of all, we create the build directory,

if it does not exist. Then we execute the javac command specifying jdk1.5 as our

target compilation. We supply the source folder and the classpath to the javac

task and ask it to drop the class files in the build folder.

<target name="build" description="Compile main source tree java files">

 Apache ANT

19

 <mkdir dir="${build.dir}"/>

 <javac destdir="${build.dir}" source="1.5" target="1.5" debug="true"

 deprecation="false" optimize="false" failonerror="true">

 <src path="${src.dir}"/>

 <classpath refid="master-classpath"/>

 </javac>

</target>

Executing ANT on this file compiles the java source files and places the classes in

the build folder.

The result of executing an ANT file is as shown:

C:\>ant

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 6.3 seconds

The files are compiled and placed in the build.dir folder.

 Apache ANT

20

Documentation is necessary task in the any project execution. Documentation

plays a great role in the project maintenance. Java makes documentation easier

by the use of the inbuilt javadoc tool. The javadoc tool is highly flexible and allows

a number of configuration options. You can visit Java Documentation Tutorial for

more information.

Apache ANT can generate documents on demand. ANT exploits the configuration

options via the javadoc task.

Attributes

You can specify source using the attributes

sourcepath, sourcepathref, or sourcefiles.

You can use the attributes in the following ways:

 the attribute sourcepath to point to the folder of the source files (for

example, src folder).

 the attribute sourcepathref to refer to a path, which is referenced by the

path attribute (for example, delegates.src.dir).

 the attribute sourcefiles when you want to specify the individual files as a
comma separated list.

 You can specify destination path using the destdir folder (for example,
build.dir)

 You can filter the javadoc task by specifying the package names to be
included. You can achieve this by using the packagenames attribute, a
comma separated list of package files.

 You can filter the javadoc process to show only the public, private, package,
or protected classes, and members. You can achieve this by using the

private,public,package and protected attributes.

 You can also tell the javadoc task to include the author and version
information using the respective attributes.

 You can also group the packages together using the group attribute, so that
it is easy to navigate.

Putting it All Together

Let us continue with the Hello World Fax Web Application folder structure. Let

us add a documentation target to our Fax application project build.xml.

8. ANT BUILD DOCUMENTATION

http://localhost/java/java_documentation.htm

 Apache ANT

21

The following example depicts javadoc task used in our project. Here, we specified

the javadoc to use the src.dir as the source directory, and doc as the target

directory. We also customized the window title, the header, and footer information

that appears on the java documentation pages.

We created three groups for classes as follows:

1. Utility classes in our source folder

2. User interfaces classes

3. Database related classes.

Notice that the data package group has two packages - faxapp.entity and

faxapp.dao.

<target name="generate-javadoc">

 <javadoc packagenames="faxapp.*" sourcepath="${src.dir}"

 destdir="doc" version="true" windowtitle="Fax Application">

 <doctitle><![CDATA[= Fax Application =]]></doctitle>

 <bottom>

 <![CDATA[Copyright © 2011. All Rights Reserved.]]>

 </bottom>

 <group title="util packages" packages="faxapp.util.*"/>

 <group title="web packages" packages="faxapp.web.*"/>

 <group title="data packages"

 packages="faxapp.entity.*:faxapp.dao.*"/>

 </javadoc>

 <echo message="java doc has been generated!" />

</target>

Let us execute the javadoc ANT task. This generates and places the java

documentation files in the doc folder.

When the javadoc target is executed, it produces the following outcome:

C:\>ant generate-javadoc

Buildfile: C:\build.xml

java doc has been generated!

BUILD SUCCESSFUL

Total time: 10.63 second

 Apache ANT

22

The java documentation files are now present in the doc folder.

Typically, the javadoc files are generated as part of the release or package targets.

 Apache ANT

23

The next logical step after compiling your java source files, is to build the java

archive, i.e. the JAR file. Creating JAR files with ANT is quite easy with the jar task.

The commonly used attributes of the jar task are:

Attributes Description

basedir
The base directory for the output JAR file. By default, this is

set to the base directory of the project.

compress Advises ANT to compress the file as it creates the JAR file.

keepcompression

While the compress attribute is applicable to the individual

files, the keepcompression attribute does the same thing,

but it applies to the entire archive.

destfile The name of the output JAR file.

duplicate
Advises ANT on what to do when duplicate files are found.

You could add, preserve, or fail the duplicate files.

excludes
Advises ANT to not include these comma separated list of

files in the package.

excludesfile
Same as above, except the exclude files are specified using

a pattern.

inlcudes Inverse of excludes.

includesfile Inverse of excludesfile.

update Advises ANT to overwrite files in the already built JAR file.

Continuing our Hello World Fax Web Application project folder structure, let

us add a new target to produce the jar files. But before that let us consider the jar

task given below. Here, the web.dir property points to the path of the web source

9. ANT CREATING JAR FILES

 Apache ANT

24

files. In our case, this is where the util.jar is placed. The build.dir property points

to the build folder where the class files for the util.jar can be found.

In this example, we create a jar file called util.jar using the classes from

the faxapp.util.*package. However, we are excluding the classes that end with

the name Test. The output jar file is place in the web application lib folder.

<jar destfile="${web.dir}/lib/util.jar"

 basedir="${build.dir}/classes"

 includes="faxapp/util/**"

 excludes="**/Test.class"

/>

If we want to make the util.jar an executable jar file we need to add

the manifest with the Main-Class meta attribute. Therefore, the above example

is updated as:

<jar destfile="${web.dir}/lib/util.jar"

 basedir="${build.dir}/classes"

 includes="faxapp/util/**"

 excludes="**/Test.class">

 <manifest>

 <attribute name="Main-Class"
value="com.tutorialspoint.util.FaxUtil"/>

 </manifest>

</jar>

To execute the jar task, wrap it inside a target, most commonly the build or

package target, and execute them.

<target name="build-jar">

<jar destfile="${web.dir}/lib/util.jar"

 basedir="${build.dir}/classes"

 includes="faxapp/util/**"

 excludes="**/Test.class">

 <manifest>

 <attribute name="Main-Class"

value="com.tutorialspoint.util.FaxUtil"/>

 </manifest>

</jar>

 Apache ANT

25

</target>

Running ANT on this file creates the util.jar file for us.

On execution of the ANT file, the following result is generated:

C:\>ant build-jar

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 1.3 seconds

The util.jar file is now placed in the output folder.

 Apache ANT

26

Ant creating war files

Creating WAR files with ANT is extremely simple, and very similar to the creating

JAR files task. After all, WAR file, like JAR file is just another ZIP file.

The WAR task is an extension to the JAR task, but it has some nice additions to

manipulate what goes into the WEB-INF/classes folder, and generating the

web.xml file. The WAR task is useful to specify a particular layout of the WAR file.

Since the WAR task is an extension of the JAR task, all attributes of the JAR task

apply to the WAR task

Attributes Description

webxml Path to the web.xml file

lib A grouping to specify what goes into the WEB-INF\lib folder.

classes A grouping to specify what goes into the WEB-INF\classes

folder.

metainf Specifies the instructions for generating the MANIFEST.MF file.

Continuing our Hello World Fax Web Application project folder structure, let

us add a new target to produce the jar files. But before that let us consider the

war task. Consider the following example:

<war destfile="fax.war" webxml="${web.dir}/web.xml">

 <fileset dir="${web.dir}/WebContent">

 <include name="**/*.*"/>

 </fileset>

 <lib dir="thirdpartyjars">

 <exclude name="portlet.jar"/>

 </lib>

 <classes dir="${build.dir}/web"/>

</war>

As per the previous examples, the web.dir variable refers to the source web

folder, i.e, the folder that contains the JSP, css,javascript files etc.

The build.dir variable refers to the output folder - This is where the classes for

the WAR package can be found. Typically, the classes will be bundled into the

WEB-INF/classes folder of the WAR file.

 Apache ANT

27

In this example, we are creating a war file called fax.war. The WEB.XML file is

obtained from the web source folder. All files from the 'WebContent' folder under

web are copied into the WAR file.

The WEB-INF/lib folder is populated with the jar files from the thirdpartyjars folder.

However, we are excluding the portlet.jar as this is already present in the

application server's lib folder. Finally, we are copying all classes from the build

directory's web folder and putting into the WEB-INF/classes folder.

Wrap the war task inside an Ant target (usually package) and run it. This will

create the WAR file in the specified location.

It is entirely possible to nest the classes, lib, metainf and webinf directors so that

they live in scattered folders anywhere in the project structure. But best practices

suggest that your Web project should have the Web Content structure that is

similar to the structure of the WAR file. The Fax Application project has its

structure outlined using this basic principle.

To execute the war task, wrap it inside a target (most commonly, the build or

package target, and run them.

<target name="build-war">

 <war destfile="fax.war" webxml="${web.dir}/web.xml">

 <fileset dir="${web.dir}/WebContent">

 <include name="**/*.*"/>

 </fileset>

 <lib dir="thirdpartyjars">

 <exclude name="portlet.jar"/>

 </lib>

 <classes dir="${build.dir}/web"/>

</war>

</target>

Running ant on this file will create the fax.war file for us..

The following outcome is the result of running the ant file:

C:\>ant build-war

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 12.3 seconds

 Apache ANT

28

The fax.war file is now placed in the output folder. The contents of the war file will

be:

fax.war:

 +---jsp This folder contains the jsp files

 +---css This folder contains the stylesheet files

 +---js This folder contains the javascript files

 +---images This folder contains the image files

 +---META-INF This folder contains the Manifest.Mf

 +---WEB-INF

 +---classes This folder contains the compiled classes

 +---lib Third party libraries and the utility jar files

 WEB.xml Configuration file that defines the WAR package

 Apache ANT

29

We learnt the different aspects of ANT using the Hello World Fax web application

in bits and pieces.

Now it is time to put everything together to create a full and complete build.xml

file. Consider build.properties and build.xml files as follows:

build.properties

The build.properties is used to mention user defined variables which are helpful to

build the project such as file path, classpath, dburls, etc. The following example

defines deploy.path variable.

deploy.path=c:\tomcat6\webapps

build.xml

Refer the following code. In this example, we first declare the path to the webapps

folder in Tomcat in the build properties file as the deploy.path variable. We also

declare the source folder for the java files in src.dir variable. Then we declare the

source folder for the web files in web.dirvariable. javadoc.dir is the folder for

storing the java documentation, and build.dir is the path for storing the build

output files. Then we declare the name of the web application, which is fax in our

case.

We define the master class path which conains the JAR files present in the WEB-

INF/lib folder of the project. We include the class files present in the build.dir in

the master class path.

The Javadoc target produces the javadoc required for the project and the usage

target is used to print the common targets that are present in the build file.

<?xml version="1.0"?>

<project name="fax" basedir="." default="usage">

 <property file="build.properties"/>

 <property name="src.dir" value="src"/>

 <property name="web.dir" value="war"/>

 <property name="javadoc.dir" value="doc"/>

10. ANT PACKAGING APPLICATIONS

 Apache ANT

30

 <property name="build.dir" value="${web.dir}/WEB-INF/classes"/>

 <property name="name" value="fax"/>

 <path id="master-classpath">

 <fileset dir="${web.dir}/WEB-INF/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement path="${build.dir}"/>

 </path>

 <target name="javadoc">

 <javadoc packagenames="faxapp.*" sourcepath="${src.dir}"

 destdir="doc" version="true" windowtitle="Fax Application">

 <doctitle><![CDATA[<h1>= Fax Application

 =</h1>]]></doctitle>

 <bottom><![CDATA[Copyright © 2011. All

 Rights Reserved.]]></bottom>

 <group title="util packages" packages="faxapp.util.*"/>

 <group title="web packages" packages="faxapp.web.*"/>

 <group title="data packages"

 packages="faxapp.entity.*:faxapp.dao.*"/>

 </javadoc>

 </target>

 <target name="usage">

 <echo message=""/>

 <echo message="${name} build file"/>

 <echo message="-----------------------------------"/>

 <echo message=""/>

 <echo message="Available targets are:"/>

 <echo message=""/>

 <echo message="deploy --> Deploy application

 as directory"/>

 Apache ANT

31

 <echo message="deploywar --> Deploy application

 as a WAR file"/>

 <echo message=""/>

 </target>

 <target name="build" description="Compile main

 source tree java files">

 <mkdir dir="${build.dir}"/>

 <javac destdir="${build.dir}" source="1.5"

 target="1.5" debug="true"

 deprecation="false" optimize="false" failonerror="true">

 <src path="${src.dir}"/>

 <classpath refid="master-classpath"/>

 </javac>

 </target>

 <target name="deploy" depends="build"

 description="Deploy application">

 <copy todir="${deploy.path}/${name}"

 preservelastmodified="true">

 <fileset dir="${web.dir}">

 <include name="**/*.*"/>

 </fileset>

 </copy>

 </target>

 <target name="deploywar" depends="build"

 description="Deploy application as a WAR file">

 <war destfile="${name}.war"

 webxml="${web.dir}/WEB-INF/web.xml">

 <fileset dir="${web.dir}">

 <include name="**/*.*"/>

 </fileset>

 Apache ANT

32

 </war>

 <copy todir="${deploy.path}" preservelastmodified="true">

 <fileset dir=".">

 <include name="*.war"/>

 </fileset>

 </copy>

 </target>

 <target name="clean" description="Clean output directories">

 <delete>

 <fileset dir="${build.dir}">

 <include name="**/*.class"/>

 </fileset>

 </delete>

 </target>

</project>

The above example shows two deployment targets: deploy and

the deploywar.The deploy target copies the files from the web directory to the

deploy directory preserving the last modified date time stamp. This is useful when

deploying to a server that supports hot deployment.

The clean target clears all the previously built files.

The deploywar target builds the war file and then copies the war file to the deploy

directory of the application server.

 Apache ANT

33

You learnt how to package an application and deploy it to a folder. In this chapter,

we are going to deploy the web application directly to the application server deploy

folder, then we are going to add few ANT targets to start and stop the services.

Let us continue with the Hello World Fax Application folder structure.

build.properties

Ant properties for building the springapp

appserver.home=c:\\install\\apache-tomcat-7.0.19

for Tomcat 5 use $appserver.home}/server/lib

for Tomcat 6 use $appserver.home}/lib

appserver.lib=${appserver.home}/lib

deploy.path=${appserver.home}/webapps

tomcat.manager.url=http://www.tutorialspoint.com:8080/manager

tomcat.manager.username=tutorialspoint

tomcat.manager.password=secret

build.xml

<?xml version="1.0"?>

<project name="fax" basedir="." default="usage">

 <property file="build.properties"/>

 <property name="src.dir" value="src"/>

 <property name="web.dir" value="war"/>

 <property name="javadoc.dir" value="doc"/>

 <property name="build.dir" value="${web.dir}/WEB-INF/classes"/>

 <property name="name" value="fax"/>

11. ANT FOR DEPLOYING
APPLICATIONS

 Apache ANT

34

 <path id="master-classpath">

 <fileset dir="${web.dir}/WEB-INF/lib">

 <include name="*.jar"/>

 </fileset>

 <pathelement path="${build.dir}"/>

 </path>

 <target name="javadoc">

 <javadoc packagenames="faxapp.*" sourcepath="${src.dir}"

 destdir="doc" version="true" windowtitle="Fax Application">

 <doctitle><![CDATA[<h1>= Fax Application

 =</h1>]]></doctitle>

 <bottom><![CDATA[Copyright © 2011. All

 Rights Reserved.]]></bottom>

 <group title="util packages" packages="faxapp.util.*"/>

 <group title="web packages" packages="faxapp.web.*"/>

 <group title="data packages"

 packages="faxapp.entity.*:faxapp.dao.*"/>

 </javadoc>

 </target>

 <target name="usage">

 <echo message=""/>

 <echo message="${name} build file"/>

 <echo message="-----------------------------------"/>

 <echo message=""/>

 <echo message="Available targets are:"/>

 <echo message=""/>

 <echo message="deploy --> Deploy application

 as directory"/>

 <echo message="deploywar --> Deploy application

 as a WAR file"/>

 Apache ANT

35

 <echo message=""/>

 </target>

 <target name="build" description="Compile main

 source tree java files">

 <mkdir dir="${build.dir}"/>

 <javac destdir="${build.dir}" source="1.5"

 target="1.5" debug="true"

 deprecation="false" optimize="false" failonerror="true">

 <src path="${src.dir}"/>

 <classpath refid="master-classpath"/>

 </javac>

 </target>

 <target name="deploy" depends="build"

 description="Deploy application">

 <copy todir="${deploy.path}/${name}"

 preservelastmodified="true">

 <fileset dir="${web.dir}">

 <include name="**/*.*"/>

 </fileset>

 </copy>

 </target>

 <target name="deploywar" depends="build"

 description="Deploy application as a WAR file">

 <war destfile="${name}.war"

 webxml="${web.dir}/WEB-INF/web.xml">

 <fileset dir="${web.dir}">

 <include name="**/*.*"/>

 </fileset>

 </war>

 <copy todir="${deploy.path}" preservelastmodified="true">

 Apache ANT

36

 <fileset dir=".">

 <include name="*.war"/>

 </fileset>

 </copy>

 </target>

 <target name="clean" description="Clean output directories">

 <delete>

 <fileset dir="${build.dir}">

 <include name="**/*.class"/>

 </fileset>

 </delete>

 </target>

 <!-- == --

>

 <!-- Tomcat tasks -->

 <!-- == --

>

 <path id="catalina-ant-classpath">

 <!-- We need the Catalina jars for Tomcat -->

 <!-- * for other app servers - check the docs -->

 <fileset dir="${appserver.lib}">

 <include name="catalina-ant.jar"/>

 </fileset>

 </path>

 <taskdef name="install"

 classname="org.apache.catalina.ant.InstallTask">

 <classpath refid="catalina-ant-classpath"/>

 </taskdef>

 <taskdef name="reload"

 classname="org.apache.catalina.ant.ReloadTask">

 Apache ANT

37

 <classpath refid="catalina-ant-classpath"/>

 </taskdef>

 <taskdef name="list"

 classname="org.apache.catalina.ant.ListTask">

 <classpath refid="catalina-ant-classpath"/>

 </taskdef>

 <taskdef name="start"

 classname="org.apache.catalina.ant.StartTask">

 <classpath refid="catalina-ant-classpath"/>

 </taskdef>

 <taskdef name="stop"

 classname="org.apache.catalina.ant.StopTask">

 <classpath refid="catalina-ant-classpath"/>

 </taskdef>

 <target name="reload" description="Reload application in Tomcat">

 <reload url="${tomcat.manager.url}"

 username="${tomcat.manager.username}"

 password="${tomcat.manager.password}"

 path="/${name}"/>

 </target>

</project>

In this exercise, we used Tomcat as our application server. First, in the build

properties file, we defined some additional properties.

 The appserver.home points to the installation path to the Tomcat

application server.

 The appserver.lib points to the library files in the Tomcat installation

folder.

 The deploy.path variable now points to the webapp folder in Tomcat.

Applications in Tomcat can be stopped and started using the Tomcat manager

application. The URL for the manager application, username and password are

also specified in the build.properties file. Next, we declare a new CLASSPATH that

contains the catalina-ant.jar. This jar file is required to execute Tomcat tasks

through Apache Ant.

 Apache ANT

38

The catalina-ant.jar provides the following tasks:

Properties Description

InstallTask Installs a web application. Class Name:

org.apache.catalina.ant.InstallTask

ReloadTask Reload a web application. Class Name:

org.apache.catalina.ant.ReloadTask

ListTask Lists all web applications. Class Name:

org.apache.catalina.ant.ListTask

StartTask Starts a web application. Class Name:

org.apache.catalina.ant.StartTask

StopTask Stops a web application. Class Name:

org.apache.catalina.ant.StopTask

ReloadTask Reloads a web application without stopping. Class Name:

org.apache.catalina.ant.ReloadTask

The reload task requires the following additional parameters:–

1) URL to the manager application

2) Username to restart the web application

3) Password to restart the web application

4) Name of the web application to be restarted

Let us issue the deploy-war command to copy the webapp to the Tomcat

webapps folder and then let us reload the Fax Web application. On executing the

ANT file, the following result is seen:

C:\>ant deploy-war

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 6.3 seconds

 Apache ANT

39

C:\>ant reload

Buildfile: C:\build.xml

BUILD SUCCESSFUL

Total time: 3.1 seconds

Once the above task is run, the web application is deployed and the web

application is reloaded.

 Apache ANT

40

You can use ANT to execute java code. In this example below, the java class takes

in an argument (administrator's email address) and sends out an email.

public class NotifyAdministrator

{

 public static void main(String[] args)

 {

 String email = args[0];

 notifyAdministratorviaEmail(email);

 System.out.println("Administrator "+email+" has been notified");

 }

 public static void notifyAdministratorviaEmail(String email)

 {

 //......

 }

}

Here is a simple build that executes this java class.

<?xml version="1.0"?>

<project name="sample" basedir="." default="notify">

 <target name="notify">

 <java fork="true" failonerror="yes" classname="NotifyAdministrator">

 <arg line="admin@test.com"/>

 </java>

 </target>

</project>

When the build is executed, it produces the following outcome:

C:\>ant

Buildfile: C:\build.xml

12. EXECUTING JAVA CODE

 Apache ANT

41

notify:

 [java] Administrator admin@test.com has been notified

BUILD SUCCESSFUL

Total time: 1 second

In this example, the java code does a simple thing - to send an email. We could

have used the built in Ant task to do that. However, now that you have got the

idea you can extend your build file to call java code that performs complicated

things, for example: encrypts your source code.

 Apache ANT

42

Eclipse comes pre bundled with the ANT plugin, ready for you to use.

Follow the simple steps, to integrate ANT into Eclipse.

 Make sure that the build.xml is part of your java project, and does not
reside at a location that is external to the project.

 Enable ANT View by following Window > Show View > Other > Ant >
Ant.

 Open Project Explorer, drag the build.xml into the ANT View.

Your ANT view looks similar to:

Click on the targets, build / clean / usage to run ANT with the target.

Click on fax to execute the default target – usage.

The ANT Eclipse plugin also comes with a good editor for editing build.xml files.

The editor is aware of the build.xml schema and can assist you with code

completion.

To use the ANT editor, right click your build.xml from the Project Explorer and

select Open with > Ant Editor. The Ant Editor should look something similar to:

13. ECLIPSE INTEGRATION

 Apache ANT

43

The Ant editor lists the targets on the right hand side. The target list serves as a

bookmark that allows you to jump straight into editing a particular target.

 Apache ANT

44

Junit is the commonly used unit testing framework for development based on Java.

It is easy to use and easy to extend. There are a number of JUnit extensions

available. If you are not much familiar with Junit, download junit

from www.junit.org and read the junit manual.

This tutorial discusses about executing the junit tests using ANT. ANT makes this

straight forward through the Junit task.

The attribute of the junit task are:

Properties Description

dir Where to invoke the VM from. This is ignored when fork is

disabled.

jvm Command used to invoke the JVM. This is ignored when fork is

disabled.

fork Runs the test in a separate JVM

errorproperty The name of the property to set if there is a Junit error

failureproperty The name of the property to set if there is a Junit failure

haltonerror Stops execution when a test error occurs

haltonfailure Stops execution when a failure occurs

printsummary Advices Ant to display simple statistics for each test

showoutput Adivces Ant tosend the output to its logs and formatters

tempdir Path to the temporary file that Ant will use

timeout Exits the tests that take longer to run than this setting (in

milliseconds).

14. ANT JUNIT INTEGRATION

http://junit.org/

 Apache ANT

45

Let us continue the theme of the Hello World Fax web application folder structure

and add a junit target.

The following example shows a simple junit test execution:

<target name="unittest">

 <junit haltonfailure="true" printsummary="true">

 <test name="com.tutorialspoint.UtilsTest"/>

 </junit>

</target>

This example shows the execution of Junit on the com.tutorialspoint.UtilsTest junit

class. Running the above code produces the following output:

test:

[echo] Testing the application

[junit] Running com.tutorialspoint.UtilsTest

[junit] Tests run: 12, Failures: 0, Errors: 0, Time elapsed: 16.2 sec

BUILD PASSED

 Apache ANT

46

ANT comes with a predefined set of tasks, however you are not limited to using

only the available tasks. You can create your own tasks, as shown in the example

below.

Custom ANT tasks should extend the org.apache.tools.ant.Task class and

should extend the execute() method. See the following example:

package com.tutorialspoint.ant;

import org.apache.tools.ant.Task;

import org.apache.tools.ant.Project;

import org.apache.tools.ant.BuildException;

public class MyTask extends Task {

 String message;

 public void execute() throws BuildException {

 log("Message: " + message, Project.MSG_INFO);

 }

 public void setMessage(String message) {

 this.message= message;

 }

}

To execute the custom task, you need to add the following to the Hello World Fax

Web Application build.xml:

<target name="custom">

 <taskdef name="custom" classname="com.tutorialspoint.ant.MyTask" />

 <custom message="Hello World!"/>

</target>

Executing the above custom task prints the message 'Hello World!'

c:\>ant custom

test:

[custom] Message : Hello World!

 elapsed: 0.2 sec

15. EXTENDING ANT

 Apache ANT

47

BUILD PASSED

This is just a simple example, you can use the power of ANT to improve your build

and deployment process.

